
INF 102
CONCEPTS OF PROG. LANGS
Type Systems

Instructors: James Jones
Copyright © Instructors.

What is a Data Type?

• A type is a collection of computational entities that share some
common property

• Programming languages are designed to help programmers
organize computational constructs and use them correctly.
Many programming languages organize data and
computations into collections called types.

• Some examples of types are:
o the type Int of integers
o the type (Int→Int) of functions from integers to integers

Why do we need them?

• Consider “untyped” universes:
• Bit string in computer memory
• λ-expressions in λ calculus
• Sets in set theory

• “untyped” = there’s only 1 type

• Types arise naturally to categorize objects according to patterns of
use
• E.g. all integer numbers have same set of applicable operations

Use of Types

• Identifying and preventing meaningless errors in the program
o Compile-time checking
o Run-time checking

• Program Organization and documentation
o Separate types for separate concepts
o Indicates intended use declared identifiers

• Supports Optimization
o Short integers require fewer bits
o Access record component by known offset

Type Errors

• A type error occurs when a computational entity, such as a function
or a data value, is used in a manner that is inconsistent with the
concept it represents

• Languages represent values as sequences of bits. A "type error"
occurs when a bit sequence written for one type is used as a bit
sequence for another type

• A simple example can be assigning a string to an integer or using
addition to add an integer or a string

Type Systems

• A tractable syntactic framework for classifying phrases according to
the kinds of values they compute

• By examining the flow of these values, a type system
attempts to prove that no type errors can occur

• Seeks to guarantee that operations expecting a certain kind of value
are not used with values for which that operation does not make
sense

Type Safety

A programming language is type safe if no program is allowed to violate
its type distinctions

Example of current languages:
Not Safe : C and C++
Type casts, pointer arithmetic

Almost Safe : Pascal
Explicit deallocation; dangling pointers

Safe : Lisp, Smalltalk, ML, Haskell, Java, Scala
Complete type checking

Type Declarations

Two basic kinds of type declaration:
1. transparent

o meaning an alternative name is given to a type that can also
be expressed without this name

For example, in C,

typedef char byte;

declaring a type byte that is equal to char

Type Declarations

2. Opaque

Opaque, meaning a new type is introduced into the program that is not
equal to any other type

Example in C,

typedef struct Node{
int val;
struct Node *left;
struct Node* right;

} N;

Type Checking - Compile Time

• Check types at compile time, before a program is started

• In these languages, a program that violates a type constraint is not
compiled and cannot be executed

Type Checking - Run Time
• The compiler generates the code

• When an operation is performed, the code checks to make sure that
the operands have the correct type

Combining the Compile and Run time

• Most programming languages use some combination of compile-
time and run-time type checking

• In Java, for example, static type checking is used to distinguish
arrays from integers, but array bounds errors are checked at run
time.

A Comparison – Compile vs. Run Time

Form of Type Checking Advantages Disadvantages

Compile-time • Prevents type errors
• Eliminates run-time

tests
• Finds type errors before

execution and run-time
tests

• May restrict
programming because
tests are conservative

Run-time • Prevents type errors
• Need not be

conservative

• Slows Program
Execution

Type Inference

• Process of identifying the type of the expressions based on the type
of the symbols that appear in them

• Similar to the concept of compile type checking
o All information is not specified
o Some degree of logical inference required

• Some languages that include Type Inference are Visual
Basic (starting with version 9.0), C# (starting with version 3.0), Clean,
Haskell, ML, OCaml, Scala

• This feature is also being planned and introduced for
C++11 and Perl6

Type Inference
Example: Compile Time checking:

int addone(int x) {
int result; /*declare integer result (C language)*/
result = x+1;
return result;

}

Lets look at the following example,
addone(x) {

val result; /*inferred-type result */
result = x+1;
return result;

}

POLYMORPHISM

Polymorphism

• Constructs that can take different forms

• poly = many
morph = shape

Types of Polymorphism

• Ad-hoc polymorphism
similar function implementations for different types
(method overloading, but not only)

• Subtype (inclusion) polymorphism
instances of different classes related by common super class

• Parametric polymorphism
functions that work for different types of data

def plus(x, y):
return x + y

class A {...}
class B extends A {...}; class C extends A {...}

Ad-hoc Polymorphism

int plus(int x, int y) {
return x + y;

}

string plus(string x, string y)
{

return x + y;
}

float plusfloat(float x, float y)
{

return x + y;
}

Subtype Polymorphism

• First introduced in the 60s with Simula

• Usually associated with OOP
(in some circles, polymorphism = subtyping)

• Principle of safe substitution (Liskov substitution principle)

Note that this is behavioral subtyping, stronger than simple
functional subtyping.

“if S is a subtype of T, then objects of type T may be
replaced with objects of type S without altering any
of the desirable properties of the program.”

Behavioral Subtyping Requirements

• Contravariance of method arguments in subtype
(from narrower to wider, e.g. Triangle to Shape)

• Covariance of return types in subtype
(from wider to narrower, e.g. Shape to Triangle)

• Preconditions cannot be strengthened in subtype

• Postcondition cannot be weakened in subtype

• Invariants of the supertype must be preserved in the subtype

• History constraint: state changes in subtype that are not possible in
supertype are not allowed (Liskov’s rule)

Parametric Polymorphism

• Parametric polymorphism
functions that work for different types of data

def plus(x, y):
return x + y

How to do this in statically-typed languages?

int plus(int x, int y):
return x + y

???

Parametric Polymorphism

• Parametric polymorphism for statically-typed languages introduced
in ML in the 70s

• aka “generic functions”

• C++: templates

• Java: generics

• C#, Haskell: parametric types

Parametric Polymorphism

Explicit Parametric Polymorphism

Java example:
/**
* Generic version of the Box class.
* @param <T> the type of value being boxed
*/

public class Box<T> {

// T stands for "Type"
private T t;

public void add(T t) {
this.t = t;

}

public T get() {
return t;

}
}

Box<Integer> integerBox;
...
void m(Box<Foo> fbox) {...}

