
The Information Bus@-

An Architecture for Extensible Distributed Systems

Brian Oki, Manfred Pjluegl, Alex Siegel, and Dale Skeen

Teknekron Software Systems, Inc.
530 Lytton Avenue, Suite 301

Palo Alto, California 94301
{boki, pfluegl, alexs, skeen}@tss.com

Abstract

Research can rarely be performed on large-scale, distributed

systems at the level of thousands of workstations. In this

paper, we describe the motivating constraints, design

principles, and architecture for an extensible, distributed

system operating in such an environment. The constraints

include continuous operation, dynamic system evolution,

and integration with extant systems. The Information

Bus, our solution, is a novel synthesis of four design

principles: core communication protocols have minimal

semantics, objects are self-describing, types can be

dynamically defined, and communication is anonymous. The

current implementation provides both flexibility and high

performance, and has been proven in several commercial

environments, including integrated circuit fabrication plants

and brokerage/trading floors.

1 Introduction

In the 1990s, distributed computing has truly moved out

of the laboratory and into the marketplace. This transition

has illuminated new problems, and in this paper we present

our experience in bringing large-scale, distributed computing

to mission-critical applications. We draw from two commer-

cial application areas: integrated circuit (IC) fabrication

plants and brokerage/trading floors. The system we describe

in this paper has been installed in over one hundred fifty pro-

duction sites and on more than ten thousand workstations.

We have had a unique opportunity to observe distributed

computing within the constraints of commercial installations

and to draw important lessons.

This paper concentrates on the problems posed by a “24

by 7“ commercial environment, in which a distributed sys-

tem must remain operational twenty-four hours a day, seven

Permission to copv without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its date appear, and notice IS given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republlsh, requires a fee

and/or specific permission.

SIGOPS ‘93/12 /93/N. C., USA

~ 1993 ACM 0-89791 -632 -8/93 /0012 . ..$l .50

days a week. Such a system must tolerate software and

hardware crashes; it must continue running even during

scheduled maintenan- periods or hardware upgrades; and it

must be able to evolve and scale gracefully without affect-

ing existing services. This environment is crucially impor-

tant to our customers as they move toward real-time

decision support and event-driven processing in their com-

mercial applications.

One class of customers manufactures integrated circuit

chips. An IC factory represents such an enormous invest-

ment in capital that it must run twenty-four hours a day. Any

down time may result in a huge financial penalty from both

lost revenue and wasted materials. Despite the “24 by 7“

processing requirement, improvements to software and

hardware need to be made frequently.

Another class of customers is investment banks, bro-

kers, and funds managers that operate large securities trad-

ing floors. Such trading floors are very data-intensive

environments and require that data be disseminated in a

timely fashion to those who need it. A one-minute delay can

mean thousands of dollars in lost profits. Since securities

trading is a hi@J competitive business, it is advantageous

to use the latest software and hardware. Upgrades are fre-

quent and extensive. The system, therefore, must be

designed to allow seamless integration of new services

without affecting existing services.

In the systems that we have built and installed, dynamic

system evolution has been the greatest challenge. The sheer

size of these systems, which can consist of thousands of

workstations, requires novel solutions to problems of sys-

tem evolution and maintenance. Solving these problems in a
large-scale, “24 by 7“ environment leads to more than just

quantitative differences in how systems are built-these

solutions lead to fundamentally new ways of organizing

systems.

The contributions of this paper are two-fold. One is the
description of a set of system design principles that were

crucial in satisfying the stringent requirements of “24 by 7“

environments. The other is the demonstration of the useful-

ness and validity of these principles by discussing a body of

58

software out in the field. This body of software consists of

several tools and modules that use a novel communications

infrastructure known as the Information Bus. All of the soft-

ware components work together to provide a complete dis-

tributed system environment.

This paper is organized as follows. Section 2 provides a

detailed description of the problem domain and summarizes

the requirements for a solution. Section 3 outlines the Infor-

mation Bus architecture in detail, states principles that

drove our design, and discusses some aspects of the imple-

mentation. Section 4 describes the notion of adapters, which

mediate between old applications and in the Information

Bus. Section 5 describes other software components that

use the Information Bus and provide a complete application

environment. This section also provides an example to illus-

trate the system. Section 6 presents related work. Section 7

summarizes the paper and discusses open issues. The

Appendix discusses the performance characteristics of the

Information Bus.

2 Background

An IC fabrication plant represents a huge capital invest-

ment. This investment, therefore, is cost-effective only if it

can remain operational twenty-four hours a day. To bring

down an entire plant in order to upgrade a key software

component, such as the” Work-In-Process” tracking system,

would result in lost revenue and wasted material. There is

no opportunity to “reboot” the entire system. We state this

requirement as RI:

RI Continuous operation. It is unacceptable to bring

down the system for upgrades or maintenance.

Despite the need for continuous operation, frequent

changes in hardware and software must also be supported.

