
INF 102 Concepts of Prog. Langs 2

Basic OOP

1

Goal of this week’s lectures

n Visit a few flavors of OOP
n “Popular” OOP
n Smalltalk OOP
n JavaScript OOP
n Objects vs. Abstract Data Types

2

16-Apr-18

Basic Object-Oriented Concepts

From
http://www.cis.upenn.edu/~matuszek/cit591-2003/

4

Concept: An object has behaviors

n Previously:
n data, which was completely passive
n functions, which could manipulate any data

n An object contains both data and methods that
manipulate that data
n An object does things
n An object is responsible for its own data

n But: it can expose that data to other objects

5

Concept: An object has state

n An object contains both data and methods that
manipulate that data
n The data represent the state of the object
n Data can also describe the relationships between this object

and other objects

n Example: A CheckingAccount might have
n A balance (the internal state of the account)
n An owner (some object representing a person)

6

Example: A “Rabbit” object

n You could (in a game, for example) create an object
representing a rabbit

n It would have data:
n How hungry it is
n How frightened it is
n Where it is

n And methods:
n eat, hide, run, dig

7

Concept: Classes describe objects

n Every object belongs to (is an instance of) a class
n An object may have fields, or variables

n The class describes those fields

n An object may have methods
n The class describes those methods

n A class is like a template, or cookie cutter
n You use the class’s constructor to make objects

8

Example of a class

class Employee {
// Fields
private String name; //Can get but not change
private double salary; // Cannot get or set
// Constructor
Employee(String n, double s) {

name = n; salary = s;
}
// Methods
void pay () {

System.out.println("Pay to the order of " +
name + " $" + salary);

}
public String getName() { return name; } // getter

}

9

Approximate Terminology

n instance = object
n field = instance variable
n method = function
n sending a message to an object =

calling a function
n These are all approximately true

10

Concept: Classes form a hierarchy

n Classes are arranged in a treelike structure called a
hierarchy

n The class at the root is named Object
n Every class, except Object, has a superclass
n A class may have several ancestors, up to Object
n When you define a class, you specify its superclass

n If you don’t specify a superclass, Object is assumed

n Every class may have one or more subclasses

11

Example of (part of) a hierarchy

A FileDialog is a Dialog is a Window is a Container

Container

Panel ScrollPane Window

Dialog Frame

FileDialog

12

C++ is different

n In C++ there may be more than one root
n but not in Java!

n In C++ an object may have more than one parent
(immediate superclass)
n but not in Java!

n Java has a single, strict hierarchy

13

Concept: Objects inherit from superclasses

n A class describes fields and methods
n Objects of that class have those fields and methods
n But an object also inherits:

n the fields described in the class's superclasses
n the methods described in the class's superclasses

n A class is not a complete description of its objects!

14

Example of inheritance

class Person {
String name;
int age;
void birthday () {

age = age + 1;
}

}

class Employee
extends Person {

double salary;
void pay () { ...}

}

Every Employee has name and age fields and
birthday method as well as a salary field and a pay
method.

15

Concept: Objects must be created

n int n; does two things:
n It declares that n is an integer variable
n It allocates space to hold a value for n
n For a primitive, this is all that is needed

n Employee secretary; also does two things
n It declares that secretary is type Employee

n It allocates space to hold a reference to an Employee
n For an object, this is not all that is needed

n secretary = new Employee ();
n This allocate space to hold a value for the Employee
n Until you do this, the Employee is null

16

Notation: How to declare and create objects

Employee secretary; // declares secretary

secretary = new Employee (); // allocates space

Employee secretary = new Employee(); // does both

n But the secretary is still "blank" (null)
secretary.name = "Adele"; // dot notation

secretary.birthday (); // sends a message

17

Notation: How to reference a field or method

n Inside a class, no dots are necessary
class Person { ... age = age + 1; ...}

n Outside a class, you need to say which object you are
talking to

if (john.age < 75) john.birthday ();

n If you don't have an object, you cannot use its fields
or methods!

18

Concept: this object

n Inside a class, no dots are necessary, because
n you are working on this object

n If you wish, you can make it explicit:
class Person { ... this.age = this.age + 1; ...}

n this is like an extra parameter to the method

n You usually don't need to use this

CVL: in Python it’s explicit – self

CVL: in Python you do

19

Concept: A variable can hold subclass objects

n Suppose B is a subclass of A
n A objects can be assigned to A variables
n B objects can be assigned to B variables
n B objects can be assigned to A variables, but
n A objects can not be assigned to B variables

n Every B is also an A but not every A is a B

n You can cast: bVariable = (B) aObject;
n In this case, Java does a runtime check

20

Example: Assignment of subclasses

class Dog { ... }
class Poodle extends Dog { ... }
Dog myDog;
Dog rover = new Dog ();
Poodle yourPoodle;
Poodle fifi = new Poodle ();

myDog = rover; // ok
yourPoodle = fifi; // ok
myDog = fifi; //ok
yourPoodle = rover; // illegal
yourPoodle = (Poodle) rover; //runtime check

