INF 102
 ANALYSIS OF PROG. LANGS LAMBDA CALCULUS

History

- Formal mathematical system
- Simplest programming language
- Intended for studying functions, recursion
- Invented in 1936 by Alonzo Church (1903-1995)
\square Same year as Turing's paper

Warning

May seem trivial and/or irrelevant now
\square Had a tremendous influence in PLs
$\square \lambda$-calculus $\rightarrow \quad$ Lisp $\rightarrow \quad$ everything

Context in the early 60s:
\square Assembly languages
\square Cobol

- Unstructured programming

What is Calculus?

Calculus is a branch of mathematics that deals with limits and the differentiation and integration of functions of one or more variables

Real Definition

A calculus is just a bunch of rules for manipulating symbols.

- People can give meaning to those symbols, but that's not part of the calculus.
Differential calculus is a bunch of rules for manipulating symbols. There is an interpretation of those symbols corresponds with physics, slopes, etc.

Syntax

$M::=x$
| $\lambda x . M$
| MM
(variable)
(abstraction)
(application)

Nothing else!

- No numbers
\square No arithmetic operations
\square No loops
\square No etc.
Symbolic computation

Syntax reminder

anonymous functions
$\lambda x . M$
LM, e.g. $\lambda x . N$ y $\quad \rightarrow \quad$ apply L to M

Terminology - bound variables

$\lambda x . M$

The binding operator λ binds the variable x in the λ-term x.M

- M is called the scope of x
- x is said to be a bound variable

Terminology - free variables

Free variables are all symbols that aren't bound (duh)

$$
\begin{aligned}
& F V(x)=\{x\} \\
& F V(M N)=F V(M) \cup F V(N) \\
& F V(x . M)=F V(M)-x
\end{aligned}
$$

Renaming of bound variables

$\lambda x . \mathrm{M}=\lambda y .([y / x] \mathrm{M}) \quad$ if y not in $\mathrm{FV}(\mathrm{M})$

i.e. you can replace x with y aka "renaming"

α-conversion

Operational Semantics

Evaluating function application: ($\left.\lambda x . e_{1}\right) e_{2}$
\square Replace every x in e_{1} with e_{2}
\square Evaluate the resulting term
\square Return the result of the evaluation
Formally: " β-reduction" (aka "substitution")
$\square\left(\lambda\right.$ x. $\left.e_{1}\right) e_{2} \rightarrow{ }_{\beta} e_{1}\left[e_{2} / x\right]$
\square A term that can be β-reduced is a redex (reducible expression)
\square We omit β when obvious

Note again

- Computation $=$ pure symbolic manipulation
\square Replace some symbols with other symbols

Scoping etc.

Scope of λ extends as far to the right as possible
$\square \lambda x . \lambda y . x y$ is $\lambda x .(\lambda y .(x y))$
\square Function application is left-associative
$\square x y z$ means (xy)z

- Possible syntactic sugar for declarations
$\square(\lambda x . N) M$ is let $x=M$ in N
$\square(\lambda x .(x+1)) 10$ is let $x=10$ in $(x+1)$

Multiple arguments

$\lambda(x, y) . \mathrm{e}$???
\square Doesn't exist

- Solution: $\lambda x . \lambda y . e \quad[r e m e m b e r,(\lambda x .(\lambda y . e))]$
\square A function that takes x and returns another function that takes y and returns e
$\square(\lambda x . \lambda y . e) a b \rightarrow(\lambda y . e[a / x]) b \rightarrow e[a / x][b / y]$
- "Currying" after Curry: transformation of multi-arg functions into higher-order functions

Multiple argument functions are nothing but syntactic sugar

Boolean Values and Conditionals

True $=\lambda x \cdot \lambda y \cdot x$

- False $=\lambda x . \lambda y \cdot y$
- If-then-else $=\lambda a . \lambda b . \lambda c . a b c=a b c$

For example:
미f-then-else true b c
$\rightarrow(\lambda x . \lambda y . x) b c \rightarrow(\lambda y . b) c \rightarrow b$
ㅁf-then-else false bc
$\rightarrow(\lambda x . \lambda y . y) b c \rightarrow(\lambda y . y) c \rightarrow c$

