
CONCEPTS AND EXPERIMENTS Lb4 

COMPUTATIONAL REFLECTION 

Pattie Maes 

Al-LAB 

Vrije Universiteit Brusscl 

Pleinlaan 2 

B-1050 Brussels 

pattie@arti.vub.uucp 

ABSTRACT. This paper brings some perspective to various Reflective architectures have already been realised for 

concepts in computational reflection. A definition of computa- procedure-based (Smith,l982), lo@c-based (Weyhrauch, 1980) 

tional reflection is presented, the importance of computational and rule-based languags (Davis,l982). The second part of 

reflection is discussed and the architecture of languages that the paper (sections 6 to 8) discusses the realisation of a 

support reflection is studied. Further, this paper presents a reflective architecture in an object-oriented language (further 

survey of some experiments in reflection which have ken on called OOL). Existing OOLs only support limited, ad-hoc 

performed. Examples of existing procedural, logic-based and reflective facilities, which leads to limitations and unclear 

rule-based languages with an architecture for reflection are designs, and consequently to problems in programming. 

briefly presented. The main part of the paper describes an However, over the years OOLs have evolved towards designs 

original experiment to introduce a reflective architecture in an providing more and more reflective facilities. This paper 

object-oriented language. It stresses the contributions of this introduces the next logical step in this evolution. It discusses 

language to the field of object-oriented prgramminp; and an original experiment to incorporate an explicit and uniform 

illustrates the new propramminp style made possible. The architecture for reflection in an OOL. This experiment 

examples show that a lot of programming problems that were shows that it is possible to real& a reflective architecture in 

previously handled on an ad hoc basis, can in a reflective an OOL and that there are specific aclvantqw as well to 

architecture be solved more elegantly. object-oriented reflection. 

1. Introduction 

Computational reflection is the activity performed by a com- 

putational system when doing computation about (and by that 

possibly affecting) its own computation. Although “computa- 

tional reflection” (further on called reflection) is a popular 
term these days, the issues related to it :trt) very complex and 

at the moment still badly understood. The first part of the 

paper (sections 2 to 5) attempts to elucidate some of these 

issues. It presents a definition of reflection and discusses the 

use of reflection in propamminp. It further introduces the 

concept of a language with a reflective architecture. which is 

a language designed to support reflection. 
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2. What is Reflection 

This section presents a definition of computational reflection 

applicable to any model of computation, whether it be pro- 

cedural, deductive, imperative, message-passing or other. 

We define computational reflection to k the behavior exhi- 

bited by a reflective system, where a refktive system is a 

computational system which is about itself in a causally con- 

nected way. In order to substantiate this definition, we next 

discuss relevant concepts such as computational system, 

about-ness and causal connection. 

A computational system (further on called system) is a 

computer-based system whose purpose is to answer questions 

about and/or support actions in some domain. We say that 

the system is about its domain. It incorporates internal struc- 

tures representing the domain. These structures include data 
representinp entities and relations in the domain and a pro- 

gram prescribing how these data may be manipulated. Com- 

putation actually results when a processor (interpreter or 

CPU) is executing (part of) this program’. Any propram 

’ tn .some languages the distinction between data and program is 
opaque. This however does not affect the understandability of the 
degnition of reflection presented here. Also. it would be more appropri- 
ate to substitute the term “computation” by “deduction” for some 
languages. 
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that is running is an example of a computational system. 

A system is said to be causally connected to its domain if the 

internal structures and the domain thry rrpresrnt art. linked in 

such a way that if one of them c.hanges, this lead\ to a 

corresponding effect upon the other. A system 5tcrrinp a 

robot-arm, for example, incorporates structures representing 

the position of the arm. These structures may be causally 

connected to the position of the robot’s arm in such a way 

that (i) if the robot-arm is moved by borne external force, the 

structures change accordingly and (ii) if some of the struc- 

tures are changed (hy computalion), thr robot-arm moves to 

the corresponding position. So a causally connected system 

always has an accurate representation of its domain and it 

may actually cause changes in this domain as mere t+Tect of 

its computation. 

A reflective system is a system whicbh incorporates structures 

representing (aspects of) itself. Wr call the sum of these 

structures the self-representation of the system. This self- 

representation makes it poshihlr for the system 10 answer 

questions about itself and support actions on itself. Because 

the self-representation is causally-connected to the aspcts of 

the system it represents, we can say that: 

(i) The system always has an accurate representation of 

itself. 