New applications and new versions of existing applications

need to be brought on-line. Business requirements and fac-

tory models change, and such changes need to be reflected

in the application behavior. For example, new equipment

types could be introduced into the factory. We state this

requirement as R2:

R2 Dynamic system evolution. The system must be

capable of adapting to changes in application ar-

chitecture and in the type of information ex-

changed. It should also support the dynamic

integration of new services and information.

In the systems that we have built and installed, this

requirement has posed the greatest challenge. The sheer size

of these systems, typically ranging from one hundred to a

thousand workstations, makes changes expensive or even

impossible, unless change is planned from the beginning.

Businesses often have huge outlays iu existing hard-

ware, software, and data. To be accepted by the business

community, a new system must be capable of leveraging

existing technology; an organization will not throw away

the product of an earlier costly investment. We state this

requirement as R3:

R3 Legacy systems. New software must be able to

interact smoothly with existing software, regard-

less of the age of that software.

Other important requirements are fault-tolerance, scal-

ability, and performance. The system must be fault-tolerant

in particular it must not have a single point of failure. The

system must scale in terms of both hardware and data.

Finally, our installations must meet stringent performance

standards. In this paper, we focus on requirements RI, R2,

and R3 because they represent “real-world” constraints that

have been less studied in research settings.

The typical customer environment consists of a distrib-

uted collection of independent processors, nodes, that com-

municate with each other by passing messages over the

network. Nodes and the network may fail, and it is assumed

that these failures are fail-stop [Schneider83] and not Byz-

antine [Lamport82], 1 The network may lose, delay, and

duplicate messages, or deliver messages out of order. Link

failures may cause the network to partition into subnet-

works that are unable to communicate with each other. We

assume that nodes eventually recover from crashes. For any

pair of nodes, there will eventually be a time when they can

communicate directly with each other after each crash.

3 Information Bus Architecture

The requirements of a “24 by 7“ environment dictated

numerous design decisions that ultimately resulted in the

Information Bus that we have today. We have distilled those

decisions into several design principles, which are high-

lighted as they become apparent in this section.

Because it is impossible to anticipate or dictate the

semantics of fiture applications, it is inadvisable to hard-

code application semantics into the core communications

software-for performance reasons and because there is no

“right” answer for every application [Cheriton93], For

example, complex ordering semantics on message delivery

are not supported directly, Atomic transactions are also not

supported: in our experience most applications do not need

the strong consistency requirements of transactions, Instead,

we provide tools and higher-level services to cover the

range of requirements, This allows us to keep the communi-

cations software efficient, while still allowing us to adapt to

the specific needs of each class of customers. The following

principle is motivated by requirements R2 and R3.

:, Failures in our customer environments closely approximate
fail-stop behavior; furthermore, protecting against the rare Byzan-
tine failure is generally too costly.

59

FIGURE 1. Model of computation

Service object Service object local data
objects

reply
A A

T T

Information Bus 0
0 000

A
000

A

/ mblish subscribe reuuest rePN

d
subject

data

Data o Ject
flo

0
0 tl

.“

o
0

Client appl. Client appl.

PI Minimal core semantics. The core communica-

tion system and tools can make few assumptions

about the semantics of application programs.

OW model of computation consists of objects, both

data objects and service objects, and two styles of distrib-

uted communication. traditional request/reply (using

remote procedure call [Birrel184]) and publish/subscribe,

the hallmark of the Information Bus architecture. This is

depicted in Figure 1. Publish/subscribe supports au event-

ctriven communication style and permits data to be dissemi-

nated on the bus, whereas requestJreply supporta a dernand-

driven communication style reminiscent of client/server

architectures. For each communication style, there are dif-

ferent levels of quality of service, which reflect different

design trade-offs between performance and fault-tolerance.

The next section elaborates on these mechanisms.

An object is an instance of a class, and each class is an

implementation of a type2. Our system model distinguishes

between two different kinds of objects: service objects that

control access to system resources and data objects that

contain information and that can easily be transmitted. A

service object encapsulates and controls access to

resources such as databases or devices and its local data

objects. Service objects typically contain extensive state

and may be fault-tolerant. Because they tend to be large-

grained, they are not easily marshaled into a wire format

and transmitted. Instead of migrating to another node, they
are invoked where they reside. using a form of remote pro-

cedure call. Examples of service objects include network

2. A type is an abstraction whose behavior is defined by an inter-
face that is completely specified by a set of operations. Types are
organized into a supertype/subtype hierarchy. A class is an imple-
mentation of a type. Specifically, a class defines methods that
implement the operations defined in a type’s interface.

file systems, database systems, print services, and name ser-

vices.

A data object, on the other hand, can be easily copied,

marshaled, and transmitted. Such objects are at the granular-

ity of typical C++ objects or database records. They abstract

and encapsulate application-level concepts such as docu-

ments, bank accounts, CAD designs, and employee records.

They run the gamut from abstracting simple data records to

defining complex behaviom, such as “recipes” for control-

ling IC processing equipment.

Each data object is labelled with a subject string. Sub-

jects are hierarchically structured, as illustrated by the fol-

lowing well-formed subject “fab5.cc.litho8 .thick.” This

subject might translate to plant “fab5,” cell controller, lithog-

raphy station “litho8,” and wafer thickness. Subjects are cho-

sen by applications or users.