21

Concept: Methods can be overridden

n So birds can fly. Except penguins.

class Bird extends Animal {
void fly (String destination) {

location = destination;
}

}

class Penguin extends Bird {
void fly (String whatever) { }

}

22

Concept: Don't call functions, send messages

Bird someBird = pingu;
someBird.fly ("South America");

n Did pingu actually go anywhere?
n You sent the message fly(...) to pingu
n If pingu is a penguin, he ignored it
n Otherwise he used the method defined in Bird

n You did not directly call any method
n You cannot tell, without studying the program, which

method actually gets used
n The same statement may result in different methods being

used at different times

(CVL: sort of... This is called dynamic dispatch)

39

Sneaky trick: How to use overridden methods

class FamilyMember extends Person {
void birthday () { // override birthday() in Person

super.birthday (); // call overridden method
givePresent (); // and add your new stuff

}
}

40

Concept: Constructors make objects

n Every class has a constructor to make its objects
n Use the keyword new to call a constructor

secretary = new Employee ();

n You can write your own constructors; but if you don’t,
n Java provides a default constructor with no arguments

n It sets all the fields of the new object to zero
n If this is good enough, you don’t need to write your own

n The syntax for writing constructors is almost like that for
writing methods

41

Syntax for constructors

n Do not use a return type and a name; use only the
class name

n You can supply arguments

Employee (String theName, double theSalary) {
name = theName;
salary = theSalary;

}

42

Trick: Give field and parameter the same name

n A parameter overrides a field with the same name
n But you can use this.name to refer to the field
n class Person {

String name;
int age;

Person (String name, int age) {
this.name = name;
this.age = age;

}
}

n Using the same name is a common and useful convention

43

Internal workings: Constructor chaining

n If an Employee is a Person, and a Person is an
Object, then when you say new Employee ()
n The Employee constructor calls the Person constructor
n The Person constructor calls the Object constructor
n The Object constructor creates a new Object
n The Person constructor adds its own stuff to the Object
n The Employee constructor adds its own stuff to the Person

44

The case of the vanishing constructor

n If you don't write a constructor for a class, Java provides
one (the default constructor)
n The one Java provides has no arguments

n If you write any constructor for a class, Java does not
provide a default constructor

n Adding a perfectly good constructor can break a
constructor chain

n You may need to fix the chain

45

Example: Broken constructor chain

class Person {
String name;
Person (String name) {

this.name = name;
}

}
class Employee extends Person {

double salary;
Employee () {

salary = 12.50;
}

}

n cannot resolve symbol – constructor Person()

Java tries to execute
an implicit super()

at this point

super();

46

Fixing a broken constructor chain

n Special syntax: super(...) calls the superclass constructor
n When one constructor calls another, that call must be first

class Employee {
double salary;

Employee (String name) {
super(name); // must be first
salary = 12.50;

}
}

n Now you can only create Employees with names
n This is fair, because you can only create Persons with names

47

Trick: one constructor calling another

n this(...) calls another constructor for this same class

n It is poor style to have the same code more than once
n If you call this(...), that call must be the first thing in your

constructor

class Something {
Something (int x, int y, int z) {

// do a lot of work here
}

Something () { this (0, 0, 0); }
}

48

Concept: You can control access

class Person {
public String name;
private String age;
protected double salary;
public void birthday { age++; }

}

n Each object is responsible for its own data
n Access control lets an object protect its data and

its methods
n Access control is the subject of a different lecture

49

Concept: Classes can have fields and methods

n Usually a class describes fields (variables) and
methods for its objects (instances)
n These are called instance variables and instance methods

n A class can have its own fields and methods
n These are called class variables and class methods

n There is exactly one copy of a class variable, not
one per object

n Use the special keyword static to say that a field
or method belongs to the class instead of to objects

50

Example of a class variable

class Person {
String name;
int age;
static int population;

Person (String name) {
this.name = name;
this.age = 0;
population++;

}
}

51

Advice: Restrict access

n Always, always strive for a narrow interface
n Follow the principle of information hiding:

n the caller should know as little as possible about how the
method does its job

n the method should know little or nothing about where or why
it is being called

n Make as much as possible private

n Your class is responsible for it’s own data; don’t
allow other classes to screw it up!

52

Advice: Use setters and getters

n This way the object maintains control
n Setters and getters have conventional names: setDataName,

getDataName, isDataName (booleans only)

class Employee extends Person {
private double salary;
private boolean male;
public void setSalary (double newSalary) {

salary = newSalary;
}
public double getSalary () { return salary; }
public boolean isMale() { return male; }

}

53

Kinds of access

n Java provides four levels of access:
n public: available everywhere
n protected: available within the package (in the same

subdirectory) and to all subclasses
n [default]: available within the package
n private: only available within the class itself

n The default is called package visibility
n In small programs this isn't important...right?

54

The End