(ii) The status and computation of the system are always 

in compliance with this’ representation. This means that a 

reflective system can actually bring modifications to 

itseff by virtue of its own computation. 

3. The Use of Reflection 

At first sight the concept of reflection may seem a little far- 

fetched. Until now it has mostly htvn put forward as a fas- 

cinating and mysterious ixsur albeit without technical impor- 

tance. We claim howrvrr that there is ;I substantial practical 

value to reflection. A lot of functionalities in computation 

require reflection. Most every-day systems rxhihit besides 

object-computation, i.e. computation about their external 

problem domain, also many instances of reflective computa- 

tion, i.e. computation about themselves. Examples of 

reflective computation are: to keep performance statistics, to 

keep information for drhupping purposes. stepping and trac- 

ing facilities. interfacing (e.g.. graphical output, mouse 

input), computation about which computation to pursue next 

(also called reasoning about control), self-optimisatinn, self- 

modification (e.g. in learning systems) and self-activation 

(e.g. through monitors or deamons). 

Reflective computation does not directly contribute to solving 

problems in the external domain of the system. Instead, it 

contributes to the internal organisation of the system or to its 

interface to the external world. Its purpose is to guarantee the 

effective and smooth functioning of the object-computation. 

Programming languages today do not fully recognise the 

importance of reflective computation’. They do not provide 

adequate support for its modular implementation. For exam- 

ple, if the programmer wants to follow trmporarily the com- 

putation, e.g. during drhugging. he often changes his pro- 

gram by adding extra statements. When finished drhupging, 

these statements have to be removed again from the source 

code, often resulting in new zrrnrs. Reflective computation is 

so inherent in everyday computation;4 systems that it should 

be supported as a fundamental tool in programming 

languages. The nexl section discusses how languages might 

do so. 

4. What is a Reflective Architecture 

A programming language is said to have :I reflective architec- 

ture if it recognises reflection as a fundamental programming 

concept and thus provides tools for handling reflective com- 

putation explicitly. Concretely, this means that: 

(i) The interpreter of such a language has to give any 

system that is running access to data representing 

(aspects of) the system itself. Sy\trms implemented in 

such a language then have the possibility to perform 

reflective computation by including code that prescribes 

how these data may be manipulated. 

(ii) The interpreter also has to guarantee that the causal 

connection between these data and the aspects of the sys- 

tem they represent is fultilled. Consequrntly. the 

modifications these systems make to their self- 

representation are reflected in their own status and com- 

putation. 

Reflective architectures provide a fundamentally new para- 

digm for thinking about computational systems. In a 

reflective architecture, a computational system is viewed as 

incorporating an object part and a reflective part. The task 

of the object computation is to solve problems and return 

information about an external domain, while the task of the 

reflective level is to solve problems and return information 

about the object computation. 

In a reflective architecture one can temporarily associate 

reflective computation with a program such that during the 

interpretation of this program some tracing is performed. 

Suppose that a session with a rule-based system has to be 

traced such that the sequence of rules that is applied is 

printed. This can be achieved in a language with a reflective 

architecture by stating a reflective rule such as 

IF a rule has the hiqhest priority I” a situation. 
THEN print the rule and the data nhlch match its conditions 

2 Note that more advanced programming environments might provide 
facilities for handling some of the problems discussed here. However, 
typically, programming environments are not built in an “open-ended” 
way, which means that they only support a tixcd number of those func- 
fionalities. Further, they often only suppon computation abut romputa- 
tion in a static way, i.e. not at run-time. 
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In a rule-based language that does not incorporate a reflective 

architecture, the same result can only he achieved either by 
modifying the interpreter code (such that it prints information 

about the rules it applies), or hy rewriting all the rulrs such 

that they print information whenevrr they are applied. 

So clearly reflective architectures provide a means IO imple- 

ment reflective computation in :I more modular way. As is 

generally known, enhanced modularity makes systrms more 

manageable, more readable and easirr to understand and 

modify. But these are not the only advantages of the decom- 

position. What is even more important is that it becomes 

possible to introduce abstractions which facilitate the pro- 

gramming of reflective computation the same way abstract 

control-structures such as DO and WHILE facilitate the pro- 

gramming of control flow. 