The second principle, P2, is motivated by requirements

R2 and R3, and together with data abstraction, allows appli-

cations to adapt automatically to changes in au object’s

implementation and data representation.

P2 Selj-dexribing objects. Objects, both service and

data objects, are “self-describing.” Each supports

a meta-object protocol [Kiczales91], allowing

queries about its type, attribute names, attribute

types, and operation signatures.

P2 enables our systems and applications to support
introspective access to their services, operations, and

attributes. In traditional environments, introspection is used

to develop program analysis tools, such as class browsers

and debuggers. In the Information Bus environment, intro-

spection is used by applications to adapt their behaviom to

change. This is key to building systems that can adapt to

change at run-time.

60

Introspection enables programmers to write generic

software that can operate on a wide range of types. For

example, consider a “print” utility. Our implementation of

this utility can accept any object of any type and produce a

text description of the object. It examines the object to

determine its type, and then generates appropriate output. In

the case of a complex object, the utility will recursively

descend into the components of the object. The print utility

only needs to understand the fundamental types, such as

integer or string, but it can print an object of any type com-

posed of those types.

The third principle, P3, enables new concepts and

abstractions to be introduced into the system.

Pa Dynamic classing. New classes implementing

either existing or new types can be dynamically

defined and used to create instances. This is sup-

ported for both service and data objects.

P3 enables new types to be defined, on-the-fly. Note

that P2 enables existing applications to make use of these

new types without re-programming or re-linking.

To support dynamic classing, we have implemented

TDL, a small, interpreted language based on CLOS

[Keene89]. We have chosen a subset of CLOS that supports

a full object model, but that could be supported in a small,

efficient run-time environment.

3.1 Publish/Subscribe Communication

To disseminate data objects, data producers generate

them, label them with an appropriate subject, and publish

them on the Information Bus. To receive such objects, data

consumers subscribe to the same subject. Consumers need

not know \/ho produces the objects, and producers need not

know who consumes or processes the objects. This property

is expressed in principle P4. We call this model Subject-

Based Addressing~~, and it is a variant of a generative

communication model [Carriero89]. This principle is moti-

vated by requirements RI and R2, and it allows applications

to tolerate architectural changes on the fly,

P4 Anonymous communication. Data objects are

sent and received based on a subject, indepen-

dent of the identities and location of data pro-

ducers and data consutnem.

Subjects can be partially specified or “wildcarded” by

the consumer, which permits access to a large collection of

data from multiple producers with a single request. The

Information Bus itself enforces no policy on the interpreta-

tion of subjects. Instead, the system designers and develop-

ers have the freedom and responsibility to establish

conventions on the use of subjects.

for

Anonymous communication is a powerful mechanism

adapting to software changes that occur at run-time. A

new subscriber can be introduced at any time and will start

receiving immediately new objects that are being published

under the subjects to which it has subscribed. Similarly, a

new publisher can be introduced into the system, and exist-

ing subscribers will receive objects from it. Our model of

computation does not require a traditional name service like

Sun’s NIS or Xerox’s Clearinghouse [Oppen83].

In a traditional distributed system, whenever new ser-

vices are added to the system, or a service is being replaced

with a new implementation, the name service must be

updated with the new information. To use that information,

all applications must be aware that the new services exist,

must contact the name service to obtain the location of the

new service, and then bind to the service. In our model, the

new implementation need only use the same subjects as the

old implementatio~ neither publishers nor subscribers must

be aware of the change. Subject names can be rebound at

any time to a new address, a facility that is more general

than traditional late-binding.

The semantica of publish/subscribe communication

depends on the requirements of the application. The usual

semantics we provide is reliable message delivery. Under

normal operatiom if a sender and receiver do not crash and

the network does not suffer a long-term partition, then mes-

sages are delivered exactly once in the order sent by the

same sendeq messages from different senders are not

ordered, If the sender or receiver crashes, or there is a net-

work partition, then messages will be delivered at most

once.

A stronger semantics is guaranteed message delivery.

In this case, the message is logged to non-volatile storage

before it is sent. The message is guaranteed to be delivered

at least once, regardless of failures. The publisher will

retransmit the message at appropriate times until a reply is

received. If there is no failure, then the message will be

delivered exactly once. Guaranteed delivery is particularly

useful when sending data to a database over an unreliable

network.

For local area networks, reliable publication is imple-

mented with Ethernet broadcast, This choice allows the

same data to be delivered to a large number of destinations

without a performance penalty. Moreover, Ethernet broad-

cast eliminates the need for a central communication server.

oar current implementation uses UDP packets in combina-

tion with a retransmission protocol to implement reliable

delivery semantics.

in our implementation of subject-based addressing, we

use a daemon on every host. Each application registers with

its local daemon, and tells the daemon to which subjects it

has subscribed. The daemon forwards each message to each
application that has subscribed. It uses the subject contained

in the message to decide which application receives which

message.

