
The essence of functional programming

Philip Wadler� University of Glasgow�

Abstract

This paper explores the use monads to structure functional programs� No prior

knowledge of monads or category theory is required�

Monads increase the ease with which programs may be modi�ed� They can

mimic the e�ect of impure features such as exceptions� state� and continuations�

and also provide e�ects not easily achieved with such features� The types of a

program re�ect which e�ects occur�

The �rst section is an extended example of the use of monads� A simple inter�

preter is modi�ed to support various extra features	 error messages� state� output�

and non�deterministic choice� The second section describes the relation between

monads and continuation�passing style� The third section sketches how monads are

used in a compiler for Haskell that is written in Haskell�

� Introduction

Shall I be pure or impure�
Pure functional languages� such as Haskell or Miranda� o�er the power of lazy eval�

uation and the simplicity of equational reasoning� Impure functional languages� such as
Standard ML or Scheme� o�er a tempting spread of features such as state� exception
handling� or continuations�

One factor that should in�uence my choice is the ease with which a program can be
modi�ed� Pure languages ease change by making manifest the data upon which each
operation depends� But� sometimes� a seemingly small change may require a program in
a pure language to be extensively restructured� when judicious use of an impure feature
may obtain the same e�ect by altering a mere handful of lines�

Say I write an interpreter in a pure functional language�
To add error handling to it� I need to modify the result type to include error values�

and at each recursive call to check for and handle errors appropriately� Had I used an
impure language with exceptions� no such restructuring would be needed�

�Author�s address� Department of Computing Science� University of Glasgow� Glasgow G�� �QQ�

Scotland� E	mail� wadler
dcs�glasgow�ac�uk�

Presented as an invited talk at ���th Annual Symposium on Principles of Programming Languages� Al	

buquerque� New Mexico� January ����� This version di�ers slightly from the conference proceedings�

	



To add an execution count to it� I need to modify the the result type to include such
a count� and modify each recursive call to pass around such counts appropriately� Had
I used an impure language with a global variable that could be incremented� no such
restructuring would be needed�

To add an output instruction to it� I need to modify the result type to include an
output list� and to modify each recursive call to pass around this list appropriately� Had
I used an impure language that performed output as a side e�ect� no such restructuring
would be needed�

Or I could use a monad�
This paper shows how to use monads to structure an interpreter so that the changes

mentioned above are simple to make� In each case� all that is required is to rede�ne the
monad and to make a few local changes� This programming style regains some of the
�exibility provided by various features of impure languages� It also may apply when there
is no corresponding impure feature�

The technique applies not just to interpreters� but to a wide range of functional pro�
grams� The GRASP team at Glasgow is constructing a compiler for the functional lan�
guage Haskell� The compiler is itself written in Haskell� and uses monads to good e�ect�
Though this paper concentrates on the use of monads in a program tens of lines long� it
also sketches our experience using them in a program three orders of magnitude larger�

Programming with monads strongly reminiscent of continuation�passing style 
CPS��
and this paper explores the relationship between the two� In a sense they are equivalent�
CPS arises as a special case of a monad� and any monad may be embedded in CPS by
changing the answer type� But the monadic approach provides additional insight and
allows a �ner degree of control�

The concept of a monad comes from category theory� but this paper assumes no
prior knowledge of such arcana� Rather� it is intended as a gentle introduction� with an
emphasis on why abstruse theory may be of interest to computing scientists�

The examples will be given in Haskell� but no knowledge of that is needed either� What
the reader will require is a passing familiaritywith the basics of pure and impure functional
programming
 for general background see �BW��� Pau�	�� The languages refered to are
Haskell �HPW�	�� Miranda� �Tur���� Standard ML �MTH���� and Scheme �RC����

Some readers will recognise that the title of this paper is a homage to Reynolds �Rey�	�
and that the use of monads was inspired by Moggi �Mog��a� Mog��b�� Of these matters
more will be said in the conclusion� For now� please note that the word �essence� is used
in a technical sense� I wish to argue that the technique described in this paper is helpful�
not that it is necessary�

The remainder of this paper is organised as follows� Section � illustrates the use of
monads to structure programs by considering several variations of an interpreter� Section �
explores the relation between monads and continuation�passing style� Section � sketches
how these ideas have been applied in a compiler for Haskell that is itself written in Haskell�
Section � concludes�

�Miranda is a trademark of Research Software Limited�

�



� Interpreting monads

This section demonstrates the thesis that monads enhance modularity� by presenting
several variations of a simple interpreter for lambda calculus�

The interpreter is shown in Figure 	� It is written in Haskell� The notation
��name �� expr� stands for a lambda expression� and �name� is an in�x operator� The
type constructor M and functions unitM� bindM� and showM have to do with monads� and
are explained below�

The interpreter deals with values and terms� A value is either Wrong� a number� or a
function� The value Wrong indicates an error� such as an unbound variable� an attempt
to add non�numbers� or an attempt to apply a non�function�

A term is either a variable� a constant� a sum� a lambda expression� or an application�
The following will serve as test data�

term� � �App �Lam 	x	 �Add �Var 	x	� �Var 	x	���

�Add �Con 
�� �Con 

���

In more conventional notation this would be written 

�x� x � x� 
	� � 		��� For the
standard interpreter� evaluating test term� yields the string 	��	�

The interpreter has been kept small for ease of illustration� It can easily been extended
to deal with additional values� such as booleans� pairs� and lists
 and additional term
forms� such as conditional and �xpoint�

��� What is a monad�

For our purposes� a monad is a triple �M
unitM
bindM� consisting of a type constructor
M and a pair of polymorphic functions�

unitM �� a �� M a

bindM �� M a �� �a �� M b� �� M b

These functions must satisfy three laws� which are discussed in Section ��	��
The basic idea in converting a program to monadic form is this� a function of type

a �� b is converted to one of type a �� M b� Thus� in the de�nition of Value� func�
tions have type Value �� M Value rather than Value �� Value� and interp has type
Term �� Environment �� M Value rather than type Term �� Environment �� Value�
Similarly for the auxiliary functions lookup� add� and apply�

The identity function has type a �� a� The corresponding function in monadic form
is unitM� which has type a �� M a� It takes a value into its corresponding representation
in the monad�

Consider the case for constants�

interp �Con i� e � unitM �Num i�

The expression �Num i� has type Value� so applying unitM to it yields the corresponding
M Value� as required to match the type of interp�

Two functions k �� a �� b and h �� b �� c may be composed by writing

�



type Name � String

data Term � Var Name

� Con Int

� Add Term Term

� Lam Name Term

� App Term Term

data Value � Wrong

� Num Int

� Fun �Value �� M Value�

type Environment � ��Name
 Value��

showval �� Value �� String

showval Wrong � 	�wrong�	

showval �Num i� � showint i

showval �Fun f� � 	�function�	

interp �� Term �� Environment �� M Value

interp �Var x� e � lookup x e

interp �Con i� e � unitM �Num i�

interp �Add u v� e � interp u e �bindM� ��a ��

interp v e �bindM� ��b ��

add a b��

interp �Lam x v� e � unitM �Fun ��a �� interp v ��x
a��e���

interp �App t u� e � interp t e �bindM� ��f ��

interp u e �bindM� ��a ��

apply f a��

lookup �� Name �� Environment �� M Value

lookup x �� � unitM Wrong

lookup x ��y
b��e� � if x��y then unitM b else lookup x e

add �� Value �� Value �� M Value

add �Num i� �Num j� � unitM �Num �i�j��

add a b � unitM Wrong

apply �� Value �� Value �� M Value

apply �Fun k� a � k a

apply f a � unitM Wrong

test �� Term �� String

test t � showM �interp t ���

Figure 	� Interpretation in a monad 
call�by�value�

�



�a �� let b � k a in h b

which has type a �� c� 
Here �name �� expr is a lambda expression� By convention� a
will double as a type variable and a value variable�� Similarly� two functions in monadic
form k �� a �� M b and h �� b �� M c are composed by writing

��a �� k a �bindM� ��b �� h b��

which has type a �� M c� 
Here �name� is Haskell notation for an in�x function� The
expression a �name� b is equivalent to name a b�� Thus bindM serves a role similar to a
let expression� The three monad laws alluded to above simply insure that this form of
composition is associative� and has unitM as a left and right identity�

Consider the case for sums�

interp �Add u v� e � interp u e �bindM� ��a ��

interp v e �bindM� ��b ��

add a b��

This can be read as follows� evaluate u
 bind a to the result
 evaluate v
 bind b to the
result
 add a to b� The types work out� the calls to interp and add yield results of type
M Value� and variables a and b have type Value�

Application is handled similarly
 in particular� both the function and its argument
are evaluated� so this interpreter is using a call�by�value strategy� An interpreter with a
call�by�name strategy is discussed in Section ��

Just as the type Value represents a value� the type M Value can be thought of as
representing a computation� The purpose of unitM is to coerce a value into a computation

the purpose of bindM is to evaluate a computation� yielding a value�

Informally� unitM gets us into a monad� and bindM gets us around the monad� How
do we get out of the monad� In general� such operations require a more ad hoc design�
For our purposes� it will su�ce to provide the following�

showM �� M Value �� String

This is used in test�
By changing the de�nitions of M� unitM� bindM� and showM� and making other small

changes� the interpreter can be made to exhibit a wide variety of behaviours� as will now
be demonstrated�

��� Variation zero� Standard interpreter

To begin� de�ne the trivial monad�

type I a � a

unitI a � a

a �bindI� k � k a

showI a � showval a

�



This is called the identity monad� I is the identity function on types� unitI is the identity
function� bindI is post�x application� and showI is equivalent to showval�

Substitute monad I for monad M in the interpreter 
that is� substitute I� unitI� bindI�
showI for each occurrence of M� unitM� bindM� showM�� Simplifying yields the standard
meta�circular interpreter for lambda calculus�

interp �� Term �� Environment �� Value

interp �Var x� e � lookup x e

interp �Con i� e � Num i

interp �Add u v� e � add �interp u e� �interp v e�

interp �Lam x v� e � Fun ��a �� interp v ��x
a��e��

interp �App t u� e � apply �interp t e� �interp u e�

The other functions in the interpreter simplify similarly�
For this variant of the interpreter� evaluating test term� returns the string 	��	� as

we would expect�

��� Variation one� Error messages

To add error messages to the interpreter� de�ne the following monad�

data E a � Success a � Error String

unitE a � Success a

errorE s � Error s

�Success a� �bindE� k � k a

�Error s� �bindE� k � Error s

showE �Success a� � 	Success� 	 �� showval a

showE �Error s� � 	Error� 	 �� s

Each function in the interpreter either returns normally by yielding a value of the form
Success a� or indicates an error by yielding a value of the form Error s where s is an
error message� If m �� E a and k �� a �� E b then m �bindE� k acts as strict post�x
application� if m succeeds then k is applied to the successful result
 if m fails then so
does the application� The show function displays either the successful result or the error
message�

To modify the interpreter� substitute monad E for monad M� and replace each occur�
rence of unitE Wrong by a suitable call to errorE� The only occurrences are in lookup�
add� and apply�

lookup x �� � errorE �	unbound variable� 	 �� x�

add a b � errorE �	should be numbers� 	 �� showval a

�� 	
	 �� showval b�

apply f a � errorE �	should be function� 	 �� showval f�

�



No other changes are required�
Evaluating test term� now returns 	Success� ��	
 and evaluating

test �App �Con 
� �Con ���

returns 	Error� should be function� 
	�
In an impure language� this modi�cation could be made using exceptions or continu�

ations to signal an error�

��� Variation two� Error messages with positions

Let Position be a type that indicates a place in the source text 
say� a line number��
Extend the Term datatype with a constructor that indicates a location�

data Term � ��� � At Position Term

The parser will produce such terms as suitable� For instance� �At p �App t �At q u���

indicates that p is the position of the term �App t u� and that q is the position of the
subterm u�

Based on E� de�ne a new monad P that accepts a position to use in reporting errors�

type P a � Position �� E a

unitP a � �p �� unitE a

errorP s � �p �� errorE �showpos p �� 	� 	 �� s�

m �bindP� k � �p �� m p �bindE� ��x �� k x p�

showP m � showE �m pos��

Here unitP discards the current position� errorP adds it to the error message� bindP
passes the position to the argument and function� and showP passes in an initial position
pos�� In addition� there is a function to change position�

resetP �� Position �� P x �� P x

resetP q m � �p �� m q

This discards the position p that is passed in� replacing it with the given position q�
To modify the interpreter of the previous section� substitute monad P for monad E

and add a case to deal with At terms�

interp �At p t� e � resetP p �interp t e�

This resets the position as indicated� No other change is required�
Without monads� or a similar technique� this modi�cation would be far more tedious�

Each clause of the interpreter would need to be rewritten to accept the current position
as an additional parameter� and to pass it on as appropriate at each recursive call�

In an impure language� this modi�cation is not quite so easy� One method is to use
a state variable that contains a stack of positions� Care must be taken to maintain the
state properly� push a position onto the stack on entering the At construct and pop a
position o� the stack when leaving it�

�



��� Variation three� State

To illustrate the manipulation of state� the interpreter is modi�ed to keep count of the
number of reductions that occur in computing the answer� The same technique could
be used to deal with other state�dependent constructs� such as extending the interpreted
language with reference values and operations that side�e�ect a heap�

The monad of state transformers is de�ned as follows�

type S a � State �� �a
 State�

unitS a � �s� �� �a
 s��

m �bindS� k � �s� �� let �a
s
� � m s�

�b
s�� � k a s


in �b
s��

A state transformer takes an initial state and returns a value paired with the new state�
The unit function returns the given value and propagates the state unchanged� The bind
function takes a state transformer m �� S a and a function k �� a �� S b� It passes the
initial state to the transformer m
 this yields a value paired with an intermediate state

function k is applied to the value� yielding a state transformer 
k a �� S b�� which is
passed the intermediate state
 this yields the result paired with the �nal state�

To model execution counts� take the state to be an integer�

type State � Int

The show function is passed the initial state � and prints the �nal state as a count�

showS m � let �a
s
� � m �

in 	Value� 	 �� showval a �� 	� 	 ��

	Count� 	 �� showint s


The current count is incremented by the following�

tickS �� S ��

tickS � �s �� ���
 s�
�

The value returned is the empty tuple �� whose type is also written ��� The typing of
tickS makes clear that the value returned is not of interest� It is analogous to the use in
an impure language of a function with result type ��� indicating that the purpose of the
function lies in a side e�ect�

The interpreter is modi�ed by substituting monad S for monad M� and changing the
�rst lines of apply and add�

apply �Fun k� a � tickS �bindS� ���� �� k a�

add �Num i� �Num j� � tickS �bindS� ���� �� unitS �Num �i�j���

�



This counts one tick for each application and addition� No other changes are required�
Evaluating test term� now returns 	Value� ��� Count� �	�
A further modi�cation extends the language to allow access to the current execution

count� First� add a further operation to the monad�

fetchS �� S State

fetchS � �s �� �s
 s�

This returns the current count� Second� extend the term data type� and add a new clause
to the interpreter�

data Term � ��� � Count

interp Count e � fetchS �bindS� ��i �� unitS �Num i��

Evaluating Count fetches the number of execution steps performed so far� and returns it
as the value of the term�

For example� applying test to

�Add �Add �Con 
� �Con ��� Count�

returns 	Value� �� Count� �	� since one addition occurs before Count is evaluated�
In an impure language� these modi�cations could be made using state to contain the

count�

��	 Variation four� Output

Next we modify the interpreter to perform output� The state monad seems a natural
choice� but it�s a poor one� accumulating the output into the �nal state means no output
will be printed until the computation �nishes� The following design displays output as it
occurs
 it depends on lazy evaluation�

The output monad is de�ned as follows�

type O a � �String
 a�

unitO a � �		
 a�

m �bindO� k � let �r
a� � m� �s
b� � k a in �r��s
 b�

showO �s
a� � 	Output� 	 �� s �� 	 Value� 	 �� showval a

Each value is paired with the output produced while computing that value� The unitO

function returns the given value and produces no output� The bindO function performs
an application and concatenates the output produced by the argument to the output
produced by the application� The showO function prints the output followed by the value�

The above functions propagate output but do not generate it
 that is the job of the
following�

outO �� Value �� O ��

outO a � �showval a �� 	� 	
 ���

�



This outputs the given value followed by a semicolon�
The language is extended with an output operation� Substitute monad O for monad

M� and add an a new term and corresponding clause�

data Term � ��� � Out Term

interp �Out u� e � interp u e �bindO� ��a ��

outO a �bindO� ���� ��

unitO a��

Evaluating �Out u� causes the value of u to be sent to the output� and returned as the
value of the term�

For example� applying test to

�Add �Out �Con �
�� �Out �Con 
���

returns 	Output� �
� 
� Value� ��	�
In an impure language� this modi�cation could be made using output as a side e�ect�

��
 Variation �ve� Non�deterministic choice

We now modify the interpreter to deal with a non�deterministic language that returns a
list of possible answers�

The monad of lists is de�ned as follows�

type L a � �a�

unitL a � �a�

m �bindL� k � � b � a �� m
 b �� k a �

zeroL � ��

l �plusL� m � l �� m

showL m � showlist � showval a � a �� m �

This is expressed with the usual list comprehension notation� The function showlist

takes a list of strings into a string� with appropriate punctuation�
The interpreted language is extended with two new constructs� Substitute monad L

for monad M� and add two new terms and appropriate clauses�

data Term � ��� � Fail � Amb Term Term

interp Fail e � zeroL

interp �Amb u v� e � interp u e �plusL� interp v e

Evaluating Fail returns no value� and evaluating �Amb u v� returns all values returned
by u or v�

For example� applying test to

	�



�App �Lam 	x	 �Add �Var 	x	� �Var 	x	��� �Amb �Con 
� �Con ����

returns 	��
��	�
It is more di�cult to see how to make this change in an impure language� Perhaps

one might create some form of coroutine facility�

��
 Variation six� Backwards state

Return now to the state example of Section ���� Lazy evaluation makes possible a strange
variation� the state may be propogated backward�

All that is required is to change the de�nition of bindS�

m �bindS� k � �s� �� let �a
s�� � m s


�b
s
� � k a s�

in �b
s��

This takes the �nal state as input� and returns the initial state as output� As before�
the value a is generated by m and passed to k� But now the initial state is passed to k� the
intermediate state goes from k to m� and the �nal state is returned by m� The two clauses
in the let expression are mutually recursive� so this works only in a lazy language�

The Count term de�ned in Section ��� now returns the number of steps to be performed
between its evaluation and the end of execution� As before� applying test to

�Add �Add �Con 
� �Con ��� Count�

returns 	Value� �� Count� �	� but for a di�erent reason� one addition occurs after the
point at which Count is evaluated� An unresolvable mutual dependence� known as a
black hole� would arise in the unfortunate situation where the number of steps yet to be
performed depends on the value returned by Count� In such a case the interpreter would
fail to terminate or terminate abnormally�

This example may seem contrived� but this monad arises in practice� John Hughes
and I discovered it by analysing a text processing algorithm that passes information both
from left to right and right to left�

To make this change in an impure language is left as an exercise for masochistic readers�

��� Call�by�name interpreter

The interpreter of Figure 	 is call�by�value� This can be seen immediately from the
types� Functions are represented by the type Value �� M Value� so the argument to a
function is a value� though the result of applying a function is a computation�

The corresponding call�by�name interpreter is shown in Figure �� Only the types and
functions that di�er from Figure 	 are shown� The type used to represent functions is now
M Value �� M Value� so the argument to a function is now a computation� Similarly�
the environment is changed to contain computations rather than values� The code for
interpreting constants and addition is unchanged� The code for variables and lambda

		



data Value � Wrong

� Num Int

� Fun �M Value �� M Value�

type Environment � ��Name
 M Value��

interp �� Term �� Environment �� M Value

interp �Var x� e � lookup x e

interp �Con i� e � unitM �Num i�

interp �Add u v� e � interp u e �bindM� ��a ��

interp v e �bindM� ��b ��

add a b��

interp �Lam x v� e � unitM �Fun ��m �� interp v ��x
m��e���

interp �App t u� e � interp t e �bindM� ��f ��

apply f �interp u e��

lookup �� Name �� Environment �� M Value

lookup x �� � unitM Wrong

lookup x ��y
n��e� � if x��y then n else lookup x e

apply �� Value �� M Value �� M Value

apply �Fun h� m � h m

apply f m � unitM Wrong

Figure �� Interpretation in a monad 
call�by�name�

abstraction looks the same but has changed subtly� previously variables were bound to
values� now they are bound to computations� 
Hence a small change in lookup� a call to
unitM has vanished�� The code for application does change� now the function is evaluated
but not the argument�

The new interpreter can be modi�ed in the same way as the old one�
If modi�ed for execution counts as in Section ���� the cost of an argument is

counted each time it is evaluated� Hence evaluating test term� now returns the string
	Value� ��� Count� �	� because the cost of adding 
� to 

 is counted twice� 
Compare
this with a count of � for the call�by�value version��

If modi�ed for a non�deterministic language as in Section ���� then a term may return
a di�erent value each time it is evaluated� For example� applying test to

�App �Lam 	x	 �Add �Var 	x	� �Var 	x	��� �Amb �Con 
� �Con ����

now returns 	��
�
�
��	� 
Compare this with 	��
��	 for the call�by�value version��
An advantage of the monadic style is that the types make clear where e�ects occur�

Thus� one can distinguish call�by�value from call�by�name simply by examining the types�
If one uses impure features in place of monads� the clues to behaviour are more obscure�

	�



���� Monad laws

For �M
unitM
bindM� to qualify as a monad� the following laws must be satis�ed�

Left unit� �unitM a� �bindM� k � k a

Right unit� m �bindM� unitM � m

Associative� m �bindM� ��a �� �k a� �bindM� ��b �� h b��

� �m �bindM� ��a �� k a�� �bindM� ��b �� h b�

These laws guarantee that monadic composition� as discussed in Section ��	� is associative
and has a left and right unit� It is easy to verify that the monads described in this paper
do satisfy these laws�

To demonstrate the utility of these laws� consider the task of proving that

�Add t �Add u v�� and �Add �Add t u� v�

always return the same value�
Simplify the left term�

interp �Add t �Add u v�� e

� interp t e �bindM� ��a ��

interp �Add u v� e �bindM� ��y ��

add a y��

� interp t e �bindM� ��a ��

�interp u e �bindM� ��b ��

interp v e �bindM� ��c ��

add b c��� �bindM� ��y ��

add a y��

� interp t e �bindM� ��a ��

interp u e �bindM� ��b ��

interp v e �bindM� ��c ��

add b c �bindM� ��y ��

add a y�����

The �rst two steps are simple unfolding
 the third step is justi�ed by the associative law�
Similarly� simplify the right term�

interp �Add �Add t u� v� e

� interp t e �bindM� ��a ��

interp u e �bindM� ��b ��

interp v e �bindM� ��c ��

add a b �bindM� ��x ��

add x c�����

Again� this is two unfold steps and a use of the associative law� It remains to prove that

	�



add a b �bindM� ��x �� add x c� � add b c �bindM� ��y �� add y a��

This is done by case analysis� If a� b� c have the forms Num i� Num j� Num k then the
result is unitM �i�j�k�� as follows from two uses of the left unit law and the associativity
of addition
 otherwise the result is Wrong� also by the left unit law�

The above proof is trivial� Without the monad laws� it would be impossible�
As another example� note that for each monad we can de�ne the following operations�

mapM �� �a �� b� �� �M a �� M b�

mapM f m � m �bindM� ��a �� unitM �f a��

joinM �� M �M a� �� M a

joinM z � z �bindM� ��m �� m�

For the list monad of Section ���� mapM is the familiar map function� and joinM concate�
nates a list of lists� Using id for the identity function 
id x � x�� and ��� for function
composition 
�f�g� x � f �g x��� one can then formulate a number of laws�

mapM id � id

mapM �f�g� � mapM f � mapM g

mapM f � unitM � unitM � f

mapM f � joinM � joinM � mapM �mapM f�

joinM � unitM � id

joinM � mapM unitM � id

joinM � mapM joinM � joinM � joinM

m �bindM� k � joinM �mapM k m�

The proof of each is a simple consequence of the three monad laws�
Often� monads are de�ned not in terms of unitM and bindM� but rather in terms of

unitM� jointM� and mapM �Mac�	� LS��� Mog��a� Wad���� The three monad laws are
replaced by the �rst seven of the eight laws above� If one de�nes bindM by the eighth law�
then the three monad laws follow� Hence the two de�nitions are equivalent�

As described in �Wad���� the list comprehension notation generalises to an arbitrary
monad� That paper gives the following translations�

� t � � unitM t

� t � x �� u � � mapM ��x �� t� u

� t � x �� u
 y �� v� � joinM �mapM ��x �� mapM ��y �� t� v� u�

For the list monad� this yields the usual notion of list comprehension� In the notation of
this paper� the translation may be expressed as follows�

� t � � unitM t

� t � x �� u � � u �bindM� ��x �� unitM t�

� t � x �� u
 y �� v � � u �bindM� ��x �� v �bindM� ��y �� unitM t��

The notation on the right� if not a comprehension� is at least comprehensible� The equiv�
alence of the two translations follows from the monad laws�

	�



� Continuing monads

The purpose of this section is to compare the monadic style advocated in Section � with
continuation�passing style 
CPS��

Continuation�passing style was �rst developed for use with denotational semantics
�Rey��� Plo���� It provides �ne control over the execution order of a program� and has
become popular as an intermediate language for compilers �SS��� AJ���� This paper
stresses the modularity a�orded by CPS� and in this sense has similar goals to the work
of Danvy and Filinski �DF����

��� CPS interpreter

The monad of continuations is de�ned as follows�

type K a � �a �� Answer� �� Answer

unitK a � �c �� c a

m �bindK� k � �c �� m ��a �� k a c�

In CPS� a value a 
of type a� is represented by a function that takes a continuation c 
of
type a �� Answer� and applies the continuation to the value� yielding the �nal result c a


of type Answer�� Thus� unitK a yields the CPS representation of a� If m �� K a and
k �� a �� K b� then m �bindK� k acts as follows� bind c to the current continuation�
evaluate m� bind the result to a� and apply k to a with continuation c�

Substituting monad K for monad M in the interpreter and simplifying yields an inter�
preter written in CPS�

interp �� Term �� Environment �� �Value �� Answer� �� Answer

interp �Var x� e � �c �� lookup x e c

interp �Con i� e � �c �� c �Num i�

interp �Add u v� e � �c �� interp u e ��a ��

interp v e ��b ��

add a b c��

interp �Lam x v� e � �c �� c �Fun ��a �� interp v ��x
a��e���

interp �App t u� e � �c �� interp t e ��f ��

interp u e ��a ��

apply f a c��

The functions lookup� add� and apply now also take continuations� The line de�ning Add
can be read� Let c be the current continuation� evaluate u� bind a to the result� evaluate
v� bind b to the result� and add a to b with continuation c�

This reading is closely related to the monadic reading given in Section ��	� and indeed
the CPS and monadic versions are quite similar� the CPS version can be derived from the
monadic one by simply eliding each occurrence of �bindM�� and adding bits to the front
and end to capture and pass on the continuation c� The second argument to �bindM� has

	�



type a �� �b �� Answer� �� Answer
 this is what k ranges over� A continuation has
type b �� Answer
 this is what c ranges over� Both k and c serve similar roles� acting as
continuations at di�erent levels�

The Answer type may be any type rich enough to represent the �nal result of a
computation� One choice is to take an answer to be a value�

type Answer � Value

This determines the de�nition of showK�

showK m � showval �m id�

Here m �� K Value is passed the identity function id �� Value �� Value as a contin�
uation� and the resulting Value is converted to a string� Evaluating test term� returns
	��	� as before�

Other choices for the Answer type will be considered in Section ���

��� Call with current continuation

Having converted our interpreter to CPS� it is now straightforward to add the call with
current continuation 
callcc� operation� found in Scheme �RC��� and Standard ML of New
Jersey �DHM�	��

The following operation captures the current continuation and passes it into the current
expression�

callccK �� ��a �� K b� �� K a� �� K a

callccK h � �c �� let k a � �d �� c a in h k c

The argument to callccK is a function h� which is passed a function k of type �a �� K b��
If k is called with argument a� it ignores its continuation d and passes a to the captured
continuation c instead�

To add callcc to the interpreted language� add an appropriate term and a new case to
the interpreter�

data Term � ��� � Callcc Name Term

interp �Callcc x v� e � callccK ��k �� interp v ��x
 Fun k��e��

This uses callccK to capture the current continuation k� and evaluates v with x bound
to a function that acts as k�

For example� applying test to

�Add �Con 
� �Callcc 	k	 �Add �Con �� �App �Var 	k	� �Con ������

returns 	�	�

	�



��� Monads and CPS

We have seen that by choosing a suitable monad� the monad interpreter becomes a CPS
interpreter� A converse property is also true� by choosing a suitable space of answers� a
CPS interpreter can act as a monad interpreter�

The general trick is as follows� To achieve the e�ects of a monad M in CPS� rede�ne
the answer type to include an application of M�

type Answer � M Value

The de�nition of showK is modi�ed accordingly�

showK n � showM �n unitM�

Here n �� K Value is passed unitM �� Value �� M Value as a continuation� and the
resulting M Value is converted to a string by showM�

Just as unitM converts a value of type a into type M a� values of type M a can be
converted into type K a as follows�

promoteK �� M a �� K a

promoteK m � �c �� m �bindM� c

Since m �� M a and c �� a �� M Value� the type of m �bindM� c is M Value� as re�
quired�

For example� to incorporate error messages� take M to be the monad E de�ned in
Section ���� We then calculate as follows�

errorK �� String �� �a �� E Value� �� E Value

errorK s � promoteK �errorE s�

� �c �� �errorE s� �bindE� c

� �c �� Error s �bindE� c

� �c �� Error s

The equalities follow by applying the de�nitions of promoteK� errorE� and bindE� respec�
tively� We can take the last line as the de�nition of errorK� As we would expect� this
simply ignores the continuation and returns the error as the �nal result�

The last section stressed that monads support modularity� For example� modifying
the monadic interpreter to handle errors requires few changes� one only has to substitute
monad E for monad M and introduce calls to errorE at appropriate places� CPS supports
modularity in a similar way� For example� modifying the CPS interpreter to handle errors
is equally simple� one only has to change the de�nitions of Answer and test� and introduce
calls to errorK at appropriate places�

Execution counts 
as in Section ���� and output 
as in Section ���� may be incorporated
into continuation�passing style similarly� For execution counts� take Answer � S Value

and calculate a continuation version of tickS�

	�



tickK �� ��� �� S Value� �� S Value

tickK � promoteK tickS

� �c �� tickS �bindS� c

� �c �� ��s �� ���
 s�
�� �bindS� c

� �c �� �s �� c �� �s�
�

For output� take Answer � O Value and calculate a continuation version of outO�

outK �� Value �� �Value �� O Value� �� O Value

outK a � promoteK �outO a�

� �c �� �outO a� �bindO� c

� �c �� �showval a �� 	� 	
 ��� �bindO� c

� �c �� let �s
b� � c �� in �showval a �� 	� 	 �� s
 b�

In both cases� the modi�cations to the CPS version of the interpreter are as simple as
those to the monadic version�

��� Monads vs� CPS

Given the results of the previous section� one may wonder whether there is any real
di�erence between monads and CPS� With monads� one writes

m �bindM� ��a �� k a�

and with CPS one writes

��c �� m ��a �� k a c��

and the choice between these seems little more than a matter of taste�
There is a di�erence� Each of the monad types we have described may be turned into

an abstract data type� and that provides somewhat �ner control than CPS� For instance�
we have seen that the CPS analogue of the monad type S a is the type

�a �� S Value� �� S Value�

This latter type contains values such as

�c �� �s �� �Wrong
 c��

This provides an error escape� it ignores the current continuation and always returns
Wrong� The state monad S provides no such escape facility� With monads� one can choose
whether or not to provide an escape facility
 CPS provides no such choice�

We can recover this facility for CPS by turning continuations into an abstract data
type� and providing unitK and bindK as operations� but not providing callccK� So CPS
can provide the same �ne control as monads � if CPS is expressed as a monad�

Perhaps a more signi�cant di�erence between monads and CPS is the change of view�
point� Monads focus attention on the question of exactly what abstract operations are
required� what laws they satisfy� and how one can combine the features represented by
di�erent monads�

	�



� Experiencing monads

Each phase of the Haskell compiler is associated with a monad�
The type inference phase uses a monad with an error component 
similar to E in

Section ����� a position component 
similar to P in Section ����� and two state components

similar to S in Section ����� The state components are a name supply� used to generate
unique new variable names� and a current substitution� used for uni�cation�

The simpli�cation phase uses a monad with a single single state component� which is
again a name supply�

The code generator phase uses a monad with three state components� a list of the
code generated so far� a table associating variable names with addressing modes� and a
second table that caches what is known about the state of the stack at execution time�

In each case� the use of a monad greatly simpli�es bookkeeping� The type inferencer
would be extremely cluttered if it was necessary to mention explicitly at each step how
the current substitution� name supply� and error information are propagated
 for a hint
of the problems� see �Han���� The monads used have been altered several times without
di�culty� The change to the interpreter described in Section ��� was based on a similar
change made to the compiler�

The compiler has just begun to generate code� and a full assesment lies in the future�
Our early experience supports the claim that monads enhance modularity�

� Conclusion

��� The future

This work raises a number of questions for the future�
What are the limits of this technique� It would be desirable to characterise what sort

of language features can be captured by monads� and what sort cannot� Call�by�value
and call�by�name translations of lambda calculus into a monad are well known
 it remains
an open question whether there might be a call�by�need translation that evaluates each
argument at most once�

Is syntactic support desirable� The technique given here� while workable� has a certain
syntactic clumsiness� It may be better to provide an alternative syntax� One possibility
is to provide

letM a �� m in k a

as alternative syntax for m �bindM� ��a �� k a�� Another possiblity arises from monad
comprehensions �Wad����

What about e�ciency� The style advocated here makes heavy use of data abstraction
and higher�order functions� It remains to be seen what impact this has on e�ciency� and
the GRASP team looks forward to examining the performance of our completed Haskell
compiler� We are hopeful� since we have placed high priority on making the relevant
features inexpensive�

	�



How does one combine monads� The monads used in the Haskell compiler involve a
combination of features
 for instance� the type inferencer combines state and exceptions�
There is no general technique for combining two arbitrary monads� However� Section ���
shows how to combine continuations with any other monad
 and similar techniques are
available for the state� exception� and output monads �Mog��a� Mog��b�� One might
form a library of standard monads with standard ways of combining them� This would
be aided by parameterised modules� which are present in Miranda and Standard ML� but
absent in Haskell�

Should certain monads be provided as primitive� Monads may encapsulate impure
e�ects in a pure way� For example� when the state is an array� the state monad can
safely update the array by overwriting� as described in �Wad���� Kevin Hammond and
I have built an interface that allows Haskell programs to call C routines� using monads
to sequence the calls and preserve referential transparency� The e�ect is similar to the
�abstract continuations� used in Hope�C �Per����

How do monads compare to other approaches to state� Several new approaches to
state in pure functional languages have emerged recently� based on various type disciplines
�GH��� SRI�	� Wad�	�� These need to be compared with each other and with the monad
approach�

Can type inference help� By examining where monads appear in the types of a pro�
gram� one determines in e�ect where impure features are used� In this sense� the use
of monads is similar to the use of e�ect systems as advocated by Gi�ord� Jouvelot� and
others� in which a type system infers where e�ects occur �GL��� JG�	�� An intriguing
question is whether a similar form of type inference could apply to a language based on
monads�

��� The past

Finally� something should be said about the origin of these ideas�
The notion of monad comes from category theory �Mac�	� LS���� It �rst arose in

the area of homological algebra� but later was recognised 
due to the work of Kleisli
and of Eilenberg and Moore� to have much wider applications� Its importance emerged
slowly� in early days� it was not even given a proper name� but called simply a �standard
construction� or a �triple�� The formulation used here is due to Kleisli�

Eugenio Moggi proposed that monads provide a useful structuring tool for denotational
semantics �Mog��a� Mog��b�� He showed how lambda calculus could be given call�by�value
and call�by�name semantics in an arbitrary monad� and how monads could encapsulate
a wide variety of programming language features such as state� exception handling� and
continuations�

Independent of Moggi� but at about the same time� Michael Spivey proposed that
monads provide a useful structuring tool for exception handling in pure functional lan�
guages� and demonstrated this thesis with an elegant program for term rewriting �Spi����
He showed how monads could treat exceptions 
as in Section ���� and non�deterministic
choice 
as in Section ���� in a common framework� thus capturing precisely a notion that

��



I had groped towards years earlier �Wad����
Inspired byMoggi and Spivey� I proposed monads as a general technique for structuring

functional programs� My early proposals were based on a special syntax for monads� that
generalised list comprehensions �Wad���� This was unfortunate� in that it led many to
think a special syntax was needed� This new presentation is designed to convey that
monads can be pro�tably applied to structure programs today with existing languages�

A key observation of Moggi�s was that values and computations should be assigned
di�erent types� the value type a is distinct from the computation type M a� In a call�by�
value language� functions take values into computations 
as in a �� M b�
 in a call�by�
name language� functions take computations into computations 
as in M a �� M b��

John Reynolds made exactly the same point a decade ago �Rey�	�� The essence of
Algol� according to Reynolds� is a programming language that distinguishes data types
from phrase types� In his work data types 
such as int� play the roles of values� and phrase
types 
such as int exp� play the role of computations� and the same distinction between
call�by�value and call�by�name appears� These ideas form the basis for the design of
Forsythe �Rey��a�� But the vital unitM and bindM operations do not appear in Reynolds�
work�

This is not the only time that John Reynolds has been a decade ahead of the rest of
us� Among other things� he was an early promoter of continuation�passing style �Rey���
and the �rst to apply category theory to language design �Rey��� Rey�	�� One intriguing
aspect of his recent work is the use of intersection types �Rey��a� Rey��b� Rey�	�� so
perhaps we should expect an upsurge of interest in that topic early in the next millenium�

This paper demonstrates that monads provide a helpful structuring technique for
functional programs� and that the essence of impure features can be captured by the use
of monads in a pure functional language�

In Reynolds� sense of the word� the essence of Standard ML is Haskell�

Acknowledgements� The work on the Haskell compiler reported here is a joint e�ort of
the GRASP team� whose other members are Cordy Hall� Kevin Hammond� Will Partain�
and Simon Peyton Jones� For helpful comments on this work� I�m grateful to Donald
Brady� Geo�rey Burn� Stephen Eldridge� John Hughes� David King� John Launchbury�
Mu�y Thomas� and David Watt�

References

�AJ��� A� Appel and T� Jim� Continuation�passing� closure�passing style� In ��	th
Symposium on Principles of Programming Languages� Austin� Texas
 ACM�
January 	����

�BW��� R� Bird and P� Wadler� Introduction to Functional Programming� Prentice Hall�
	����

�DF��� O� Danvy and A� Filinski� Abstracting control� In Conference on Lisp and
Functional Programming� Nice� France
 ACM� June 	����

�	



�DHM�	� B� Duba� R� Harper� and D� MacQueen� Typing �rst�class continuations in
ML� In �
	th Symposium on Principles of Programming Languages� Orlando�
Florida
 ACM� January 	��	�

�GH��� J� Guzm an and P� Hudak� Single�threaded polymorphic lambda calculus� In
Symposium on Logic in Computer Science� Philadelphia� Pennsylvania
 IEEE�
June 	����

�GL��� D� K� Gi�ord and J� M� Lucassen� Integrating functional and imperative pro�
gramming� In Conference on Lisp and Functional Programming� ������ Cam�
bridge� Massachusetts
 ACM� August 	����

�Han��� P� Hancock� A type checker� Chapter � of Simon Peyton Jones� The Implemen�
tation of Functional Programming Languages� Prentice Hall� 	����

�HPW�	� P� Hudak� S� Peyton Jones and P� Wadler� editors� Report on the Programming
Language Haskell� Version ���� Technical report� Yale University and Glasgow
University� August 	��	�

�JG�	� P� Jouvelot and D� Gi�ord� Algebraic reconstruction of types and e�ects� In
�
	th ACM Symposium on Principles of Programming Languages� Orlando�
Florida� January 	��	�

�LS��� J� Lambek and P� Scott� Introduction to Higher Order Categorical Logic� Cam�
bridge University Press� 	����

�Mac�	� S� Mac Lane� Categories for the Working Mathematician� Springer�Verlag�
	��	�

�Mog��a� E� Moggi� Computational lambda�calculus and monads� In Symposium on Logic
in Computer Science� Asilomar� California
 IEEE� June 	���� 
A longer version
is available as a technical report from the University of Edinburgh��

�Mog��b� E� Moggi� An abstract view of programming languges� Course notes� University
of Edinburgh�

�MTH��� R� Milner� M� Tofte� and R� Harper� The de�nition of Standard ML� MIT Press�
	����

�Pau�	� L� C� Paulson� ML for the Working Programmer� Cambridge University Press�
	��	�

�Per��� N� Perry� Hope�C� a continuation extension for Hope�� Imperial College� De�
partment of Computing� Technical report IC!FPR!LANG!����	!�	� November
	����

�Plo��� G� Plotkin� Call�by�name� call�by�value� and the ��calculus� Theoretical Com�
puter Science� 	�	���	��� 	����

��



�RC��� J� Rees and W� Clinger 
eds��� The revised� report on the algorithmic language
Scheme� ACM SIGPLAN Notices� �	
	��������� 	����

�Rey��� J� Reynolds� De�nitional interpreters for higher�order programming languages�
In 
�	th ACM National Conference� �	������ 	����

�Rey��� J� Reynolds� Using category theory to design implicit conversion and generic
operators� In N� Jones� editor� Semantics�Directed Compiler Generation� �		�
���� Berlin
 LNCS ��� Springer�Verlag� 	����

�Rey�	� J� Reynolds� The essence of Algol� In de Bakker and van Vliet� editors� Algo�
rithmic Languages� �������� North Holland� 	��	�

�Rey��a� J� Reynolds� Preliminary design of the programming language Forsythe�
Carnegie Mellon University technical report CMU�CS����	��� June 	����

�Rey��b� J� C� Reynolds� Syntactic control of interference� part II� In International Col�
loquium on Automata� Languages� and Programming� 	����

�Rey�	� J� Reynolds� The coherrence of languages with intersection types� In Interna�
tional Conference on Theoretical Aspects of Computer Software� Sendai� Japan�
LNCS� Springer Verlag� September 	��	�

�Spi��� M� Spivey� A functional theory of exceptions� Science of Computer Program�
ming� 	�
	�������� June 	����

�SRI�	� V� Swarup� U� S� Reddy� and E� Ireland� Assignments for applicative languages�
In Conference on Functional Programming Languages and Computer Architec�
ture� Cambridge� Massachusetts
 LNCS ���� Springer Verlag� August 	��	�

�SS��� G� L� Steele� Jr� and G� Sussman� Lambda� the ultimate imperative� MIT� AI
Memo ���� March 	����

�Tur��� D� A� Turner� An overview of Miranda� In D� A� Turner� editor� Research Topics
in Functional Programming� Addison Wesley� 	����

�Wad��� P� Wadler� How to replace failure by a list of successes� Conference on Func�
tional Programming Languages and Computer Architecture� Nancy� France

LNCS ��	� Springer�Verlag� September 	����

�Wad��� P� Wadler� Comprehending monads� In Conference on Lisp and Functional
Programming� Nice� France
 ACM� June 	����

�Wad�	� Is there a use for linear logic� Conference on Partial Evaluation and Semantics�
Based Program Manipulation �PEPM�� New Haven� Connecticut
 ACM� June
	��	�

��


