
INF 102 
ANALYSIS OF PROG. LANGS 
LAMBDA CALCULUS 

Instructors: Kaj Dreef
Copyright © Instructors.

History

Formal mathematical system
Simplest programming language
Intended for studying functions, recursion
Invented in 1936 by Alonzo Church (1903-1995)
! Same year as Turing’s paper

Warning

May seem trivial and/or irrelevant now
Had a tremendous influence in PLs
! λ-calculus ! Lisp ! everything

Context in the early 60s:
! Assembly languages
! Cobol
! Unstructured programming

 4

What is Calculus?

 Calculus is a branch of mathematics that deals with
limits and the differentiation and integration of
functions of one or more variables

 5

Real Definition

A calculus is just a bunch of rules for manipulating
symbols.
People can give meaning to those symbols, but
that’s not part of the calculus.
Differential calculus is a bunch of rules for
manipulating symbols. There is an interpretation of
those symbols corresponds with physics, slopes, etc.

Syntax

M ::= x (variable)
 | λx.M (abstraction)
 | MM (application)

Nothing else!
! No numbers
! No arithmetic operations
! No loops
! No etc.

Symbolic computation

Syntax reminder

λx.M ➔ function(x) { M }

LM, e.g. λx.N y ➔ apply L to M

L M

anonymous functions

Terminology – bound variables

λx.M

The binding operator λ binds the variable x in the
λ-term x.M

• M is called the scope of x
• x is said to be a bound variable

Terminology – free variables

Free variables are all symbols that aren’t bound (duh)

FV(x) = {x}
FV(MN) = FV(M) U FV(N)
FV(x.M) = FV(M) − x

Renaming of bound variables

λx.M = λy.([y/x]M) if y not in FV(M)

α-conversion

i.e. you can replace x with y
aka “renaming”

Operational Semantics

Evaluating function application: (λx.e1) e2

! Replace every x in e1 with e2

! Evaluate the resulting term
! Return the result of the evaluation

Formally: “β-reduction” (aka “substitution”)
! (λ x.e1) e2 →β e1[e2/x]
! A term that can be β-reduced is a redex (reducible

expression)
! We omit β when obvious

Note again

Computation = pure symbolic manipulation
! Replace some symbols with other symbols

Scoping etc.

Scope of λ extends as far to the right as possible
! λx.λy.xy is λx.(λy.(x y))

Function application is left-associative
! xyz means (xy)z
Possible syntactic sugar for declarations
! (λx.N)M is let x = M in N
! (λx.(x + 1))10 is let x=10 in (x+1)

Multiple arguments

λ(x,y).e ???
! Doesn’t exist

Solution: λx.λy.e [remember, (λx.(λy.e))]
! A function that takes x and returns another function that

takes y and returns e
! (λx.λy.e) a b→(λy.e[a/x]) b→e[a/x][b/y]
! “Currying” after Curry: transformation of multi-arg

functions into higher-order functions

Multiple argument functions are nothing but
syntactic sugar

Boolean Values and Conditionals

True = λx.λy.x
False = λx.λy.y
If-then-else = λa.λb.λc. a b c = a b c
For example:
! If-then-else true b c 
→(λx.λy.x) b c→(λy.b) c→b

! If-then-else false b c  
→(λx.λy.y) b c→(λy.y) c→c

Boolean Values and Conditionals

If True M N = (λa.λb.λc.abc) True M N  
 
 
 ! (λb.λc.True b c) M N  
 ! (λc.True M c) N  
 ! True M N  
 = (λx.λy.x) M N  
 ! (λy.M) N

 ! M
 

If

Numbers…

Numbers are counts of things, any things. Like
function applications!

! 0 = λf. λx. x
! 1 = λf. λx. (f x)
! 2 = λf. λx. (f (f x))
! 3 = λf. λx. (f (f (f x)))
! …
! N = λf. λx. (fN x)

Church numerals

Successor

succ = λn. λf. λx. f (n f x)
! Want to try it on succ(1)?
! λn. λf. λx. f (n f x) (λf. λx. (f x))  
 
 ! λf. λx. f ((λf. λx. (f x)) f x)  
 
 ! λf. λx. f (f x)

1

2 !

There’s more

Reading materials

Recursion ???

(λn.
 (if (zero? n)
 1
 (* n (f (sub1 n)))))

???
Free variable

Recursion – The Y Combinator

Y = λt. (λx. t (x x)) (λx. t (x x))

Y a = λt. (λx. t (x x)) (λx. t (x x)) a
 = (λx. a (x x)) (λx. a (x x))
 = a ((λx. a (x x)) (λx. a (x x)))
 = a (Y a)

Y a = a applied to itself!

Y a = a (Y a) = a (a (Y a)) = a (a (a (Y a))) = ...

Factorial again

λn.
 (if (zero? n)
 1
 (* n (f (sub1 n))))

λf.λn.
 (if (zero? n)
 1
 (* n (f (sub1 n))))

Now it’s bound!

F

Y F

Does it work?

(Y F) 2 = F (Y F) 2
 = λf.λn.(if (zero? n) 1 (* n (f (sub1 n))))
 ((λt.(λx.t (x x)) (λx.t (x x))
 (λf.λn.(if (zero? n) 1 (* n (f (sub1 n)))))
 2
 = if (zero? 2) 1 (* 2 (Y F (sub1 2)))
 = (* 2 (Y F (sub1 2)))
 = (* 2 (Y F 1))
 = ...
 = (* 2 1)
 = 2

F takes one function and one number as arguments

F

(Y F)

Points to take home

Model of computation completely different from
Turing Machine
! pure functions, no commands
Church-Turing thesis: the two models are equivalent
! What you can compute with one can be computed with

the other
Inspiration behind Lisp (late 1950s)
Foundation of all “functional programming”
languages

