
INF 102
ANALYSIS OF PROG LANGS
REFLECTION

Instructors: James Jones

Copyright © Instructors.

Outline

¨ History and Background
¨ The meta-circular interpreter

¨ Definitions
¨ Reflection as used in

¨ PHP
¨ Ruby
¨ Java

¨ Concerns to keep in mind while using Reflection.

¨ Practical applications.

“Follow effective action with quiet
reflection. From the quiet reflection will
come even more effective action.”

Peter F. Drucker

¨ It arose naturally in artificial intelligence, where it is
intimately linked to the end goal itself.

¨ Reflection is viewed as the emergent property responsible, at
least in part, for what is considered an “intelligent behaviour”.

¨ Reflection helps us master new skills, cope with incomplete
knowledge, define terms, examine assumptions, review our
experiences, plan, check for consistency, and recover from
mistakes.

¨ Key strategy for meta-programming.

History

¨ Languages like LISP had inherent reflective properties.
¨ The powerful ‘quote’ mechanism in LISP, Scheme etc enabled

code to be treated as data – primitive manifestations of
reflection.

¨ Brian Cantwell Smith's work in the 80s
¨ Formalized the concept of reflection
¨ Developed two dialects of Lisp namely 2-Lisp and 3-Lisp
¨ Became famous in the functional domain and therefore inspired

much work there.
¨ By the end of the 90s- the need for structuring mechanisms

was noticed
¨ The object-oriented paradigm imposed on itself to take up this

challenge.
¨ However they were also influenced by the Lisp community

History

Meta-circular interpreter

¨ A self-interpreter, or metainterpreter, is a
programming language interpreter written in the
language it interprets

¨ A meta-circular interpreter is a special case of a
self-interpreter in which the existing facilities of the
parent interpreter are directly applied to the
language being interpreted, without any need for
additional implementation
¤ Primarily in homoiconic languages

Homoiconicity

¨ primary representation of programs is also a data
structure in a primitive type of the language itself
¤ internal and external representations are essentially

the same
¨ homo = the same
icon = representation

¨ Examples: Lisp, Scheme, R, Mathematica
¨ Counter-examples: Java, C, Python…

¤ Programs are strings, text

Homoiconicity

¨ (* (sin 1.1) (cos 2))
>> -0.37087312359709645

¨ ` (* (sin 1.1) (cos 2))
>> `(* (sin 1.1) (cos 2))

¨ (eval `(* (sin 1.1) (cos 2)))
¨ >> -0.37087312359709645

Literal. Means:
“don’t interpret me!”

What is Eval?

¨ Way back from McCarthy’s paper on LISP
¨ To a first approximation,

eval is the exposure of the interpreter itself to the
programmer

¨ In homoiconic languages, eval takes an expression
of the language and interprets it

¨ In non-homoiconic languages, eval takes a string,
parses it, and interprets the resulting expression

Where have you seen eval?

¨ JavaScript

¨ Python >>> x = 1
>>> print eval('x+1')
2

<script type="text/javascript">

eval("x=10;y=20;document.write(x*y)");
document.write("
" + eval("2+2"));
document.write("
" + eval(x+17));

</script>

Eval = Evil ?

¨ discuss

Outline

¨ History and Background
¨ The meta-circular interpreter

¨ Definitions
¨ Reflection as used in

¨ PHP
¨ Ruby
¨ Java

¨ Concerns to keep in mind while using Reflection.

¨ Some practical applications.

Definitions

¤General definition of reflection by Brian Smith in the
80s
“An entity’s integral ability to represent, operate on,
and otherwise deal with its self in the same way that
it represents, operates on and deals with its primary
subject matter.”

¤In programming languages the incarnation of this
definition is something like
“Reection is the ability of a program to manipulate
itself as data during execution.”

Definitions

¨ Reification - mechanism for encoding execution state
as data; providing such an encoding is called
reification.
¨ Reification is the process by which a user program or any
aspect of a programming language that was implicit in
the translated program and the run-time system, are
expressed in the language itself.

¨ This process makes the program available to the
program, which can inspect all these aspects as ordinary
data .

¨ Reification data is often said to be made a first class
object.

Intercession

¨ Modify the characteristics of the elements of the
program. Intercession allows you to change the
properties of classes, variables, methods, functions,
etc. at run-time

Outline

¨ History and Background
¨ The meta-circular interpreter

¨ Definitions
¨ Reflection as used in

¨ PHP
¨ Ruby
¨ Java

¨ Concerns to keep in mind while using Reflection.

¨ Some practical applications.

Reflection in modern PLs

class A {…}
class B {…}
Etc.

Program text: Runtime environment:

class A class B

Etc.

Web Programming - PHP Reflection

¤ Reflection is designed to reverse engineer various parts of
PHP, including classes, functions, and extensions. By "reverse
engineer" it means that it gives you all sorts of information
that otherwise you would need to try to dig out yourself.

¤ There are three primary uses for reflection in PHP:

n You have encoded scripts you need to interact with.
n The PHP manual isn't wholly up to date and you are unable to, or
you don't want to read the source code.

n You're just curious how something works and would rather not
read someone else's PHP .

