
INF 212 
ANALYSIS OF PROG. LANGS 
ELEMENTS OF IMPERATIVE PROGRAMMING STYLE 

Instructors: Kaj Dreef
Copyright © Instructors.

Objectives

Level up on things that you may already know…
! Machine model of imperative programs
! Structured vs. unstructured control flow
! Assignment
! Variables and names
! Lexical scope and blocks
! Expressions and statements
…so to understand existing languages better

 3

Imperative Programming

Oldest and most popular paradigm
! Fortran, Algol, C, Java …
Mirrors computer architecture
! In a von Neumann machine, memory holds instructions and

data
Control-flow statements
! Conditional and unconditional (GO TO) branches, loops
Key operation: assignment
! Side effect: updating state (i.e., memory) of the machine

Simplified Machine Model
 4

Registers

Environment
pointer

Program
counter

DataCode

Heap

Stack

 5

Memory Management

Registers, Code segment, Program counter
! Ignore registers (for our purposes) and details of

instruction set
Data segment
! Stack contains data related to block entry/exit
! Heap contains data of varying lifetime
! Environment pointer points to current stack position
■ Block entry: add new activation record to stack
■ Block exit: remove most recent activation record

 6

Control Flow

Control flow in imperative languages is most often
designed to be sequential
! Instructions executed in order they are written
! Some also support concurrent execution (Java)

But…

Goto in C

include <stdio.h>
int main(){
 float num,average,sum;
 int i,n;
 printf("Maximum no. of inputs: ");
 scanf("%d",&n);
 for(i=1;i<=n;++i){
 printf("Enter n%d: ",i);
 scanf("%f",&num);
 if(num<0.0)
 goto jump;
 sum=sum+num;
 }
jump:
 average=sum/(i-1);
 printf("Average: %.2f",average);
 return 0;
}

Before C: Goto in Fortran

C AREA OF A TRIANGLE - HERON'S FORMULA
C INPUT - CARD READER UNIT 5, INTEGER INPUT, ONE BLANK CARD FOR END-OF-
DATA
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
C INPUT ERROR DISPAY ERROR MESSAGE ON OUTPUT
 501 FORMAT(3I5)
 601 FORMAT(4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,12HSQUARE
UNITS)
 602 FORMAT(10HNORMAL END)
 603 FORMAT(23HINPUT ERROR, ZERO VALUE)
 INTEGER A,B,C
 10 READ(5,501) A,B,C
 IF(A.EQ.0 .AND. B.EQ.0 .AND. C.EQ.0) GO TO 50
 IF(A.EQ.0 .OR. B.EQ.0 .OR. C.EQ.0) GO TO 90
 S = (A + B + C) / 2.0
 AREA = SQRT(S * (S - A) * (S - B) * (S - C))
 WRITE(6,601) A,B,C,AREA
 GO TO 10
 50 WRITE(6,602)
 STOP
 90 WRITE(6,603)
 STOP
 END

!9

Structured Control Flow

Program is structured if control flow is evident from
syntactic (static) structure of program text
! Hope: programmers can reason about dynamic execution

of a program by just analysing program text
! Eliminate complexity by creating language constructs for

common control-flow patterns
■ Iteration, selection, procedures/functions

!10

Historical Debate

Dijkstra, “GO TO Statement Considered Harmful”
! Letter to Editor, Comm. ACM, March 1968
! Linked from the course website
Knuth, “Structured Prog. with Go To Statements”
! You can use goto, but do so in structured way …
Continued discussion
! Welch, “GOTO (Considered Harmful)n, n is Odd”
General questions
! Do syntactic rules force good programming style?
! Can they help?

Structured Programming

Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …
Group code in logical blocks
Avoid explicit jumps (except function return)
Cannot jump into the middle of a block or function
body

!11

Cyclomatic Complexity

A metric to measure the amount of control flow paths
in a block of code

CC = E - N + 2P

where
E = number of edges
N = number of nodes
P = number of exit nodes

Less is better

Cyclomatic Complexity

Rule of thumb:
! CC < 10 : ok
! 10 < CC < 20 : moderate risk
! 20 < CC < 50 : high risk
! CC > 50 : extremely high risk

Less is better

CC example

IF A = 354 THEN
 IF B > C THEN
 A = B
 ELSE
 A= C
 ENDIF
ENDIF
Print A

CC = 8 – 7 + 2*1 = 3

Another example

insertion_procedure (int a[], int p [], int N)
{
 int i,j,k;
 for (i=0; i<=N; i++)
 p[i] = i;
 for (i=2; i<=N; i++) {
 k = p[i];
 j = 1;
 while (a[p[j-1]] > a[k]) {
 p[j] = p[j-1];
 j--;
 }
 p[j] = k;
 }
}

Source: stackoverflow

Another example

insertion_procedure (int a[], int p [], int N)
 {
(1) int i,j,k;
(2) for ((2a)i=0; (2b)i<=N; (2c)i++)
(3) p[i] = i;
(4) for ((4a)i=2; (4b)i<=N; (4c)i++)
 {
(5) k=p[i];j=1;
(6) while (a[p[j-1]] > a[k]) {
(7) p[j] = p[j-1];
(8) j--
 }
(9) p[j] = k;
 }
 }

Source: stackoverflow

Another example

Source: stackoverflow

CC = 4

Assignment (you thought you knew)

x = 3
x = y+1
x = x+1

Let’s look at some other examples

Informal:
 “Set x to 3”
 “Set x to the value of y plus 1”
 “Add 1 to x”

Assignment (you thought you knew)

 i = (a>b) ? j : k
 m[i] = m[(a>b)? j : k]
m[(a>b) ? j : k] = m[i]

What exactly does assignment mean?

