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History

Formal mathematical system 
Simplest programming language 
Intended for studying functions, recursion 
Invented in 1936 by Alonzo Church (1903-1995) 
! Same year as Turing’s paper



Warning

May seem trivial and/or irrelevant now 
Had a tremendous influence in PLs 
! λ-calculus ! Lisp ! everything 

Context in the early 60s: 
! Assembly languages 
! Cobol 
! Unstructured programming
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What is Calculus?

 Calculus is a branch of mathematics that deals with 
limits and the differentiation and integration of 
functions of one or more variables
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Real Definition

A calculus is just a bunch of rules for manipulating 
symbols. 
People can give meaning to those symbols, but 
that’s not part of the calculus. 
Differential calculus is a bunch of rules for 
manipulating symbols.  There is an interpretation of 
those symbols corresponds with physics, slopes, etc.



Syntax

M ::= x   (variable) 
  | λx.M   (abstraction) 
  | MM   (application) 

Nothing else! 
! No numbers 
! No arithmetic operations 
! No loops 
! No etc. 

Symbolic computation



Syntax reminder

λx.M         ➔      function(x) { M } 

LM, e.g. λx.N y   ➔   apply L to M   

L M

anonymous functions



Terminology – bound variables

λx.M 

The binding operator λ binds the variable x in the  
λ-term x.M 

• M is called the scope of x 
• x is said to be a bound variable 



Terminology – free variables

Free variables are all symbols that aren’t bound (duh)

FV(x) = {x} 
FV(MN) = FV(M) U FV(N) 
FV(x.M) = FV(M) − x



Renaming of bound variables

λx.M = λy.([y/x]M)    if y not in FV(M)

α-conversion

i.e. you can replace x with y 
aka “renaming”



Operational Semantics

Evaluating function application: (λx.e1) e2 

! Replace every x in e1 with e2 

! Evaluate the resulting term 
! Return the result of the evaluation 

Formally: “β-reduction”  (aka “substitution”) 
! (λ x.e1) e2 →β e1[e2/x] 
! A term that can be β-reduced is a redex (reducible 

expression) 
! We omit β when obvious



Note again

Computation = pure symbolic manipulation 
! Replace some symbols with other symbols



Scoping etc.

Scope of λ extends as far to the right as possible 
! λx.λy.xy      is        λx.(λy.(x y)) 

Function application is left-associative 
! xyz means (xy)z 
Possible syntactic sugar for declarations 
! (λx.N)M    is    let x = M in N 
! (λx.(x + 1))10      is    let x=10 in (x+1)



Multiple arguments

λ(x,y).e   ??? 
! Doesn’t exist 

Solution: λx.λy.e    [remember, (λx.(λy.e))] 
! A function that takes x and returns another function that 

takes y and returns e 
! (λx.λy.e) a b→(λy.e[a/x]) b→e[a/x][b/y] 
! “Currying” after Curry: transformation of multi-arg 

functions into higher-order functions 

Multiple argument functions are nothing but 
syntactic sugar



Boolean Values and Conditionals

True = λx.λy.x 
False = λx.λy.y 
If-then-else = λa.λb.λc. a b c = a b c 
For example: 
! If-then-else true b c 
→(λx.λy.x) b c→(λy.b) c→b 

! If-then-else false b c  
→(λx.λy.y) b c→(λy.y) c→c



Boolean Values and Conditionals

If True M N = (λa.λb.λc.abc) True M N  
 
 
  ! (λb.λc.True b c) M N  
  ! (λc.True M c) N  
  ! True M N  
                = (λx.λy.x) M N  
  ! (λy.M) N  

           ! M 
 

If



Numbers…

Numbers are counts of things, any things. Like 
function applications! 

! 0 = λf. λx. x 
! 1 = λf. λx. (f x) 
! 2 = λf. λx. (f (f x)) 
! 3 = λf. λx. (f (f (f x))) 
! … 
! N = λf. λx. (fN x)

Church numerals



Successor

succ = λn. λf. λx. f (n f x) 
! Want to try it on succ(1)? 
!      λn. λf. λx. f (n f x) (λf. λx. (f x))  
 
 ! λf. λx. f ((λf. λx. (f x)) f x)  
 
 ! λf. λx. f (f x)

1

2 !



There’s more

Reading materials



Recursion ???

(λn. 
     (if (zero? n) 
        1 
     (* n (f (sub1 n)))))

??? 
Free variable



Recursion – The Y Combinator

Y = λt. (λx. t (x x)) (λx. t (x x))

Y a = λt. (λx. t (x x)) (λx. t (x x)) a 
    = (λx. a (x x)) (λx. a (x x)) 
    = a ((λx. a (x x)) (λx. a (x x))) 
    = a (Y a)

Y a = a applied to itself! 

Y a = a (Y a) = a (a (Y a)) = a (a (a (Y a))) = ...



Factorial again

λn. 
     (if (zero? n) 
        1 
     (* n (f (sub1 n))))

λf.λn. 
     (if (zero? n) 
        1 
     (* n (f (sub1 n))))

Now it’s bound!

F

Y F



Does it work?

(Y F) 2 = F (Y F) 2 
        = λf.λn.(if (zero? n) 1 (* n (f (sub1 n)))) 
          ((λt.(λx.t (x x)) (λx.t (x x)) 
           (λf.λn.(if (zero? n) 1 (* n (f (sub1 n))))) 
          2 
        = if (zero? 2) 1 (* 2 (Y F (sub1 2))) 
        = (* 2 (Y F (sub1 2))) 
        = (* 2 (Y F 1)) 
        = ... 
        = (* 2 1) 
        = 2

F takes one function and one number as arguments

F

(Y F)



Points to take home

Model of computation completely different from 
Turing Machine 
! pure functions, no commands 
Church-Turing thesis: the two models are equivalent 
! What you can compute with one can be computed with 

the other 
Inspiration behind Lisp (late 1950s) 
Foundation of all “functional programming” 
languages


