INF 212
ANALYSIS OF PROG. LANGS
PROCEDURES & FUNCTIONS

Subroutines aka Procedures

Historically: blocks of instructions executed several
times during program execution

May have 0 or more input arguments
May have O or more output arguments

May perform IO, side effects

Mid-50s

Functions

Take O or more input arguments
Return one value

Used as expressions

Additional constraint for pure functions:
No IO, no side effects

Procedures vs. Functions

Distinction existed as early as 1958 (FORTRAN)

subroutine square cube (i, isquare, icube)

integer, intent (in) 1 ! input
integer, intent(out) :: 1isquare,icube ! output
isquare = 1**2

1cube = 1**3

end subroutine square cube

program xx
implicit none
integer :: 1i,1isqg,icub
i =14
call square cube (i, 1sg,icub)
print*,"i,i%2,1i73=",1,1isq,icub
end program xXx

Procedures vs. Functions

Distinction existed as early as 1958 (FORTRAN)

function func (i) result(j)

integer, intent(in) :: 1 ! input
integer ::] ! output
J o= 1i**2 + 1i**3

end function func

program xfunc
implicit none

integer :: 1
integer :: func
i =3

print*, "sum of the square and cube of",i," is", func (1)
end program xfunc

Additionally, Fortran has a pure keyword for pure functions

Procedures vs. Functions

Distinction was lost at some point, mainstream PLs
merged the two concepts into one
C/C++, Java, Python, Perl, PHP, ... No distinction:
Procedures can also return values

Lisp, ML, Haskell, ... Only functions, but:

Functions can be pure or impure

“Pure” Functional Programming

Mathematical functions

No side effects

No 1O (other than at the beginning and the end)
“High-order” functions

Functions can take functions as arguments

Functions can return functions as values

More on this later...

- Function /procedure calls

Implementation details

Simplified Machine Model

o |
Registers Code Data
—
> Stack
_
Program
counter ™
[—
Environment > Heap
pointer
L — ~

Function definition
B

def: fact(n) = if n<=1 then 1
else n * fact(n-1)

call: fact (3)

T

Activation Records for Functions

Block of information (“frame”) associated with each
function call, including:

Parameters

Local variables

Return address

Location to put return value when function exits

Control link to the caller’s activation record

Saved registers

Temporary variables and intermediate results

(not always) Access link to the function’s static parent

Activation Record Layout

Control link

Return address

Return-result addr

Parameters

Local variables

Intermediate results

Environment
pointer

Return address

Location of code to execute
on function return

Return-result address

Address in activation record
of calling block to receive
returned value

Parameters

Locations to contain data
from calling block

Example

.
|

~ Function
fact(n) = if n<=1 then 1
else n * fact(n-1)

“! Return result address:
location to put fact(n)
7 Parameter

o Set to value of n by calling
sequence

7 Intermediate result

Environment I Locations to contain value of
pointer fact(n-1)

Typical x86 Activation Record
==

Caller's activiation higher memory addresses

frame
old sp
-
arg?2 caller saves
argl fp + offset
caller’s return address
__ saved frame pointer | | X _
Callee’s activiation)
Chanye saved registers
______________ - fp callee saves
local variables fp - offset
______________ i sp

Next activiation
frame to be called

lower memory addresses

Run-Time Stack

Activation records are kept on the
Each new call pushes an activation record
Each completing call pops the topmost one
Stack has all records of all active calls at any moment
during execution (topmost record = most recent call)
Example: fact(3)
Pushes one activation record on the stack, calls fact(2)
This call pushes another record, calls fact(1)

This call pushes another record, resulting in three activation
records on the stack

Function Call
B S

T B -

fact(2)
Environment

pointer

fact(n) = if n<=1 then1
else n * fact(n-1)

fact(1)

Return address omitted; would be a
pointer into code segment

Function Return

—————
‘ fact(3) fact(3) :

fact(2) fact(2)

fact(1)

fact(n) = if n<=1 then 1
else n * fact(n-1)