PHP - Reflection Example
<?php

class myparent {
public function foo($bar) {

// do stuff
}

}
class mychild extends myparent {

public $val;
private function bar(myparent &$baz) {

// do stuff
}
public function __construct($val) {

$this->val = $val;
}

}
$child = new mychild('hello world');
$child->foo('test');

?>

PHP - Reflection Example
$childreflect = new ReflectionClass('mychild');
echo "This class is abstract: ",

(int)$childreflect->isAbstract(), "\n";
echo "This class is final: ", (int)$childreflect->isFinal(),"\n";
echo "This class is actually an interface: ",

(int)$childreflect->isInterface(), "\n";
echo "\$child is an object of this class: ",

(int)$childreflect->isInstance($child), "\n";
$parentreflect = new ReflectionClass('myparent');
echo "This class inherits from myparent: ",

(int)$childreflect->isSubclassOf($parentreflect), "\n";

The output of that is:
This class is abstract: 0
This class is final: 0
This class is actually an interface: 0
$child is an object of this class: 1
This class inherits from myparent: 1

Ruby Reflection

¤ Let's begin with an example : Assume that you want to create a
class instance at runtime, and the name of this class depends on
the parameter being passed to a function.

¤ One way to do this is to write conditional loops and create the
object. But if there are too many classes then becomes a
problem. Solution: Use reflection!

¤ In Ruby using reflection you can get the following information:
1. What classes already exist
2. Information on the methods in those classes
3. Inheritance etc.

Reflection in Ruby

¤ ObjectSpace allows us to obtain the reflective information.

¤ ObjectSpace.each_object { |x| puts x } gives us all the living,
non-immediate objects in the process.

¤ ObjectSpace.each_object(Class) { |x| puts x} gives us all the
classes in the ruby process.

¤ Now the problem becomes easier - Iterate over all the
classes, and if the name matches then create an object of
that class, and execute the required functions.

Reflection in Ruby

class ClassFromString

@@counter = 0
def initialize
@@counter += 1
end
def getCounterValue
puts @@counter
end
end

def createClassFromString(classname)
ObjectSpace.each_object(Class) do |x|
if x.name == classname
object = x.new
object.getCounterValue

end
end

end

createClassFromString("ClassFromString")

The above code illustrates the example in code. You can even use
superclass method to get the parent name, and construct the entire
hierarchy.

Reflection in Java

¨ java.lang.Class.
¤Class.forName()

¨ Class c = Class.forName(“edu.uci.inf102.Example");

Reflection in Java

Object.getClass()
Class c = foo.getClass();

The .class Syntax
Class c = boolean.class;

Method m = c.getMethod(“add”, Integer.TYPE);
Method methodList[] = c.getDeclaredMethods();
Field f = c.getField(“sum”);
Field fieldList[] = c.getDeclaredFields();

Reflection in Java

□ Reflection is commonly used by programs that require the
ability to examine or modify the runtime behavior of
applications running in the Java virtual machine. This is a
relatively advanced feature and should be used only by
developers who have a strong grasp of the fundamentals of
the language. Reflection is a powerful technique and can
enable applications to perform operations which would
otherwise be impossible.

□ Extensibility Features: An application may make use of
external, user-defined classes by creating instances of objects
using their fully-qualified names.

Outline

¨ History and Background
¨ The meta-circular interpreter

¨ Definitions
¨ Reflection as used in

¨ PHP
¨ Ruby
¨ Java

¨ Concerns to keep in mind while using Reflection.

¨ Some practical applications.

Performance Penalty

Reflection is powerful, but should not be used indiscriminately. If
it is possible to perform an operation without using
reflection, then it is preferable to avoid using it. The
following concerns should be kept in mind when accessing
code via reflection.

Performance Overhead : Because reflection involves types that
are dynamically resolved, certain Java virtual machine
optimizations can not be performed. Consequently, reflective
operations have slower performance than their non-
reflective counterparts, and should be avoided in sections of
code which are called frequently in performance-sensitive
applications.

Security

□ Security Restrictions : Reflection requires a runtime permission
which may not be present when running under a security
manager. This is in an important consideration for code which has
to run in a restricted security context, such as in an Applet.

□ Exposure of Internals : Since reflection allows code to perform
operations that would be illegal in non-reflective code, such as
accessing private fields and methods, the use of reflection can
result in unexpected side-effects, which may render code
dysfunctional and may destroy portability. Reflective code
breaks abstractions and therefore may change behavior with
upgrades of the platform.

Outline

¨ History and Background
¨ The meta-circular interpreter

¨ Definitions
¨ Reflection as used in

¨ PHP
¨ Ruby
¨ Java

¨ Concerns to keep in mind while using Reflection.

¨ Practical applications.

Practical Applications of Reflection

Proxies: e.g. a JDK Proxy of a large interface (20+ methods) to
wrap (i.e. delegate to) a specific implementation. A couple of
methods were overridden using an InvocationHandler, the rest of
the methods were invoked via reflection.

Plugins: load specific classes at run-time.

Class Browsers and Visual Development Environments: A class
browser has to be able to enumerate members of classes. Visual
development environments can benefit from making use of type
information available in reflection to aid code development.

Debuggers and Test Tools: Debuggers need to be able to examine
private members on classes. Test harnesses can make use of
reflection to systematically call a discoverable set APIs defined
on a class, to insure a high level of code coverage in a test suite.

