
INF 212 
ANALYSIS OF PROG. LANGS.  
 
INTERACTIVITY

Kaj Dreef

Interactivity

Program continually receives input and updates its
state
Opposite of batch processing

Batch processing

dataIn = getInput()
dataOut = process(dataIn)
display(dataOut)

Event loop

state
while (True)
 event = eventSource.getNextEvent()
 process(event)
 render(state)

Event loop handled by framework

while (True)
 event = eventSource.getNextEvent()
 callback(event)

state
callback(event)
 process(event)
 render(state)

fr
am

ew
or

k
U

se
r

co
de

Hollywood style

Issues

How to manage internal state and external views
How to deal with application “memory”
! Behavior that depends on history

These are unique to interactive applications

MVC

Model-View-Controller

MVC Trinity

Model
! Represents the application’s data and logic
View
! Represents a specific rendition of the model
Controller
! Provides input controls for populating/updating the

model and for invoking the right view

Objects/functions belong to only one of these

Term Frequency v1 – Model

class WordFrequenciesModel:
 """ Models the data. In this case, we're only interested
 in words and their frequencies as an end result """
 freqs = {}
 def __init__(self, path_to_file):
 self.update(path_to_file)

 def update(self, path_to_file):
 try:
 stopwords = set(open('../stop_words.txt').read().split(','))
 words = re.findall('[a-z]{2,}', open(path_to_file).read().lower())
 self.freqs = collections.Counter(w for w in words if w not in stopwords)
 except IOError:
 print "File not found"
 self.freqs = {}

Term Frequency v1 – View

class WordFrequenciesView:
 def __init__(self, model):
 self._model = model

 def render(self):
 sorted_freqs = sorted(self._model.freqs.iteritems(), \
 key=operator.itemgetter(1),
reverse=True)
 for (w, c) in sorted_freqs[:25]:
 print w, '-', c

Term Frequency v1 – Controller

class WordFrequencyController:
 def __init__(self, model, view):
 self._model, self._view = model, view
 view.render()

 def run(self):
 while True:
 print "Next file: "
 sys.stdout.flush()
 filename = sys.stdin.readline().strip()
 self._model.update(filename)
 self._view.render()

Passive vs. Active

Passive MVC
! Controller is driver of both model & view updates
! (Previous example)

Active MVC
! View(s) updated automatically when model changes

input Controller Model

View

input Controller Model

View

Active MVC

input Controller Model

View

?

Active MVC – the wrong way

Model holds references to views
! Calls them when it changes

input Controller Model

View View View

Wrong!

Active MVC – better

Views hold references to model
! Observe periodically
! Free agents style

input Controller Model

View View View

Active MVC – better

Model is a “subject” that accepts “observers”
! Calls them when it changes
! Hollywood style (“I’ll call you back”)

input Controller Model

View View View

register_observer(obs)

MVC

MVC can happen at several scales
Separation sometimes is difficult

Interesting ideas for how to deal with application
“memory”

REST

Recap

HTTP
! URLs
! Methods
! Headers
! Status Codes
! Caches
! Cookies
HTML and HTTP
! hrefs/imgs
! Forms
! Scripts (XMLHttpRequest)

HTML and HTTP

Links and images
! <link href="mystyle.css" rel="stylesheet" type="text/css” />
!
! Semantics: Embedded Retrieval ! GET
Anchors
! Anchor text
! Semantics: Potential Retrieval ! GET
Forms
! <form action=URI method=OP> 

 input fields  
</form>

! Semantics: OP = Potential Retrieval ! GET | Potential Creation ! POST
Scripts
! <script type=“text/javascript”> 

 script statements  
</script>

! JavaScript has the capability of invoking HTTP operations on servers
programmatically

First Web Programs

GET http://example.com/file.html

GET http://example.com/program.py?arg=3 
(or POST)

Web server needs to recognize files extensions and
react appropriately
Common Gateway Interface (CGI) model

First Web Programs – CGI

A standard (see RFC3875: CGI Version 1.1) that
defines how web server software can delegate the
generation of webpages to a console application.
Console app can be written in any PL
! CGI programs generate HTML responses
! First CGI programs used Perl

1993

http://www.ietf.org/rfc/rfc3875.txt
http://www.ietf.org/rfc/rfc3875.txt

First Web Programs – PHP

Natural extension of CGI/Perl, 1994
Embedded scripting language that helped Perl

<html>
 <head>
 <title>Test</title>
 </head>
 <body>
 <?php echo "Hello World”;?>
 </body>
</html>

#!/usr/local/bin/perl

print "Content-type: text/html\n\n";
print "<html>\n<head>";
print "<title>Test</title>\n";
print "</head>\n<body>\n";
print "Hello, world!\n";
print "</body>\n</html>";

helloworld.pl helloworld.php

Web Programming

It all went down hill from here
! 1995-2000: a lot of bad programming styles

Generalized confusion about how to use HTTP
! HTTP reduced to GET and POST
! HTTP reduced to POST (!) in some models

REST

REpresentational State Transfer
Explanation of HTTP 1.1 (for the most part)
Style of writing distributed applications
“Story” that guides the evolution of Web standards

Formulated by 2000, Roy Fielding (UCI/ICS)

The importance of REST

Late-90’s HTTP seen as
! just convenient mechanism
! just browser clients
! not good enough for server-server interactions
Ad-hoc use, generalized confusion
! GET, POST, PUT … what’s the difference?
People started mapping other styles onto it
! e.g. RPC, SOAP

HTTP got no respect/understanding until REST was
formulated

HTTP vs. REST

REST is the conceptual story
HTTP is an enabler of REST on the Web
Not every use of HTTP is RESTful
REST can be realized with other network protocols

History lessons:
! Realization (HTTP) came first, concepts (REST) became clear

later
! Good concepts are critically important

REST Design Principles

Client-server / Request-Response
Stateless
Uniform interface
Caching
Layered
Code-on-demand

REST in action

Design Principle: Request-Response

Components
! Servers provide access to resources
! Clients access the resources via servers

Client Server
Request

Response

request = ["get", "default", None]
while True:
 # "server"-side computation
 state_representation, links = handle_request(*request)
 # "client"-side computation
 request = render_and_get_input(state_representation, links)

Design Principle: Uniform Interfaces

Uniform identification of resources
Manipulation of resources via representations
Hypermedia as engine of app state

TF Resources

Execution
Default
File
Word

TF Uniform Interface

[verb, resource, [data]]
! Verb: get / post
Representation of resources
! Text (menu options) +  

Links (possible next operations on resources)

HATEOAS

Representations

Server returns representations of resources, not the
resources themselves.
! E.g. HTML, XML
Server response contains all metadata for client to
interpret the representation

Uniform Interfaces

HATEOAS

Hypermedia As The Engine Of Application State
Insight: the application is a state machine
Wifi example:

Uniform Interfaces

LoggedO
ut

Create
Account

Logged
In

User

Change
Account

Logged
In

Admin

Search
Users …

Question is:
Where is the clients’ state stored?

HATEOAS

In many systems, clients’ state is kept on the server
! Traditional way of engineering apps
■ Server is both the state machine and the holder of state

In REST, state machine is on the server, but clients’
state is sent to the clients
! At any step, client is sent a complete “picture” of where

it can go next

LoggedO
ut

Logged
In

User

Change
Account

HATEOAS

Server sends representation of the client’s state back
to the client
! Hence, REpresentional State Transfer
Server does not “hold on” to client’s state
Possible next state transitions of the client are
encoded in Hypermedia
! Anchors, forms, scripted actions, eXternal reps

LoggedO
ut

Logged
In

User

Change
Account

Design Principle: Stateless

Stateless interaction, not stateless servers
Stateless interaction:
! Messages are self-contained, every message from client

to server is independent of prior messages
Server may create resources (e.g. session info)
regarding clients
! Critical for real applications
! Preferably in DB
After serving, server does not “hold on”

TF Statelessness

Memory is sent back to client in hyperlinks

RESTful Design Guidelines

Embrace hypermedia
! Name your resources/features with URIs
! Design your namespace carefully
Hide mechanisms
! Bad: http://example.com/cgi-bin/users.pl?name=John
! Good: http://example.com/users/John
Serve POST, GET, PUT, DELETE on those resources
! Roughly, Create, Retrieve, Update, Delete (CRUD) life-cycle
Don’t hold on to state
! Serve and forget (functional programming-y)
Consider serving multiple representations
! HTML, XML

RESTful Design Guidelines

URIs are nouns
The 8 HTTP operations are verbs

HTTP Operations (recap)

GET
PUT
DELETE
HEAD
OPTIONS
TRACE
POST
CONNECT

Spec

Idempotent methods

Means: the side effects of many invocations are
exactly the same as the side effects of one
invocation

See Wikipedia Idempotent

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://en.wikipedia.org/wiki/Idempotence

REST, back to the beginning

REpresentational State Transfer
! Now you really know what this means!
Explanation of HTTP 1.1 (for the most part)
! Much needed conceptual model
Style of writing distributed applications
! Design guidelines
“Story” that guides the evolution of Web standards
! A lighthouse for new ideas