Boolean Values and Conditionals

- If True M N = ($\lambda a \cdot \lambda b \cdot \lambda c \cdot a b c)$ True M N

$$
\begin{aligned}
& \\
& \rightarrow \quad(\lambda b . \lambda c . \text { If } \\
& \rightarrow \quad(\lambda c . \text { True } b c) \mathrm{M} c) \mathrm{N} \\
& \rightarrow \\
& = \\
& =(\lambda x \cdot \lambda y \cdot \mathrm{~N}) \mathrm{M} N \\
& \rightarrow \\
& \rightarrow \\
& \rightarrow \mathrm{M}
\end{aligned}
$$

Numbers...

- Numbers are counts of things, any things. Like function applications!
$\square 0=\lambda f . \lambda x . x$
- $1=\lambda f . \lambda x .(f x)$
- $2=\lambda \mathrm{f} . \lambda \mathrm{x} .(\mathrm{f}(\mathrm{f} \mathrm{x}))$
- $3=\lambda \mathrm{f}$. $\lambda \mathrm{x}$. (f (f (fx)))

ㅁ..
Church numerals
$\square N=\lambda f . \lambda x .(f N x)$

Successor

suck $=\lambda n . \lambda f . \lambda x . f(n f x)$
\square Want to try it on succ(1)?

- $\quad \lambda n . \lambda f . \lambda x . f(n f x)(\lambda f . \lambda x .(f x))$
$\rightarrow \quad \lambda f . \lambda x . f((\lambda f . \lambda x .(f x)) f x)$
$\rightarrow \quad \lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{fx})$
$2!$

There's more

- Reading materials

Recursion ???

(λ n.
(if (zero? n) 1
(* $n(f($ sub1 $n)))))$
?
Free variable

Recursion - The Y Combinator

$Y=\lambda t .(\lambda x . t(x x))(\lambda x . t(x x))$

$$
\begin{aligned}
Y a & =\lambda t \cdot(\lambda x \cdot t(x x))(\lambda x \cdot t(x x)) a \\
& =(\lambda x \cdot a(x x))(\lambda x \cdot a(x x)) \\
& =a\left((\lambda x \cdot a(x x))\left(\lambda x \cdot a\left(x x^{2}\right)\right)\right) \\
& =a(Y a)
\end{aligned}
$$

$\mathrm{Y} a=a$ applied to itself!

$$
Y a=a(Y a)=a(a(Y a))=a(a(a(Y a)))=\ldots
$$

Factorial again

λn.
(if (zero? n)
1
$\left({ }^{*} n(f(\right.$ sub1 $\left.\left.n))\right)\right)$
$\lambda \mathrm{f} . \lambda \mathrm{n}$.
(if (zero? n) 1
(* $n(f(s u b 1 n))))$

Y F

Does it work?

F takes one function and one number as arguments

$$
\begin{aligned}
& (\mathrm{Y} F) 2=\mathrm{F}(\mathrm{Y} \mathrm{~F}) 2 \mathrm{~F} \\
& =\lambda f . \lambda n .(i f(z e r o ? n) 1(* n(f(s u b 1 n)))) \\
& \text { ((} \lambda t .(\lambda x . t(x \quad x)) \text { (} \lambda x . t(x \quad x)) \\
& \text { (} \mathrm{Af} . \lambda \mathrm{n} \text {. (if (zero? } \mathrm{n} \text {) } 1 \text { (* } \mathrm{n}(\mathrm{f}(\text { subl } \mathrm{n})) \text {))) } \\
& 2 \\
& =\text { if (zero? 2) } 1 \text { (* } 2 \text { (Y F (subl 2))) } \\
& =(* 2(Y \mathrm{~F} \text { (sub1 2))) } \\
& =(* 2(\mathrm{Y} F \mathrm{~F})) \\
& =. . \\
& =\left(\begin{array}{lll}
* & 2 & 1
\end{array}\right) \\
& =2
\end{aligned}
$$

Points to take home

Model of computation completely different from Turing Machine
\square pure functions, no commands
Church-Turing thesis: the two models are equivalent

- What you can compute with one can be computed with the other
- Inspiration behind Lisp (late 1950s)
- Foundation of all "functional programming" languages