61

Given the high traffic rates, Ethernet broadcast across

wide area networks is undesirable. We could use IP multi-

cast [Cheriton85], but unfortunately, commercial implemen-

tations are not mature enough for mission-critical use.

Therefore, wide area networks require additional communi-

cation tools.

Our implementation uses application-level “informa-

tion routers” to solve the problem posed by wide area net-

works. To the Information Bus, these routers look like

ordinary applications, but they actually integrate multiple

instances of the bus. Messages are received by one router

using a subscription, transmitted to another router, and then

re-published on another bus. The router is intelligent about

which messages are sent to which routers: messages are

only re-published on buses for which there exists a sub-

scription on that subject; the router can also perform other

functions, such as transforming subjects or logging mes-

sages to non-volatile storage. Thus, the overall effect is to

create the illusion of a single, large bus that is capable of

publishing over any network.

3.2 Dynamic Discovery

In a distributed system, it is often necessary for an

application to discover the identify of the participants in a

protocol. For example, a new client needs to determine the

set of servers that serve a subject a new server needs to

determine if any clients have pending requests; a replicated

server needs to find the other servers that maintain the repli-

cated data. Specifically, in Xerox’s corporate email service,

a traditional distributed system, client mail applications find

a mail service for posting mail messages by using an

expanding ring broadcast technique, a kind of discovery

protocol [Xerox88].

In the Information Bus, the discovery protocol is in the

form of two publications. One participant publishes “Who’s

out there?’ under a subject. The other participants publish “I
am” and other information describing their state, if they

serve the subject in question. Section 3.3 provides a specific

example of this exchange. This approach preserves P4

(anonymous communication). The subject alone is enough

for one participant to make contact with ita cohorts.

The publish/subscribe communication model is well-

-suited to supporting a discovery protocol. Since publication

does not require any boot-strapping or name resolution, it

can be the first step in a protocol. We are effectively using
the network itself as a name service. A subject is mapped to

a specific set of servers by allowing the servers to choose

themselves. The “Who’s out there?” publication can contain

service-specific information, so further refinements are pos-

sible when selecting servers.

3.3 Remote Method Invocation

Remote method invocation (RMI), or remote procedure

call, is the second means of performing distributed compu-

tations. This paired request/reply satisfies the demand-

driven style of interaction. Clients invoke a method on a

remote server object without regard to that server object’s

location, the server object executes the method, and the

server replies to the client. Servera are named with subjects.

Standard RMI provide exactly-once semantics under

normal operation and at-most-once semantics in the pres-

ence of failures. Customer-specific requirements such as

exactly-once semantics, which guarantees that the method

will be executed exactly once, even in the presen~ of fail-

ures, can be built on the a layer above standard RMI.

There are two parts to RMI: discovering the server

object for a clien~ and establishing a connection to that

server over which requests and replies will flow. The dis-

covery algorithm in our implementation employs publisw

subscribe communication as described in Section 3.2. In

this algorithm, the client searches for all servers by publish-

ing a query message on a subject specific to that service.

The servers receive this message, and then they publish

their point-to-point address to all clients on the same sub-

ject. Finally, the client invokes a service request on a server

object using the point-to-point address. The point-to-point

address can refer to any simple, connection mechanism,

such as a TC!P/IP connection poste18 1]. Figure 2 illustrates

this protocol.

FIGURE 2. RMI Protocol

Client Server

P
publish

publish

oint-to-point request

reply

1

More than one server can respond to requests on a sub-

ject, Several server objects can be used to provide load bal-

ancing or fault-tolerance. Our system allows an application

to choose between several different policies. The servers

can decide among themselves which one will respond to a

request from the client. Alternative y, the client can receive
every response from all of the servers and then decide

which server the client wants to use.

4 Adapters

The Information Bus must allow for interaction with

existing systems, as dictated by requirement R3. To inte-

grate existing applications into the Information Bus we use

62

software modules called adapters. These adapters convert

information from the data objects of the Information Bus

into data understood by the applications, and vice versa.

Adapters must live in two worlds at once, translating com-

munication mechanisms and data schemas. Adapters often

require PI in order to be feasible.

Adapters are essential for integrating the Information

Bus into a commercial environment. In the factory floor

example, our customer already had a Work In Progress

(wB?) system with its own data schemas. We designed an

adapter that allows the existing WE’ software to communi-

cate with the Information Bus. This achievement demon-

strates the flexibility of the Information Bus model: the

existing WIP system is written in Cobol, and there is only a

primitive terminal interface. The adapter must act as a vir-

tual user to the terminal interface.

The Object Repository is an example of a sophisticated

adapter that integrates a commercially available relational

database system into the Information Bus architecture. The

Object Repository maps Information Bus objects into data

base relations for storage or retrieval. This mapping is

driven by the meta-data of each object. Besides satisfying

requirement R3 as an adapter, the design of the repository

also supporta dynamic system evolution, which satisfies

requirement R2. Users may work freely in the object model

without concerning themselves with the relational data

mode13 [Codd70]. Using P2, the repository can automati-

cally adapt the relational model to the type structure of the

data objects.

The repository behaves as a kind of schema converter

from objects to database tables, and vice versa. Users are

thus insulated from any changes implementors may wish to

make to the database representation of objects. For exam-

ple, our conversion algorithm decomposes a complex object

into one or more database tables and reconstructs a complex

object from one or more database tables to answer a query

from a user. This conversion respects the type hierarchy,

enabling queries to return all objects that satisfy a con-

straint, including objects that are instances of a subtype. Old

queries will still work even as new subtypes are introduced,

which helps to satisfy R2. This operation can be fully auto-

mated, only the type information is necessary to do the

transformation. When the repository needs to store an

instance of a previously unknown type, it is capable of gen-

erating one or more new database tables to represent the

new type.

3. Our object model dfiers significantly from the relational data
model in the following way. A database table is a flat structure
composed of simple data types and has little semantics, while an

object may contain other objects, may have subtypes or super-

types, and may have methods to manipulate instances of the type.

The repository may be configured in any number of

ways, depending on the application. For example, it maybe

configured as a capture server that captures all objects for a

given set of subjects and inserts those objects automatically

into the repository under those subjects; it may also be con-

figured as a query server to receive requests from clients

and return replies.

5 Example Application

In the previous section, we discussed the Information

Bus architecture primarily in terms of an abstract object

model and two communication styles, and we espoused sev-

eral principles of system design. To make the architecture

more concrete, we present an example that shows how the

various components fit together into a single application and

that illustrates how an application can adapt to changes in

the environment. In particular, we show how the principles

are applied in the context of the example, and discuss some

software components that have been built on top of the

Information Bus and that are installed at customer sites.

Figure 3 shows an example taken from a tinancial trad-

ing floor, where traders must receive news stories in near

real-time. Two news adapters receive news stories from

communication feeds connected to outside news services,

such as Dow Jones and Reuters. Each raw news service

defines its own news format. Each adapter pames the

received data into an appropriate vendor-specific subtype of

a common Story supertype, and publishes each story on the

Information Bus under a subject describing the story’s pri-

mary topic (for example, “news. equit y.gmc” for stories on

General Motors). PI ensures that the raw feeds do not have

to support complex semantics.

The figure depicts two applications that consume the

Story objects: the Object Repository and the News Monitor.

The News Monitor subscribes to and displays all stories of

interest to its user. Incoming stories are first displayed in a

“headline summary list.” This list format is defined by a

“view” that specifies a set of named attributes from incom-

ing objects and formatting information. When the user

selects a story in the summary list, the entire story is dis-

played. This is accomplished by using the object’s meta-

data to iterate through all of its attributes and display them,

as provided by P2.

The Object Repository subscribes to all news stories

and inserts them into a relational database. The repository

converts Story objects into a database table format. This

conversion is nontrivial because a story is a highly struc-

tured object containing other objects such as lists of “indus-

try groups,” “ sources;’ and “country codes.” Every object

4. “At@ibutes” of an object are often referred to as “instance vari-

ables” or “fields. ”

63

FIGURE 3. Brokerage Trading Floor

Dow Jones Reu ers

fib

Adapter Adapter 1
++

Information Bus

44 I
Object

Repository

must be mapped into collections of simple database rela-

tions.

5.1 Graphical Application Builder

We needed a simple, general way to access information

on the Information Bus and in the database in a pleasing,

graphical form. It was not satisfacto~ to build a single,

static solution, since each customer has different needs, and

they change frequently. Instead, we built a graphical appli-

cation builder, designed for applications with a graphical

user interface builder. We have used it for several applica-

tions, including the News Monitor example and the front-

end to a Factory Configuration System, which is the system

for storing factory control information.

The application builder is an interpreter-driven, user

interface toolkit. It combines the ability to construct sophis-

ticated user interfaces with a simple, object-oriented lan-

guage, All high-level application behavior is encoded in the

interpreted language; only low-level behavior that is com-

mon to many applications is actually compiled.

The resulting applications are fully integrated into the

Information Bus, providing access to all subjects and ser-

vices. It is possible to examine the list of available services

on the Information Bus by using various name services.

Services are self-describing, so users can inspect the inter-

face description for each service. Using that information, a

user can quickly construct a basic user interface for any ser-

vice. This whole process requires only a few minutes, and
typically no compilation is involved. Sometimes, a single
user interface can be used to access several services, further

reducing the amount of work involved.

5.2 Dynamic System Evolution

In this section we illustrate how our design principles

support the requirement of dynamic system evolution. First,

we consider the introduction of a new type into the Infor-

mation Bus (P3), The Object Repository can dynamically

generate extensions to the database schema to accommo-

date such new types. Such generation may entail creating

one or more new database tables for each new type,

depending on the particular database representation. When

instances of the new type are received, they are dynami-

cally converted to the new database schema. P2 implies that

the repository will be able to recognize and process objects

that have a new type.

