#### INF 102 ANALYSIS OF PROG. LANGS LAMBDA CALCULUS

Instructors: Kaj Dreef Copyright © Instructors.

#### History

- Formal mathematical system
- Simplest programming language
- Intended for studying functions, recursion
- Invented in <u>1936</u> by Alonzo Church (1903-1995)

Same year as Turing's paper

# Warning

- May seem trivial and/or irrelevant now
- □ Had a tremendous influence in PLs
  □ λ-calculus → Lisp → everything
- Context in the early 60s:
  - Assembly languages
  - Cobol
  - Unstructured programming

## What is Calculus?

4

Calculus is a branch of mathematics that deals with limits and the differentiation and integration of functions of one or more variables

## **Real Definition**

- 5
- A calculus is just a bunch of rules for manipulating symbols.
- People can give meaning to those symbols, but that's not part of the calculus.
- Differential calculus is a bunch of rules for manipulating symbols. There is an interpretation of those symbols corresponds with physics, slopes, etc.



| M .:= x | (variable)    |
|---------|---------------|
| λx.M    | (abstraction) |
| MM      | (application) |

#### Nothing else!

- No numbers
- No arithmetic operations
- No loops
- No etc.
- Symbolic computation

### Syntax reminder



# Terminology – bound variables

λx.M

The binding operator  $\lambda$  binds the variable x in the  $\lambda$ -term x.M

- M is called the scope of x
- *x* is said to be a *bound variable*

## Terminology – free variables

Free variables are all symbols that aren't bound (duh)

 $FV(x) = \{x\}$ FV(MN) = FV(M) U FV(N) FV(x.M) = FV(M) - x

#### Renaming of bound variables

#### $\lambda x.M = \lambda y.([y/x]M)$ if y not in FV(M)

i.e. you can replace x with y aka "renaming"

#### α-conversion

# **Operational Semantics**

- Evaluating function application:  $(\lambda x.e_1) e_2$ 
  - **Replace every** x in  $e_1$  with  $e_2$
  - Evaluate the resulting term
  - Return the result of the evaluation
- Formally: "β-reduction" (aka "substitution")

 $\Box (\lambda x.e_1) e_2 \rightarrow_{\beta} e_1[e_2/x]$ 

- A term that can be β-reduced is a redex (reducible expression)
- $\square$  We omit  $\beta$  when obvious

## Note again

- Computation = pure symbolic manipulation
  - Replace some symbols with other symbols

# Scoping etc.

- Scope of λ extends as far to the right as possible
   $\lambda x.\lambda y.xy$  is  $\lambda x.(\lambda y.(x y))$
- Function application is left-associative
  xyz means (xy)z
- Possible syntactic sugar for declarations
  - $\Box (\lambda x.N)M \quad \text{is} \quad \textbf{let } x = M \textbf{ in } N$
  - $(\lambda x.(x + 1))10$  is let x=10 in (x+1)

# Multiple arguments

- □ y(x'λ) · 6 is it is it
  - Doesn't exist
- Solution:  $\lambda x.\lambda y.e$  [remember, ( $\lambda x.(\lambda y.e)$ )]
  - A function that takes x and returns another function that takes y and returns e
  - □ ( $\lambda x$ . $\lambda y$ .e) a b→( $\lambda y$ .e[a/x]) b→e[a/x][b/y]
  - "Currying" after Curry: transformation of multi-arg functions into higher-order functions
- Multiple argument functions are nothing but syntactic sugar

## **Boolean Values and Conditionals**

- $\Box \text{ True} = \lambda x.\lambda y.x$
- False =  $\lambda x \cdot \lambda y \cdot y$
- □ If-then-else =  $\lambda a$ . $\lambda b$ . $\lambda c$ . a b c = a b c
- For example:

□ If-then-else true b c  $\rightarrow(\lambda x.\lambda y.x)$  b c $\rightarrow(\lambda y.b)$  c $\rightarrow$ b □ If-then-else false b c

 $\rightarrow$ ( $\lambda x.\lambda y.y$ )  $b \rightarrow (\lambda y.y) \rightarrow c \rightarrow c$ 

## **Boolean Values and Conditionals**

• If True M N =  $(\lambda a.\lambda b.\lambda c.abc)$  True M N





Numbers are counts of things, any things. Like function applications!

Church numerals

#### Successor



2!



Reading materials

#### Recursion ???

#### Recursion – The Y Combinator

$$Y = \lambda t. (\lambda x. t (x x)) (\lambda x. t (x x))$$

Y a = 
$$\lambda t.$$
 ( $\lambda x.$  t (x x)) ( $\lambda x.$  t (x x)) a  
= ( $\lambda x.$  a (x x)) ( $\lambda x.$  a (x x))  
= a (( $\lambda x.$  a (x x)) ( $\lambda x.$  a (x x)))  
= a (Y a)

Y *a* = *a* applied to itself!

Y a = a (Y a) = a (a (Y a)) = a (a (a (Y a))) = ...

#### Factorial again

λn. <mark>λf</mark>.λn. F (if (zero? n) (if (zero? n) (\* n (f (sub1 n)))) (\* n (f (sub1 n)))) Now it's bound

ΥF

#### Does it work?

F takes one function and one number as arguments

## Points to take home

- Model of computation completely different from Turing Machine
  - pure functions, no commands
- Church-Turing thesis: the two models are equivalent
  What you can compute with one can be computed with the other
- Inspiration behind Lisp (late 1950s)
- Foundation of all "functional programming" languages