
INF 212 
ANALYSIS OF PROG. LANGS 
PROCEDURES & FUNCTIONS 

Instructors: Kaj Dreef
Copyright © Instructors.

Subroutines aka Procedures

Historically: blocks of instructions executed several
times during program execution

May have 0 or more input arguments
May have 0 or more output arguments
May perform IO, side effects

Mid-50s

Functions

Take 0 or more input arguments
Return one value
Used as expressions

Additional constraint for pure functions:
! No IO, no side effects

Procedures vs. Functions

Distinction existed as early as 1958 (FORTRAN)
subroutine square_cube(i,isquare,icube)
 integer, intent(in) :: i ! input
 integer, intent(out) :: isquare,icube ! output
 isquare = i**2
 icube = i**3
end subroutine square_cube

program xx
 implicit none
 integer :: i,isq,icub
 i = 4
 call square_cube(i,isq,icub)
 print*,"i,i^2,i^3=",i,isq,icub
end program xx

Procedures vs. Functions

Distinction existed as early as 1958 (FORTRAN)
function func(i) result(j)
 integer, intent(in) :: i ! input
 integer :: j ! output
 j = i**2 + i**3
 end function func

 program xfunc
 implicit none
 integer :: i
 integer :: func
 i = 3
 print*,"sum of the square and cube of",i," is",func(i)
 end program xfunc

Additionally, Fortran has a pure keyword for pure functions

Procedures vs. Functions

Distinction was lost at some point, mainstream PLs
merged the two concepts into one
! C/C++, Java, Python, Perl, PHP, ... No distinction:
■ Procedures can also return values

! Lisp, ML, Haskell, ... Only functions, but:
■ Functions can be pure or impure

“Pure” Functional Programming

Mathematical functions
! No side effects
! No IO (other than at the beginning and the end)
“High-order” functions
! Functions can take functions as arguments
! Functions can return functions as values

More on this later...

Implementation details

Function/procedure calls

Simplified Machine Model
!9

Registers

Environment
pointer

Program
counter

DataCode

Heap

Stack

Function definition

def: fact(n) = if n<=1 then 1
 else n * fact(n-1)

 ...
call: fact(3)
 ...

?

!11

Activation Records for Functions

Block of information (“frame”) associated with each
function call, including:
! Parameters
! Local variables
! Return address
! Location to put return value when function exits
! Control link to the caller’s activation record
! Saved registers
! Temporary variables and intermediate results
! (not always) Access link to the function’s static parent

Activation Record Layout
!12

Return address
! Location of code to execute

on function return
Return-result address
! Address in activation record

of calling block to receive
returned value

Parameters
! Locations to contain data

from calling block

Control link

Local variables

Intermediate results

Environment
pointer

Parameters

Return address

Return-result addr

Example
!13

Function
fact(n) = if n<=1 then 1
 else n * fact(n-1)
! Return result address:
 location to put fact(n)
Parameter
! Set to value of n by calling

sequence
Intermediate result
! Locations to contain value of

fact(n-1)

Control link

Local variables

Intermediate results

Environment
pointer

Parameters

Return address

Return result addr

Typical x86 Activation Record
!14

frame pointer

stack pointer

!15

Run-Time Stack

Activation records are kept on the stack
! Each new call pushes an activation record
! Each completing call pops the topmost one
! Stack has all records of all active calls at any moment

during execution (topmost record = most recent call)
Example: fact(3)
! Pushes one activation record on the stack, calls fact(2)
! This call pushes another record, calls fact(1)
! This call pushes another record, resulting in three activation

records on the stack

Function Call
!16

Return address omitted; would be a
pointer into code segment

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Control link

fact(n-1)
n

Return-result addr
2

fact(2)

fact(n) = if n<= 1 then 1
 else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment
pointer

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

Function Return
!17

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

fact(n) = if n<=1 then 1
 else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr

2
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

High
addresses

Low
addresses

