
CONCEPTS AND EXPERIMENTS Lb4

COMPUTATIONAL REFLECTION

Pattie Maes

Al-LAB

Vrije Universiteit Brusscl

Pleinlaan 2

B-1050 Brussels

pattie@arti.vub.uucp

ABSTRACT. This paper brings some perspective to various Reflective architectures have already been realised for

concepts in computational reflection. A definition of computa- procedure-based (Smith,l982), lo@c-based (Weyhrauch, 1980)

tional reflection is presented, the importance of computational and rule-based languags (Davis,l982). The second part of

reflection is discussed and the architecture of languages that the paper (sections 6 to 8) discusses the realisation of a

support reflection is studied. Further, this paper presents a reflective architecture in an object-oriented language (further

survey of some experiments in reflection which have ken on called OOL). Existing OOLs only support limited, ad-hoc

performed. Examples of existing procedural, logic-based and reflective facilities, which leads to limitations and unclear

rule-based languages with an architecture for reflection are designs, and consequently to problems in programming.

briefly presented. The main part of the paper describes an However, over the years OOLs have evolved towards designs

original experiment to introduce a reflective architecture in an providing more and more reflective facilities. This paper

object-oriented language. It stresses the contributions of this introduces the next logical step in this evolution. It discusses

language to the field of object-oriented prgramminp; and an original experiment to incorporate an explicit and uniform

illustrates the new propramminp style made possible. The architecture for reflection in an OOL. This experiment

examples show that a lot of programming problems that were shows that it is possible to real& a reflective architecture in

previously handled on an ad hoc basis, can in a reflective an OOL and that there are specific aclvantqw as well to

architecture be solved more elegantly. object-oriented reflection.

1. Introduction

Computational reflection is the activity performed by a com-

putational system when doing computation about (and by that

possibly affecting) its own computation. Although “computa-

tional reflection” (further on called reflection) is a popular
term these days, the issues related to it :trt) very complex and

at the moment still badly understood. The first part of the

paper (sections 2 to 5) attempts to elucidate some of these

issues. It presents a definition of reflection and discusses the

use of reflection in propamminp. It further introduces the

concept of a language with a reflective architecture. which is

a language designed to support reflection.

Permission to copy without fee all or part of this material is granted provided
that the copies arc not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

Q 1987 ACM 0-8979t-247-0/87/0010.0147 $1.50

2. What is Reflection

This section presents a definition of computational reflection

applicable to any model of computation, whether it be pro-

cedural, deductive, imperative, message-passing or other.

We define computational reflection to k the behavior exhi-

bited by a reflective system, where a refktive system is a

computational system which is about itself in a causally con-

nected way. In order to substantiate this definition, we next

discuss relevant concepts such as computational system,

about-ness and causal connection.

A computational system (further on called system) is a

computer-based system whose purpose is to answer questions

about and/or support actions in some domain. We say that

the system is about its domain. It incorporates internal struc-

tures representing the domain. These structures include data
representinp entities and relations in the domain and a pro-

gram prescribing how these data may be manipulated. Com-

putation actually results when a processor (interpreter or

CPU) is executing (part of) this program’. Any propram

’ tn .some languages the distinction between data and program is
opaque. This however does not affect the understandability of the
degnition of reflection presented here. Also. it would be more appropri-
ate to substitute the term “computation” by “deduction” for some
languages.

October 4-8,1987 OOPSLA ‘87 Proceedings 147

that is running is an example of a computational system.

A system is said to be causally connected to its domain if the

internal structures and the domain thry rrpresrnt art. linked in

such a way that if one of them c.hanges, this lead\ to a

corresponding effect upon the other. A system 5tcrrinp a

robot-arm, for example, incorporates structures representing

the position of the arm. These structures may be causally

connected to the position of the robot’s arm in such a way

that (i) if the robot-arm is moved by borne external force, the

structures change accordingly and (ii) if some of the struc-

tures are changed (hy computalion), thr robot-arm moves to

the corresponding position. So a causally connected system

always has an accurate representation of its domain and it

may actually cause changes in this domain as mere t+Tect of

its computation.

A reflective system is a system whicbh incorporates structures

representing (aspects of) itself. Wr call the sum of these

structures the self-representation of the system. This self-

representation makes it poshihlr for the system 10 answer

questions about itself and support actions on itself. Because

the self-representation is causally-connected to the aspcts of

the system it represents, we can say that:

(i) The system always has an accurate representation of

itself.

(ii) The status and computation of the system are always

in compliance with this’ representation. This means that a

reflective system can actually bring modifications to

itseff by virtue of its own computation.

3. The Use of Reflection

At first sight the concept of reflection may seem a little far-

fetched. Until now it has mostly htvn put forward as a fas-

cinating and mysterious ixsur albeit without technical impor-

tance. We claim howrvrr that there is ;I substantial practical

value to reflection. A lot of functionalities in computation

require reflection. Most every-day systems rxhihit besides

object-computation, i.e. computation about their external

problem domain, also many instances of reflective computa-

tion, i.e. computation about themselves. Examples of

reflective computation are: to keep performance statistics, to

keep information for drhupping purposes. stepping and trac-

ing facilities. interfacing (e.g.. graphical output, mouse

input), computation about which computation to pursue next

(also called reasoning about control), self-optimisatinn, self-

modification (e.g. in learning systems) and self-activation

(e.g. through monitors or deamons).

Reflective computation does not directly contribute to solving

problems in the external domain of the system. Instead, it

contributes to the internal organisation of the system or to its

interface to the external world. Its purpose is to guarantee the

effective and smooth functioning of the object-computation.

Programming languages today do not fully recognise the

importance of reflective computation’. They do not provide

adequate support for its modular implementation. For exam-

ple, if the programmer wants to follow trmporarily the com-

putation, e.g. during drhugging. he often changes his pro-

gram by adding extra statements. When finished drhupging,

these statements have to be removed again from the source

code, often resulting in new zrrnrs. Reflective computation is

so inherent in everyday computation;4 systems that it should

be supported as a fundamental tool in programming

languages. The nexl section discusses how languages might

do so.

4. What is a Reflective Architecture

A programming language is said to have :I reflective architec-

ture if it recognises reflection as a fundamental programming

concept and thus provides tools for handling reflective com-

putation explicitly. Concretely, this means that:

(i) The interpreter of such a language has to give any

system that is running access to data representing

(aspects of) the system itself. Sy\trms implemented in

such a language then have the possibility to perform

reflective computation by including code that prescribes

how these data may be manipulated.

(ii) The interpreter also has to guarantee that the causal

connection between these data and the aspects of the sys-

tem they represent is fultilled. Consequrntly. the

modifications these systems make to their self-

representation are reflected in their own status and com-

putation.

Reflective architectures provide a fundamentally new para-

digm for thinking about computational systems. In a

reflective architecture, a computational system is viewed as

incorporating an object part and a reflective part. The task

of the object computation is to solve problems and return

information about an external domain, while the task of the

reflective level is to solve problems and return information

about the object computation.

In a reflective architecture one can temporarily associate

reflective computation with a program such that during the

interpretation of this program some tracing is performed.

Suppose that a session with a rule-based system has to be

traced such that the sequence of rules that is applied is

printed. This can be achieved in a language with a reflective

architecture by stating a reflective rule such as

IF a rule has the hiqhest priority I” a situation.
THEN print the rule and the data nhlch match its conditions

2 Note that more advanced programming environments might provide
facilities for handling some of the problems discussed here. However,
typically, programming environments are not built in an “open-ended”
way, which means that they only support a tixcd number of those func-
fionalities. Further, they often only suppon computation abut romputa-
tion in a static way, i.e. not at run-time.

148 OOPSLA ‘87 Proceedings October 48,1!%7

In a rule-based language that does not incorporate a reflective

architecture, the same result can only he achieved either by
modifying the interpreter code (such that it prints information

about the rules it applies), or hy rewriting all the rulrs such

that they print information whenevrr they are applied.

So clearly reflective architectures provide a means IO imple-

ment reflective computation in :I more modular way. As is

generally known, enhanced modularity makes systrms more

manageable, more readable and easirr to understand and

modify. But these are not the only advantages of the decom-

position. What is even more important is that it becomes

possible to introduce abstractions which facilitate the pro-

gramming of reflective computation the same way abstract

control-structures such as DO and WHILE facilitate the pro-

gramming of control flow.

5. Existing Reflective Architectures

Procedure-based, logic-based and rule-based languages incor-

porating a reflective architecture can be identified. 3-LISP

(Smith, 1982) and BROWN (Friedman and Wand,1984) are

two such procedural examples (variants of LISP). They

introduce the concept of a reflective function, which is just

like any other function, except that it specifies computation

about the currently ongoing computation. Reflective functions

should be viewed as local (temporary) functions running at

the level of the interpreter: they manipulate data representing

the code, the environment and the continuation of the current

object-level computation.

FOL (Weyhrauch, 1980) and META.PROLOG (Bowen,

1986) are two examples of logic-hased languages with a

reflective architecture. These languages adopt the concept of a

meta-theory. A meta-theory again .differs from other theories

(or logic programs) in that it is ahout the deduction of

another theory, instead of about the external problem domain.