Second, we consider what happens if a new service of a

completely different nature is introduced. Consider a Key-

word Generator, as illustrated in Figure 4. The Keyword

Generator subscrhs to stories on major subjects and

searches the text of each story for “keywords” that have

been designated under several major “categories.” For each

Story objeet, a list of keywords is constructed as a named

Property5 object of the Story object and published under the

same subject. It also supports an interactive interface that

allows clients to browse categories and associated key-

words.

When the Keyword Generator comes on-line, the News

Monitor will start receiving Property objects on the same

subjects on which it is receiving Story objects. According to

P4, the News Monitor will be able to receive the new data

immediately. Since properties are a general concept in the

architecture, it can reasonably be assumed the News Moni-

tor is configured to accept Property objects, to associate

them with the objects they referenee, and to display them

along with the attributes of an object when the object is
selected. This capability can be set up using the scripting

language of the Graphical Application Builder,

5. The Object Management Group’s “Object Services Architec-

ture” is the bssis for the nomenclature used here. Accordingly, a

“property” is a name-value pair that can be dynamically defined

and associated with an object. In this example, the property name

is “keywords” and the value is the set of keywords found.

64

FIGURE 4. Adding a Key Word Generator to the Brokerage Trading Floor.

Dow Jones

News Monitor

Adapter Adapter

I +++
* L I I

Information Bus +

v~ WV

Object Keyword
Repository Generator

The interactive interface of the Keyword Generator is

an instance of a new service type. Using introspection, the

News Monitor can enable the user to interact with this new

type: menus listing the operations in the interface can be

popped up, and dialogue boxes that are based on the opera-

tions’ signatures can lead the user through interactions with

the new service.

Hence, as soon as the Keyword Generator service

comes on-line, the user’s world becomes much richer, both

in terms of information and of services. As seen by the user,

the new service and information is dynamically integrated

into the environment. This shows the adaptive flexibility of

the overall approach. Note that the example requires only

that the News Monitor support Property objects, but it does

not require knowledge of how properties are generated, in

compliance with P4.

6 Related Work

The Linda system, developed at Yale University, was

the first system to support a generative corrnnunication

model [Carriero89]. In Linda, processes generate tuples,

which are lists of typed data fields. These generated tuples

are stored in tuple space and persist until explicitly

deleted, Other Linda processes may invoke operations to

remove or read a tuple from tuple space. Storing a tuple in

tuple space, in effect, is like one process “broadcasting” a

tuple to many other processes.

A key difference between Linda and the Information

Bus is the data model. Linda tuples are data records, not

objects. Moreover, Linda does not support a full meta-

object protocol. Self-describing objects have been invalu-

able in enabling data independence, the creation of generic

data manipulation and visualization tools, and achieving the

system objective of permitting dynamic integration of new

services.

Another key difference between Linda and the Infor-

mation Bus is the mechanism for accessing data. Linda

accesses dats based on attribute qualification, just as rela-

tional databases do. Though this access mechanism is more

powerful than subject-based addressing, we believe that it is

more general than most applications require, We have found

that subject names are quite adequate for our needs, and

they are far easier to implement than attribute qualification.

We also argue that subject-based addressing scales more

easily, and has better performance, than attribute qualifica-

tion.

In the ISIS system [Birman89] processes may join pro-

cess groups, and messages can be addressed to every mem-

ber of a process group. ISIS has focused on various message

delivery semantics without regard for application-level

semantics. Hence, it does not support a high-level object

model.

Usenet [Fair84] is the best known example of a large-

scale communications system. A user may post au article

to a news group. Any user who has subscribed to that news

group will eventually see the article. Usenet, however,

makes no guarantees about message delivery: messages can

be lost, duplicated, or delivered out of order. Delivery

latency can be very large, on the order of weeks in some

cases. On the other hand, Usenet moves an impressive vol-

ume of data to a huge number of sites.

Usenet should be viewed as a communication system,

whose focus is moving text among humans. News articles

are unstructured, and no higher-level object model is sup-

ported. It would make au unsuitable communications envi-

ronment for our customer’s applications, given its weak

delivery semantics and long latencies,

The Zephyr notification service [DellaFera88], devel-

oped at MIT as part of Project Athena [Balkovich85], is

used by applications to transport time-sensitive textual

information asynchronously to interested clients in a distrib-
uted workstation environment, The notice subscription ser-

vice layer is of particular interest because it most resembles

our publish/subscribe communication model. In Zephyr, a

65

client interested in receiving certain classes of messages,

registers its interest with the service. The service uses “sub-

scription multicasting” (their term) to compute dynamically

the set of subscribers for a particular class of message and

sends a copy of the message only to those recipients that

have subscribed.

This subscription multicasting mechanism relies

heavily on a centralized location database that maps unique

Zephyr IDs to information like geographical location and

host 1P address, and it is not at all clear how well such an

implementation would work in a wide-area network. Fur-

thermore, this mechanism is inefficient if the number of

interested clients is very large.

7 Conclusion

In this paper, we described the requirements posed by a

“24 by 7“ commercial environment, such as the factory floor

automation system of a semiconductor fabrication plant.