5. Existing Reflective Architectures 

Procedure-based, logic-based and rule-based languages incor- 

porating a reflective architecture can be identified. 3-LISP 

(Smith, 1982) and BROWN (Friedman and Wand,1984) are 

two such procedural examples (variants of LISP). They 

introduce the concept of a reflective function, which is just 

like any other function, except that it specifies computation 

about the currently ongoing computation. Reflective functions 

should be viewed as local (temporary) functions running at 

the level of the interpreter: they manipulate data representing 

the code, the environment and the continuation of the current 

object-level computation. 

FOL (Weyhrauch, 1980) and META.PROLOG (Bowen, 

1986) are two examples of logic-hased languages with a 

reflective architecture. These languages adopt the concept of a 

meta-theory. A meta-theory again .differs from other theories 

(or logic programs) in that it is ahout the deduction of 

another theory, instead of about the external problem domain. 

Examples of predicates Wed in a meta-theory are 

“provable(Theory,Goal)“, “clause(Left-hand,Right-hand)“. 

etc. 

TEIRESIAS (Davis, 1982) and SOAR (Laird, Rosenbloom 

and Newell, 1986) are examples of rule-based languages with 

a reflective architecture. They incorporate the notion of 

meta-rules, which are just like normal rutes. except that they 

specify computation about the ongoing computation. The 

data-memory these rules operate upon contains elements such 

as “there-is-an-impasse-in-the-inference-process”, “there- 

exists-a-rule-about-the-current.-goal”, “all-rulrs-mrntioning- 

the-current-goal-have-hcen-fired”. etc. 

if we study the ahove mentioned reflective architectures, 

many common issues can he identified. One such issue is 

that almost all of these languages operate by means of a 

meta-circular interpreter (F.O.L. presents an exception 

which will be discussed later). A meta-circular intrrpreter is 

a representation of the interpretation in the language, which is 

also actually used to run the languape3. Virtually, the 

interpretation of such a language consists of an intinite tower 

of circular interpreters interpreting the circular interpreter 

below. Technically, this infinity is real&d by the presence 

of a second interpreter (written in another language), which is 

able to interpret the circular interpreter (and which should be 

guaranteed to generate the same behavior as the circular one). 

The reason why all these architectures are this way is 

because a meta-circular interpreter presents an easy way to 

fulfill the causa! connection requirement. The self- 

representation that is given to a system is exactly the meta 

circular interpretation-process that is running the system. 

Since this is a procedural representation of the system, i.e. a 

representation of the system in terms of the program that 

implements the system, we say these architectures support 

procedural reflection. 

The consistency between the self-representation and the sys- 

tem itself is automatically guaranteed because the self- 

representation is actually used to implement the system. So 

there is not really a causal connection problem. There only 

exists one representation which is troth used to implement the 

system and to reason about the system. Note that a neces- 

sary condition for a meta-circular interpreter is that the 
language provides one common format for programs in the 

language and data, or more precisely, that programs can be 

viewed as data-structures of the language. 

One problem with procedural reflection is that a self- 

representation has to serve two purposes. Since it serves as 

the data for reflective computation, it has to be designed in 

such a way that it provides a good hasis to reason ahout the 

system. But at the same time it is used to implement the sys- 

tem, which means that it has to be effective and efficient. 

These are often contradicting requirements. 

Consequently, people have been trying to develop a different 

type of reflective architecture in which the self-representation 

of the system would not be the imptementation of the system. 

This type of architecture is said to support declarative 

reflection because it makes it possible to develop self- 

representations merely consisting of statements about the sys- 

tem. These statements could for example say that the compu- 

tation of the system has to fulfill some time or space criteria. 

The self-representation does not have to be a complete pro- 

cedural representation of the system, it is more a collection 

of constraints that the status and behavior of the system have 

to fulfill. 

The causal connection requirement is more difficult to real& 

here: it has to be guaranteed that the explicit representation 

3 This representation minimally consists of a name for the intemreter- 
propram (such as “eval” in LISP) plus some rriticd interpreterdata (such 
as the list-of-bindings and the continuation). It might also be richer. for 
example by making more explicit about the interpreter-program. 
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of the system and its implicitly obtained behavior are con- 

sistent with each-other. This means that in this case, the 
interpreter itself has do decide how the system can comply 
with its self-representation. So, in some sense the interpreter 
has to be more intelligent. It has to find ways to translate the 
declarative representations about the system into the 
interpretation-process (the procedural representation) that is 
implementing the system. 

experimenting in order to find the “basic” features an object- 

oriented language should support (Stefik and Bobrow, 1986): 
is a distinction between classes and instances necessary? 
what form of inheritance should be provided’! what do mes- 
sages look like? etc. 