Exp1 = Exp2 ?

Assume x is 5 x = x+1 means 5 = 6 ????

Assignment (you thought you knew)

 x = x+1

Not quite!

Exp1 = Exp2 ?

Left side Right side

Location-value
 (L-value)

Regular-value
 (R-value)

 21

Assignment

On the RHS of an assignment, use the variable’s R-
value; on the LHS, use its L-value
! Example: x = x+1
! Meaning: “get R-value of x, add 1, store the result into the

L-value of x”
An expression that does not have an L-value cannot
appear on the LHS of an assignment
! What expressions don’t have l-values?

■ Examples: 1=x+1, x++ (why?)
■ What about a[1] = x+1, where a is an array? Why?

 22

Locations and Values

When a name is used, it is bound to some memory
location and becomes its identifier
! Location could be in global, heap, or stack storage
L-value: memory location (address)
R-value: value stored at the memory location identified
by l-value
Assignment: A (target) = B (expression)
! Destructive update: overwrites the memory location

identified by A with a value of expression B
■ What if a variable appears on both sides of assignment?

 23

l-Values and r-Values (1)

Any expression or assignment statement in an
imperative language can be understood in terms of
l-values and r-values of variables involved
! In C, also helps with complex pointer dereferencing and

pointer arithmetic
Literal constants
! Have r-values, but not l-values
Variables
! Have both r-values and l-values
! Example: x=x*y means “compute rval(x)*rval(y) and

store it in lval(x)”

 24

l-Values and r-Values (2)

Pointer variables
! Their r-values are l-values of another variable

■ Intuition: the value of a pointer is an address

Overriding r-value and l-value computation in C
! &x always returns l-value of x
! *p always return r-value of p

■ If p is a pointer, this is an l-value of another variable

What are the values of
p and x at this point?

 25

Copy vs. Reference Semantics

Copy semantics: expression is evaluated to a value,
which is copied to the target
! Used by imperative languages
Reference semantics: expression is evaluated to an
object, whose pointer is copied to the target
! Used by object-oriented languages

Copy vs. Reference Semantics
 26

In Java/C/C++:
 x = 1;
 x = 3;

In Python/Ruby:
 x = 1;
 x = 3;

Copy semantics Reference semantics

1 then 3x 1

3

x

Overwrites the r-value of x
from int 1 to int 3

Overwrites the r-value of x too,
but that value is a “pointer”

In Java/C++/Python/Ruby:
 x = new Foo;
 x = new FooBar;

foo

foobar

x

Overwrites the r-value of x too,
but that value is a “pointer”

Reference semantics

 27

l-Values and r-Values (3)

Declared functions and procedures
! Have l-values, but no r-values

 28

Typed Variable Declarations

Typed variable declarations restrict the values that a
variable may assume during program execution
! Built-in types (int, char …) or user-defined
! Initialization: Java integers to 0. What about C?
Variable size
! How much space needed to hold values of this variable?

■ C on a 32-bit machine: sizeof(char) = 1 byte, sizeof(short) = 2
bytes, sizeof(int) = 4 bytes, sizeof(char*) = 4 bytes (why?)

■ What about this user-defined datatype:

Variables without declarations (names)

Names that bind to values
Names don’t have types; values do

Python, Perl, Ruby, ...

x = 1
x = “hello”

Block-Structured Languages

Nested blocks with local variables

 { int x = 2;
 { int y = 3;
 x = y+2;
 }
 }

! Storage management
■ Enter block: allocate space for variables
■ Exit block: some or all space may be deallocated

!30

new variables declared in nested blocks

inner
block

outer
block local variable

global variable

Blocks in Common Languages

Examples
! C, JavaScript * { … }
! Algol begin … end
! ML let … in … end
Two forms of blocks
! Inline blocks
! Blocks associated with functions or procedures
■ We’ll talk about these later

!31

* JavaScript functions provides blocks

 32

Scope and Lifetime

Scope
! Region of program text where declaration is visible
Lifetime
! Period of time when location is allocated to program

Inner declaration of x hides outer one
 (“hole in scope”)
Lifetime of outer x includes time when

inner block is executed
Lifetime ≠ scope

{ int x = … ;
 { int y = … ;
 { int x = … ;
 ….
 };
 };
};

 33

Inline Blocks

Activation record
! Data structure stored on run-time stack
! Contains space for local variables

May need space for variables and intermediate results like (x+y), (x-y)

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Push record with space for x, y
Set values of x, y
 Push record for inner block
 Set value of z
 Pop record for inner block
Pop record for outer block

 34

Activation Record For Inline Block

Control link
! Pointer to previous record on

stack
Push record on stack
! Set new control link to point

to old env ptr
! Set env ptr to new record
Pop record off stack
! Follow control link of current

record to reset environment
pointer

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
pointer

In practice, can be optimized away

 35

Example

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Push record with space for x, y
Set values of x, y
 Push record for inner block
 Set value of z
 Pop record for inner block
Pop record for outer block

Control link

x

y

0

1

x+y

x-y

Environment
pointer

1

-1

Control link

z -1

Expressions vs. Statements

Expressions: mathematical expressions
! x
! a*(b+c)+d
! No side effects
! Evaluate to a value (pleonasm!)
Statements (or commands)
! x = expr
! writeline(f, line)
! Affect/interact with the world (side effects)
! Executed rather than evaluated

Expressions vs. Statements

print x ?
[1, 2, 3] + [4, 5, 6] ?
x = [1, 2, 3] ?
readline() ?
raise e ?