The centerpiece of our solution is the Information Bus. The

Information Bus has been ported to most desktop and server

platforms, and has been installed at more than one hundred

fifty sites around the world, running on over ten thousand

hosts. We have demonstrated that this architecture is a suc-

cessful approach to building distributed systems in a com-

mercial setting.

Minimal core semantics (PI), self-describing objects

(P2), a dynamic classing system (P3), and anonymous com-

munication (P4) allow applications that use the Information

Bus to evolve gracefully over time. P 1 prevents applications

from being crippled by the communication system. P2

allows new types to be handled at run-time. P3 enables new

types to be introduced without recompilation. P4 permits

new modules to be transparently introduced into the envi-

ronment.

The first requirement was continuous availability (RI).

Anonymous communication (P4) allows a new service to be

introduced into the Information Bus, A new server that

implements such a service can transparently take over the

function of an obsolete server. The old server can be taken

off-line after it has satisfied all of outstanding requests. Wh.h

this technique, software upgrades can be performed on a
live system. In addition, new services can be offered at any

time, and existing clients can take advantage of these new

services.

The second requirement was support for dynamic sys-

tem evolution (R2). New services and new types can be

added to the Information Bus without affecting existing ser-

vices or types. Self-describing data (P2) ensures that the

data model and data types can be substantially enhanced

without breaking older software. In many cases, older soft-

ware can make use of the enhancements in the data objects

immediately. This ability implies that applications can pro-

vide addh.ional functionality by only changing the data

model.

The third requirement was the ability to integrate leg-

acy systems (R3). The Information Bus connects to legacy

systems through the use of adapters (Section 4), which

mediate between other systems and the Information Bus.

The principle of minimal core semantics (PI) aids in the

construction of adapters.

Acknowledgments

The authors wish to thank the anonymous referees for

their many helpful comments. We thank Mendel Rosenblum

for passing onto us the program committee’s comments that

greatly strengthened the final version of the paper. Our

thanks also go to Tommy Joseph, Richard Koo, Kieran

Harty, Andrea Wagner, and Brendon Whateley. Finally, we

thank TSS management, and Dr. JoMei Chang in particular,

for their patience during the lengthy preparation of this

paper.

References

[Balkovich85]

[Birman89]

[Birrel184]

[Carriero89]

[Cheriton85]

[Cheriton93]

Balkovich, E., S.R. Lerman, and R.P.
Parmele. “Computing In Higher Educa-
tion The Athena Experience,” Communic-
ations of the ACM 28, 11 (November
1985), pp. 1214-1224.

Birman, Ke~ and Thomas Joseph.
“Exploiting Replication in Distributed
Systemsj’ in Distributed Systems, Mul-
lender, Sape, editor, Addison-Wesley,
1989, pp. 319-365.

Birrell, Andrew D. and Bruce J. Nelson.
“Implementing Remote Procedure Calls.”
ACM Transactions on Computer Systems

2, l(February, 1984), pp. 39-59.

Carriero, Nicholas and David Gelernter.
“Linda in Context”. Communications of
the ACM 32,4 (April, 1989), pp. 444-
458.

Cheriton, David R, and Steven E. Deering.
“Host Groups: a muh.icast extension for
datagram intemetworks.” In Proceedings
of the 9th Data Communications Sympo -
vium, ACM SIGCOMM Computer Com-
munications Review 15, 4 (September

1985), pp. 172-179.

Cheriton, David R. and Dale Skeen.
“Understanding the Limitations of Caus-
ally and Totally Ordered Communica-
tion.” In Proc. of the 14th Symp. on
Operating Systems Principles, Asheville,
North Carolina, December 1993.

66

[Codd70]

@lellaFera88]

~air84]

llAunPort82]

[Keene89]

Wczales91]

[Oppen83]

roste181]

[Schneider83]

[Skeen92]

[Xerox88]

Codd, E. F. “A Relational Model for Large
Shared Data Banks.” Cornrnwzications of
the ACM 13,6 (June, 1970).

DellaFera, C. Anthony, Mark W. Eichin,
Robert S. French, David C. Jedlinsky,

John T. Kohl, and Wdliam E. Summers-

feld. “The Zephyr Notification Semite,”
Usenix Conference Proceedings, Dallas,
Texas (February 1988).

Erik Fair, “Usenet, Spanning the Globe.”
Unix/World, 1 (November, 1984), pp. 46-
49.

Lamport, Leslie, Robert Shostak, and
Marshall Pease. “The Byzantine Generals
Problem.” ACM Transactions on Pro-
gramming Languages and Systems 4,3
(July 1982), pp. 382-401.

Keene, Sonya. Object-Oriented Program-
ming in Common Lisp: A Programmer’s

Guide to CLOS, Addison-Wesley, 1989.

Kiczales, Gregor, Jim des Rivieres, and
Daniel Bobrow. The Art of the Metaobject
Protocol, MIT Press, 1991.

Oppen, Derek C. and Y. K. Dalal. “The
Clearinghouse: A decentralized agent for
locating named objects in a distributed
environment.” ACM Transactions on Office
Information Systems 1,3 (July 1983), pp.
230-253.