Such an architecture can be viewed as incorporating represen- 
tations in two different formalisms of one and the same sys- 
tem. During computation the most appropriate representation 
is chosen. The implicit (procedural) representation serves the 
implementation of the system, while the explicit (declarative) 
representation serves the computation about the system. 

Although in architectures for declarative reflection more 
interesting self-representations can be developed, it is still is 
an open question in how far such architectures are actually 
technically realisable. GOLUX (Hayes, 1974) and Partial Pro- 
grams (Genesereth,l987) are two attempts which are worth 
mentioning. 

It has become clear that a specific design for an OOL suits 
some applications, but is inappropriate for others. Reflective 
facilities present a solution to this prohlrm. A language with 
reflective facilities is openended: reflection makes it possible 
to make (local) special&d interpreters of the language. from 
within the language itself. For example. objects could be 
given an explicit, modifiable representation of how they are 
printed, or of the way they create instances. If these explicit 
self-representations are causally connected (i .e, if the 
behavior of the object is always in compliance with them) it 
becomes possible for an object to modify the.se aspects of its 

behavior. One object could modify the way it is printed, 
another object could adopt a different procedure for making 
instances, etc. 

Actually the distinction between declarative reflection and 

procedural reflection should more be viewed as a continuum. 
A language like F.O.L. (Weyhrauch, 1980) is situated 
somewere in the middle: F.O.L. guarantees the accuracy of 
the self-representation by a technique called semantic attach- 
ment. The force of the self-representation is guaranteed by 
reffection principles. It is far less trivial to prove that the 
combination of these two techniques actually also succeeds in 
maintaining the consistency between the self-representation 
and the system. 
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A second motivation is inspired by the development of 
frame-based languages, which introduced the idea to encapsu- 
late domain-data with all sorts of reflective data and pro- 
cedures (Roberts and Goldstein. 1977) (Minsky, 1974). An 
object would thus not only represent information about the 
thing in the domain it represents, but also about (the imple- 
mentation and interpretation of) the object itself: when is it 
created? by whom is it created? what constraints does it have 
to fulfill? etc. This reflective information seems to be useful 

for a range of purposes: 

6. A History of OOL with Respect to Refkction 

- it helps the user cope with the complexity of a large 
system by providing documentation, history, and expla- 
nation facilities, 

The previous section discussed ex‘amples of existing rrflective 
architectures in procedure-ha.., logic-based and rule-based 
languages. We now turn to object-oriented languages. 
Although the first OOLs. such us SIMULA (Dahl and 

Nypaard, 1966) or SMALLTALK- (Kay, 1972), did not 
yet incorporate facilities for refiectivr computation, i\ must be 
said that the concept of reflection tits most naturally in the 
spirit of object-oriented programming. An important issue in 
OOL is abstraction: an object is free to realise its role in the 
overall system in whatever way it wants to. Thus, it is 
natural to think that an ohjrrt not only performs computation 
about its domain, but also about how it can realise this 
(object-) computation. 

- it keeps track of relations among representations, such 
as consistencies, dependencies and constraints, 
- it encapsulates the value of the data-item with a 
defauit-value, a form to compute it, etc. 
- it guards the status and behavior of the data-item and 
activates procedures when specific events happen (e.g. 
the value becomes instantiated or changed). 

