
INF 102
TURING MACHINES

1

Alan Turing
2

Alan Turing was one of the founding fathers of CS.
¨ His computer model –the Turing Machine– was

inspiration/premonition of the electronic computer
that came two decades later

¨ Was instrumental in cracking the Nazi Enigma
cryptosystem in WWII

¨ Invented the “Turing Test” used in AI
¨ Legacy: The Turing Award.

A Thinking Machine
3

First Goal of Turing’s Machine: A model that can
compute anything that a human can compute. Before
invention of electronic computers the term “computer”
referred to a person who’s line of work is to calculate
numerical quantities.

As this is a philosophical endeavor, it can’t really be
proved.

Turing’s Thesis: Any “algorithm” can be carried out by
one of his machines

A Thinking Machine
4

Second Goal of Turing’s Machine: A model that’s so
simple, that can actually prove interesting
epistemological results. Eyed Hilbert’s 10th problem,
as well as a computational analog of Gödel’s
Incompleteness Theorem in Logic.

Philosophy notwithstanding, Turing’s programs for
cracking the Enigma cryptosystem prove that he
really was a true hacker! Turing’s machine is actually
easily programmable, if you really get into it. Not
practically useful, though…

A Thinking Machine
5

Imagine a super-organized, obsessive-compulsive human
computer. The computer wants to avoid mistakes so
everything written down is completely specified one
letter/number at a time. The computer follows a
finite set of rules which are referred to every time
another symbol is written down. Rules are such that
at any given time, only one rule is active so no
ambiguity can arise. Each rule activates another rule
depending on what letter/number is currently read,
EG:

A Thinking Machine
EG Successor Program

6

Sample Rules:

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

Let’s see how they are carried out on a piece of
paper that contains the reverse binary
representation of 47:

A Thinking Machine
EG Successor Program

7

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

1 1 1 1 0 1

A Thinking Machine
EG Successor Program

8

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 1 1 1 0 1

A Thinking Machine
EG Successor Program

9

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 1 1 0 1

A Thinking Machine
EG Successor Program

10

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 1 0 1

A Thinking Machine
EG Successor Program

11

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 1

A Thinking Machine
EG Successor Program

12

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 1 1

A Thinking Machine
EG Successor Program

13

So the successor’s output on 111101 was 000011
which is the reverse binary representation of
48.

Similarly, the successor of 127 should be 128:

A Thinking Machine
EG Successor Program

14

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

1 1 1 1 1 1 1

A Thinking Machine
EG Successor Program

15

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 1 1 1 1 1 1

A Thinking Machine
EG Successor Program

16

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 1 1 1 1 1

A Thinking Machine
EG Successor Program

17

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 1 1 1 1

A Thinking Machine
EG Successor Program

18

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 1 1 1

A Thinking Machine
EG Successor Program

19

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 1 1

A Thinking Machine
EG Successor Program

20

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 0 1

A Thinking Machine
EG Successor Program

21

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 0 0

A Thinking Machine
EG Successor Program

22

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 0 0 1

A Thinking Machine
23

It was hard for the ancients to believe that any
algorithm could be carried out on such a device. For
us, it’s much easier to believe, especially if you’ve
programmed in assembly!

However, ancients did finally believe Turing when
Church’s lambda-calculus paradigm (on which lisp
programming is based) proved equivalent!

Turing Machines
24

A Turing Machine (TM) is a device with a finite amount
of read-only “hard” memory (states), and an
unbounded1 amount of read/write tape-memory.
There is no separate input. Rather, the input is
assumed to reside on the tape at the time when the
TM starts running.

Just as with Automata, TM’s can either be input/output
machines (compare with Finite State Transducers), or
yes/no decision machines. Start with yes/no
machines.

Comparison with Previous Models
25

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA

PDA

TM

Comparison with Previous Models
26

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA

TM

Comparison with Previous Models
27

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM

Comparison with Previous Models
28

Device
Separate

Input?

Read/Write Data

Structure

Deterministic

by default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM No

1-way infinite

tape. 1 cell

access per step.

Yes

(but will also

allow crashes)

Turing Machine
Decision Machine Example

29

First example (adding 1 bit to reverse binary string)
was basically something that a Finite Transducer could
have achieved (except when there’s overflow). Let’s
give an example from next step up in language
hierarchy.

{bit-strings with same number of 0’s as 1’s}
–a context free language:

Turing Machine
Decision Machine Example

30

This is a “true” Turing machine as:
¨ Tape is semi-infinite (indicated by torn cell):

¨ Input is prepared at beginning of tape
¨ No intrinsic way to detect left tape end

¤ similar to empty stack detection problem for PDA’s
¤ similar trick used –introduce $ as the end symbol

¨ All rules must include a move direction (R/L)
¨ Situations that can’t happen aren’t dealt with

(technically under-deterministic)

Turing Machine
Decision Machine Example

31

{bit-strings with same number of 0’s as 1’s}:

Pseudocode:
while (there is a 0 and a 1)
cross these out

if (everything crossed out)
accept

else
reject

TM Example
Instructions Set

32

0. if read �, go right (dummy move), ACCEPT
if read 0, write $, go right, goto 1 // $ detects start of tape
if read 1, write $, go right, goto 2

1. if read �, go right, REJECT
if read 0 or X, go right, repeat (= goto 1) // look for a 1
if read 1, write X, go left, goto 3

2. if read �, go right, REJECT
if read 1 or X, go right, repeat // look for a 0
if read 0, write X, go left, goto 3

3. if read $, go right, goto 4 // look for start of tape
else, go left, repeat

4. if read 0, write X, go right, goto 1 // similar to step 0
if read 1, write X, go right, goto 2
if read X, go right, repeat
if read �, go right, ACCEPT

TM Example
State Diagram

33

These instructions can be expressed by a familiar looking flow
diagram:

0
1

rej

0à$,R

acc

�àR

21à$,R

0|XàR

1|XàR

3

�àR

0àX,L

1àX,L 0|1|XàL

4

$àR

XàR

0àX,R

1àX,R

�àR

TM Transition Notation
34

An edge from the state p to the state q labeled by
…

¨ aàb,D means if in state p and tape head
reading a, replace a by b and move in the
direction D, and into state q

¨ aàD means if in state p and tape head
reading a, don’t change a and move in the
direction D, and into state q

¨ a|b|…|z à … means that given that the tape
head is reading any of the pipe separated
symbols, take same action on any of the symbols

TM Configuration Notation
35

A TM’s next action is completely determined by
current state and symbol read, so can predict all
of future actions if know:

1. current state
2. current tape contents
3. current position of TM’s reading “head”
Handy notation lists all of these in a single string. A

symbol representing current state, is sandwiched
between content of tape to left of head, and
content of tape to right (including tape head).
The part of tape which is blank ad-infinitum is
ignored.

TM Configuration Notation
36

For example

Is denoted by:
$xxx1q3010

Reading rule 3