Postel, Jon, “Internet Protocol - DARPA
Internet Program Protocol Specification,”
RFC 791, Network Information Center,
SRI International, Menlo Park, CA, Sep-
tember 1981.

Schneider, Fred. “Fail-Stop Processors.”
Digest of Papers from Spring CompCon
’83 26th IEEE Computer SocieQ Interna-
tional Conference, March 1983, pp. 66-70.

Skeen, Dale, “An Information Bus Archi-
tecture for Large-Scale, Decision-Support
Environments,” Unix Conference Pro-
ceedings, Winter 1992, pp. 183-195.

Mailing Protocols. Xerox System Integra-
tion Standard (May 1988), XNSS 148805.

Appendix

For some of our customers, the Information Bus must

handle thousands of nodes with thousands of publishers,

consumers, clients, and servers. Therefore, performance is

crucial, In this sectiou we measure the performance of the

publish/subscribe communication model.

The two factors that most characterize performance are

throughput, measured in messages per second or bytes per

second, and latency, measured in seconds. Latency is the

average time between the sending of a message and its

receipt. In this appendix we present several figures illustrat-

ing the performance of the publishhubscribe communica-

tion mcdel. The key parameters for performance are the

message size and the number of data consumers. Hence, we

will plot the throughput and latency versus message size in

bytes and explain the effect of the number of consumers.

All data presented here was collected on our develop-

ment network of Sun SPARCstation 2s and Sun IPXS with

twenty-four to forty-eight megabytes of memory running

SunOS 4.1.1. The netsvork was a 10 Megabits/second Ether-

net, and it was lightly loaded. Since all monitored publish-

ers/consumers are on the same subneg information does not

need to go through any bridges or rout.ms. All message

delivery is reliable but not guaranteed. For any given test

run, the message size was constant. For the performance

data shown here, publishers and consumers were spread

over fifteen nodes.

FIGURE 5. Latency vs. Msg Size

Latency of Publish/Subscribe Paradigm (mill isec)

35 Latency (msec)

30

25

20

15

10

5

Messageslze (Bytes)

2000 4000 6000 8000 10000

The data for Figure 5 was collected by executing one

publisher publishing under a single subject. The information

is consumed by fourteen consumem (one consumer per
node). It shows that the latency depends on the message

size. Although not shorn the latency is independent of the

number of consumers. The 99%-confidence interval is pre-

67

sented with dashed lines. The Information Bus has a batch

parameter that increases throughput by delaying small mes-

sages, and gathering them together. When measuring the

latency, the batch parameter was turned off to avoid inten-

tionally delaying the publications. Variances of the data sets

used in Figure 5 ranged from 1.1X10-4 to 1.7x10-2 millisec-

onds.

FIGURE 6. Throughput - Msgs/Sec vs. Msg Size

Throughput of Publish/Subscribe Paradigm (Msgs/See)

Throughput (Msgs/See)

sand-byte messages is due to collisions from unrelated net-

work activity.

This set of test cases also verified that the publication

rate is independent of the number of subscribers. Therefore,

the cumulative throughput over all subscribers is propor-

tional to the number of subscribe. The variances of the

data sets used in Figure 6 ranged from 0.25 to 125 mes-

sageslsecond. Figure 7 was plotted based on the same data.

FIGURE 8. Throughput - Effect of the Number of
Subjects

Throughput of Publish/Subscribe Paradigm (Bytes/See)

1
2000 4000 6000 8000 10000

FIGURE 7. Throughput - Bytes/See vs. Msg Size

Throughput of Publish/ Subscr~be Paradigm (Bytes/See)

!

300000
Throughput (Bytes/jed _ – – _ _ _ _

-.

250000

200000

150000

100000.

50000

Messageslze (Bytes)

1.
2000 4000 6000 8000 10000

Figure 6 and 7 show the throughput of a network with

one publisher publishing under one subject, sending to four-

teen consumers. For this test, the batching parameter was

turned on. For messages larger than five thousand bytes, the

devim bandwidth becomes the limiting factor: it is difficult

to drive more then 300 Kb/sec through Ethernet with a raw

UDP sockeg suggesting that the Information Bus represents

a low overhead. The slight decrease in throughput and

increase in variance between five thousand and ten thou-

300000.
Throughput (Bytes/;eS) _ _ _ _ _ _ _

————————-

250000

200000

150000

100000 ~~

50000~~

Messagesize (Bytes)

2000 4000 6000 8000 10000

The difference between the environment of Figure 7

and Figure 8 is that the publisher published on ten thousand

different subjects instead of one, and the fourteen consum-

ers subscribed to all ten thousand subjects. As the data in

Figure 8 shows, the number of subjects has an insignificant

intluence on the throughput. For Figure 8, we collected data

in messages/second. These data sets have a variance that

ranges from 1.2 to 4.6 messages/second. The time to pro-

cess each subscription request is not shown in the above fig-

ure since these requests are performed once at start-up time.

68