OOPSLA ‘87 Proceedings 

Designers of OOLs have actually felt the need to provide 
such facilities. Two strong motivations exist. A first 
motivation is the design of specialised interpreters. It seems 
to be very difficult to find an agreement on the fundamental 
principles of object-oriented programming. As it turns out 
the programming language community is still now actively 

OOLs have responded to this need by providing reflection in 
ad hoc ways. Reflective facilities were mixed in the object- 
level structures. In languages such as SMALLTALK- 

(Kay, 1972) and FLAVORS (Weinreh and Moon. 1981). an 
object not only contains information about the entity that is 
represented by the object, but also about the representation 
itself, i.e. about the object and its behavior. For example, 
in SMALLTALK, the class Person may contain a method to 
compute the age of a person as well as a method telling how 
a Person object should be printed. Also in FLAVORS, 
every flavor is given a set of methods which represent the 
reflective facilities a flavor can make usage of (cfr. figure 1). 
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:OESCRIBE (message): 0 
GET-HANDLER-FOR: (08JFCT OPERATION) 
MAKE-INSTANCE: (FLAVOR-NAME &REST INIT.OPTIONS) 
:OPERATION-HANDLED-P (message): (OPFRAIION) 
SYS:PRINT-SELF (message :PRINT-SELF): 

(OBJECT STREAM PRINT-OFPTH SLASHIFY-P) 
:SENO-IF-HANDLES (message): (HESSACF 6REST ARCS) 
:WHICH-OPERATIONS (message): 0 

Fig. I. The structure cd the vanilla-flavor 

There are two problems with this way of providing reflective 

facilities. One is that these languages always support only a 

fixed set of reflective facilities. Adding a new facility means 

changing the interpreter itself. For example, if we want to 

add a reflective facility which makes it possible to specify 

how an object should be edited, we have to modify the 

language-interpreter such that it actually uses this explicit 

edit-method whenever the object has to be edited. 

A second problem is that they mix object-level and reflective 

level, which may possibly lead to obscurities. For example, 

if we represent the concept of a book by means of an object, 

it may no longer be clear wether the slot with name 

“Author” represents the author of the book (i.e. domain data) 

or the author of the object (i.e. reflective data). 

One step towards a cleaner handling of reflective facilities 

was set by the introduction of metaclasses by 

SMALLTALK- (Goldberg and Robson, 1983). In 

SMALLTALK- classes are not yet objects. The internal 

structure and message-passing behavior of an object can be 

specified in its class, but the structure and behavior of a class 

cannot be specified. The idea behind this development in 

SMALLTALK- (which was later also adopted in LOOPS 

(Bobrow and Stefik. 1981)) is that it should also be possible 

to specify the internal structure and computation of a class. 

Meta-classes serve this purpose. 

Meta-classes already made one improvement towards the 

disctinction between object-information and reflective informa- 

tion: a meta-class only specifies system-internal information 

about its class (because there are no domain-data which 

correspond to this level). However, the confusing situation at 

the class-level still remained: a class in SMALLTALK- 

still mixes information about the domain and information 

about the implementation. 

Actually one disadvantage of the introduction of meta-classes 

is that they introduce some confusion because the relation 

class/meta-class -and instance/class does not run in parallel 

(although it is presented as if they do). As a study by Bom- 

ing and O’Shea (Borning and O’Shea.1987) reveals, users of 

SMALLTALK are often confused with meta-classes. We sug- 

gest that this confusion might well arise because of the undis- 

ciplined split between system information and domain infor- 

mation. A class in SMALLTALK is sometimes viewed as an 

object being an instance of a meta-class (i.e. as something 
containing reflective information), at other times it is viewed 

as a class containing information about the domain (i.e. 
representing an abstraction). 

Another step towards the origin of reflective architectures was 

taken by the development of OOLs such as PLASMA (Smith 

and Hewitt, 1975). ACTORS (Lieberman. I98 I ). RLL 

(Greiner, 1980) and OBJVLISP (Briot and Cointe. 1986). 

These languages try to bring more uniformity in object- 

oriented programming by representing everything in terms of 

objects. They all contribute to the uniformity of the different 

notions existing in OOLs by representing everything in terms 

of objects: class, instance, meta-class, instance-variable, 

method, message, environment and continuation of a mes- 

sage. This increased uniformity makes it possible to treat 

more aspects of object-oriented systems as data for reflective 

computation. 

In general, it can be said that the evolution of OOLs tends 

towards a broader use of reflective facilities. In the beginning 

reflective facilities were only used in minor ways. A class 

would for example only represent the reflective information 

telling what its instances were. However, as OOLs evolved, 

the self-representations became richer and applied in a 

broader way (from instances only, to classes, to meta-classes, 

to messages, etc). 

However none of the existing languages has ever actually 

recognised reflection as the primary programming concept 

developers of OOL are (unconsciously) looking for. The 

languages mentioned above only support a finite set of 

reflective facilities, often designed and implemented in an ad 

hoc way. The next section discusses in what ways an OOL 

with a reflective architecture differs from these languages. It 

highlights the issues that were missing in the existing 

languages. 

7. A Reflective Architecture in an OOL 

This section discusses an OOL with an architecture for pro- 

cedural reflection. The discussion is based on a concrete 

experiment that was performed to introduce a reflective archi- 

tecture in the language KRS (Steels,1986). The resulting 

language is called 3-KRS (Maes.1987). The important inno- 

vation of 3-KRS is that it fulfills the following crucial proper- 

ties of an object-oriented reflective arrhitecturr4: 

1. A first property is that it presents the first OOL adopting a 

disciplined split between object-level and reflective level. 

Every object in the language is given a meta-object. A meta- 

object also has a pointer to its object. The structures con- 

tained in an object exclusively represent information about the 

domain entity that is represented by the object. The structures 

contained in the meta-object of the object hold all the 

4 None of the languages discussed above Wills the entire list. 
although they might fullill one or more of the properties. 
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reflective information that is available about the object. The 
meta-object holds information about the implementation and 
interpretation of the object (cfr. figure 2). It incorporates for 
example methods specifying how the object inherits informa- 
tion, how the object is printed, how a new instance of he 
object is made, etc. 

Instantiation-Method 

(Mets-Object-x5689> 
Inheritance-Method 

Fig. 2. An object and its metaqbject. 

Note that the meta-relation is not collapsed with the instance- 
relation (as it is in SMALLTALK- or LOOPS). The object 
John has a type-link to the Person object and a meta-link to 
its me&object (named “Meta-Object-#5689”).5 

Note also that although there is a one-to-one relation between 
objects and meta-objects (which might suggest to combine 
them into one object), it is important that object and meta- 
object are also physically separated (which is again not true 
for the meta-classes of SMALLTALK). This way a standard 
message protocol can be developed between an object and its 
meta-object. This protocol makes it possible to create 
abstractions of the behavior of an object (i.e. ready-made 
meta-objects), and to temporarily attach such a special 
behavior to an object. 

2. A second property is that the self-representation of an 
object-oriented system is uniform. Every entity in a 3-KRS 
system is an object: instances, ciassrs, slots, methods, meta- 
objects, messages, etc. Consequently every aspect of a 3- 
KRS system can be reflected upon. All these objects have 
meta-objects which represent the self-representation 
corresponding to that object. Note that since meta-objects are 
again objects. meta-objects have to be created in a lazy way. 
KRS incorporates a lazy-construction mechanism which takes 
care of this (Van Marcke, 1986): meta-objects are only con- 
structed when they are actually needed. 

3. A third property is that 3-KRS provides a cornpIe& self- 
representation. The meta-objects contain all the information 
about objects that is available in the 3-KRS language. Actu- 
ally, the contents of meta-objects was designed on the basis 
of the interpreter. The code of the interpreter was divided in 
blocks which represent how a specific aspect of a certain type 

5 However the “meta” slot of an object is also inherited. When the 
object John does not override the “meta” slot. it will when needed make 
a copy of the meta-object of Person. 

of object is implemented. All of these blocks were afterwards 
reified (i.e. made explicit) under the: form of objects (fillers 
of slots in the meta-objects). 3-KRS incorporates a set of 
primitive meta-objects which together represent the complete 
3-KRS interpreter (cfr. figure 3). When a specific object is 
created in some application, it will automatically inherit one 
of these meta-objects from its type. 

neta \I nete 
<Hesseqe-Heta> cObjrct-Definition-Mete> 

Fig. 3. The primitive meta-objccts of 3-KRS. or the theory the language 

J-KRS incorporates about the implementation of its objects and the 
interpretation of its programs. 

“Meta-Object” is the most general me&object. it roughly 
contains what was illustrated in figure 2. The other meta- 
objects in the figure above add to or specialise the informa- 
tion in Meta-Object. For example, Message-Meta represents 
the information that is available about message-objects. It 
adds to Meta-Object slots representing the method to be used 
to evaluate the message and the continuation and environment 
of the evaluation. 

4. A fourth property is that the self-representation of a 3- 
KRS system is consistent. The self-representation is actually 
used to implement the system. The explicit representation of 
the interpreter that is embedded in the meta-objects is used to 
implement the system. Whenever some operation has to be 
performed on an object, e.g. an instance of the object has to 
be created or the object has to answer a message, or a 
message-object has to be evaluated, the meta-object of the 
object is requested to perform the action. The technique that 
is used in order to avoid an infinite loop is that there is a 
second, implicit interpreter which is used to implement the 
default (or standard) behavio@. 

5. A final property is that the self-representation can also at 

6 The real (i.e. implicit) interpreter of the .7-KRS language tests for 
every operation that it has to perfnrm on an object whether the meta- 
object of this object specities a deviating method for this operation. “De- 
viating” meaning here: dilierent from (overriding) the methods of the 
primitive meta-objects listed in tigure 3. If so. ~hc interpreter will apply 
the explicit method (3-KRS program). If nor. it handles this operation im- 
plicitly. This implicit handling guarantees the same results as the explicit 
methods described in the primitive meta-objects. 
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run-time be modified, and these modifications actually have 

an impact on the run-time computation. The self- 

representation of the system is explicit, i.e. it consists of 

objects. Thus, any computation may access this self- 

representation and make modifications to it. These 

modifications will result in actual modifications of the 

behavior of the system. 

The 3.KRS experiment is extensively described in (Maes, 

1987). It shows that it is feasible to build a reflective archi- 

tecture in an object-oriented language and that there are even 

specific advantages to object-oriented reflection. These 

advantages are a result of the encapsulation and abstraction 

facilities provided by object-oriented languages. The next 

section illustrates these advantages. It presents two examples 

of programming in an object-oriented reflective architecture. 

8. A New Programming Style 

Although the implementation of 3-KRS is far from trivial, 

from the programmer’s point of view the language has a sim- 

ple and elegant design. The basic unit of information in the 

system is the object. An object groups information about the 

entity in the domain it represents. Every object in 3-KRS 

has a meta-object. The meta-object of an object groups 

information about the implementation and interpretation of the 

object. An object may at any point interrupt its object- 

computation, reflect on itself (as represented in its meta- 

object) and modify its future behavior. 

Reflective computation may be guided hy the object itself or 

by the interpreter. An object may cause reflective computa- 

tion by specifying reflective code, i.e. code that mentions its 

meta-object. The interpreter causes reflective computation for 

an object whenever the interpreter has to perform an opera- 

tion on the object and the object has a special meta-object. 

At that moment the interpretation of the object is delegated to 

this special meta-object . 

This reflective architecture supports the modular construction 

of reflective programs. The abstraction and encapsulation 

facilities inherent to OOLs make it possible to program 

object-computation (objects) and reflective computation 

(meta-objects) independently of each other. There is a stan- 

dard message protocol between an object and its meta-object 

which guarantees that the two modules will also be able to 

work with each other’. This makes it possible to temporarily 

associate a certain reflective computation with an object 

without having to change the object itself. Another advantage 

is that libraries of reflective computation can be constructed. 

This section (schematically) illustrates what programming in a 

reflective OOL is like. It demonstrates the particular style of 

’ More specifically, the meta-object has to specify values for a 
predefined set of slots (variables and methods), which for the 3-KRS ex- 
periment roughly correspnd to IIW names listed in figure 2. Actually this 
set varies according to the type of object at hand. E.g. the meta-object of 
a program-object in addition has to specify an evaluation-method. 

modular programming that is supported hy reflective architec- 

tures. More (operational code) examples of programming in 

3-KRS can be found in (Maes,l987). 

A first example illustrates the object-oriented equivalent of the 

tracing example presented in section 4. The reflective archi- 

tecture of 3-KRS provides a modular solution for implement- 

ing reflective computation such as stepping and tracing of 

programs. One can temporarily associate a meta-object with 

a program (-object) such that during its evaluation various 

tracing or stepping utilities are performed. Note that the 

object itself remains unchanged, only its meta-object is tem- 

porarily specialised to a meta-object adapted to stepping or 

tracing. 

Figure 4 illustrates the idea. Message-#3456 is an object 

representing some message. It has a meta-object, called 

Message-Me&#2342 which may be a copy of the default 

me&object for a message or a user-defined specialisation of 

this. The Tracer-Meta object is designed to be temporarily 

attached to any program-object. The meta-link from the 

program-object to the old meta-object is temporarily replaced 

by a meta-link to (a copy of) the Tracer-Meta. Tracer- 

Meta-#8765 inherits from this old meta-object and overrides 

the Eval-Method: it adds some actions before and after the 

eval-method of the old meta-object (such that the evaluation 

itself is still handled by Message-Meta-#2342). These actions 

will take care that when Message-#3456 is evaluated, some 

information is printed before and after the evaluation. 

a program that 
1 

Of the type, followed 
by another print-out 

Fig. 4. Associating a traciq behavior temporarily 

Notice that it is not only possible to add before or after 

methods. The eval-method itself could also be overridden or 

specialised (it is again an object that can he manipulated). 

A second example illustrates how a local deviating interpreter 

may be realised. A major advantage of a language with a 

reflective architecture is that it is open-ended, i.e. that it can 

he adapted to user-specific needs. But even more, a 

reflective architecture makes it possible to dynamically build 

and change interpreters from within the language itself. It 

allows for example to extend the language with meaningful 

constructs without stepping outside the interpreter. Note that 

this way the language itself can lx made more concise (and 

thus more elhcient). The extra structure and computation 
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necessary to provide objects with special features such as 

documentation, constraints or attachment da not have to be 

supported for all objects in the system but can be provided 

on a local basis. 

Figure 5 illustrates a very simple example. The 3-KRS 

language does not support multiple-inheritance. However, if a 

multiple-inheritance behavior is needrd for some object (or 

class of objects), it can be realised by a specialised meta- 

object. The object Mickey-Mouse has a deviating interpreter 

which takes care of the multiple-sources inheritance behavior 

of this object. The specific strategy for the search of inherited 

information is implemented explicitly in the language itself by 

overriding the inheritance-method of the default meta-object. 

I 1 

I OiUHAN> <Object-Li3t (tHOUSE>0lUI4AH.~)> 

94 k. I 
Type 

/I 

TYPe 

<JOHN> <GEORGE > 

lYP@ 

\ 
<MICKEY-MOUSE> 

TYPG 
CHULTIPLE-INHERITANCE-~flA>-z <META-OB.lECT> 

I I 

Fig. 5. Implementing a local variation on the Isneuaec. 

For frequently used variations on the language, abstractions 

may be provided. The 3KRS system currently provides an 

initial library of reflective behaviors including meta-objects 

for pretty-printing, tracing and strpping. several variations on 

the language (multiple-inheritance, frames, monitors, streams, 

defaults, etc). The programmer can simply pick such a spe- 

cial behavior and attach it to an object in his application. 

Very few slots of such a meta-object remain to be filled. 

Note finally that the architecture of object-oriented reflection 

provides a sophisticated control of the granularity of reflective 

computation. Local reflective computation can be obtained by 

making reflective individual instances. E.g. a reflective 

object John, or a reflective particular message. More general 

reflective computation can be obtained by making reflective 

abstract objects (which serve as the type of other objects). 

E.g. one can make all person objects reflective, by making 

the class person object reflective. Or one can make a class 

of messages in the system behave in a special way, by mak- 

ing their class message object reflective. 

9. Discussion and Conclusions 

We can conclude that the experiment of 3-KRS does for the 

object-oriented paradigm what languages like 3-LISP, F.O.L. 

and TEIRESIAS did for the procedure, logic and rule-based 

paradigm respectively. Just like these languages, 3-KRS 

introduced a new concept (or programming-construct) being 

the notion of a meta-object. Meta-objects are just like the 

other objects of the language, except that they represent 

information about the computation performed by other objects 

and that they are also taken into account by the interpreter of 

the language when running a system. 

Another common issue is the way the causal connection 

requirement is handled. Just like the main part of the 

languages discussed in section 5, 3-KRS represents an archi- 

tecture for procedural reflection. 3-KRS is run by a meta- 

circular interpreter: the self-representation that is given to a 

system is an explicit representation of the implementation of 

the system. Consequently this self-representation also 

represents the system in terms of the concepts inherent in the 

interpretation of an object-oriented language: handling mes- 

sages, creating instances, etc. 

This paper briefly introduced some of the concepts and exper- 

iments in computational reflection. However, many aspects of 

reflection, reflective architectures and particularly of object- 

oriented reflection (its implementation and use) have not been 

discussed in this paper. The interested reader may consult 

(Maes,l987). 
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