Examples of predicates Wed in a meta-theory are

“provable(Theory,Goal)“, “clause(Left-hand,Right-hand)“.

etc.

TEIRESIAS (Davis, 1982) and SOAR (Laird, Rosenbloom

and Newell, 1986) are examples of rule-based languages with

a reflective architecture. They incorporate the notion of

meta-rules, which are just like normal rutes. except that they

specify computation about the ongoing computation. The

data-memory these rules operate upon contains elements such

as “there-is-an-impasse-in-the-inference-process”, “there-

exists-a-rule-about-the-current.-goal”, “all-rulrs-mrntioning-

the-current-goal-have-hcen-fired”. etc.

if we study the ahove mentioned reflective architectures,

many common issues can he identified. One such issue is

that almost all of these languages operate by means of a

meta-circular interpreter (F.O.L. presents an exception

which will be discussed later). A meta-circular intrrpreter is

a representation of the interpretation in the language, which is

also actually used to run the languape3. Virtually, the

interpretation of such a language consists of an intinite tower

of circular interpreters interpreting the circular interpreter

below. Technically, this infinity is real&d by the presence

of a second interpreter (written in another language), which is

able to interpret the circular interpreter (and which should be

guaranteed to generate the same behavior as the circular one).

The reason why all these architectures are this way is

because a meta-circular interpreter presents an easy way to

fulfill the causa! connection requirement. The self-

representation that is given to a system is exactly the meta

circular interpretation-process that is running the system.

Since this is a procedural representation of the system, i.e. a

representation of the system in terms of the program that

implements the system, we say these architectures support

procedural reflection.

The consistency between the self-representation and the sys-

tem itself is automatically guaranteed because the self-

representation is actually used to implement the system. So

there is not really a causal connection problem. There only

exists one representation which is troth used to implement the

system and to reason about the system. Note that a neces-

sary condition for a meta-circular interpreter is that the
language provides one common format for programs in the

language and data, or more precisely, that programs can be

viewed as data-structures of the language.

One problem with procedural reflection is that a self-

representation has to serve two purposes. Since it serves as

the data for reflective computation, it has to be designed in

such a way that it provides a good hasis to reason ahout the

system. But at the same time it is used to implement the sys-

tem, which means that it has to be effective and efficient.

These are often contradicting requirements.

Consequently, people have been trying to develop a different

type of reflective architecture in which the self-representation

of the system would not be the imptementation of the system.

This type of architecture is said to support declarative

reflection because it makes it possible to develop self-

representations merely consisting of statements about the sys-

tem. These statements could for example say that the compu-

tation of the system has to fulfill some time or space criteria.

The self-representation does not have to be a complete pro-

cedural representation of the system, it is more a collection

of constraints that the status and behavior of the system have

to fulfill.

The causal connection requirement is more difficult to real&

here: it has to be guaranteed that the explicit representation

3 This representation minimally consists of a name for the intemreter-
propram (such as “eval” in LISP) plus some rriticd interpreterdata (such
as the list-of-bindings and the continuation). It might also be richer. for
example by making more explicit about the interpreter-program.

October 4-8,1987 OOPSLA ‘87 Proceedings 149

of the system and its implicitly obtained behavior are con-

sistent with each-other. This means that in this case, the
interpreter itself has do decide how the system can comply
with its self-representation. So, in some sense the interpreter
has to be more intelligent. It has to find ways to translate the
declarative representations about the system into the
interpretation-process (the procedural representation) that is
implementing the system.

experimenting in order to find the “basic” features an object-

oriented language should support (Stefik and Bobrow, 1986):
is a distinction between classes and instances necessary?
what form of inheritance should be provided’! what do mes-
sages look like? etc.

Such an architecture can be viewed as incorporating represen-
tations in two different formalisms of one and the same sys-
tem. During computation the most appropriate representation
is chosen. The implicit (procedural) representation serves the
implementation of the system, while the explicit (declarative)
representation serves the computation about the system.

Although in architectures for declarative reflection more
interesting self-representations can be developed, it is still is
an open question in how far such architectures are actually
technically realisable. GOLUX (Hayes, 1974) and Partial Pro-
grams (Genesereth,l987) are two attempts which are worth
mentioning.

It has become clear that a specific design for an OOL suits
some applications, but is inappropriate for others. Reflective
facilities present a solution to this prohlrm. A language with
reflective facilities is openended: reflection makes it possible
to make (local) special&d interpreters of the language. from
within the language itself. For example. objects could be
given an explicit, modifiable representation of how they are
printed, or of the way they create instances. If these explicit
self-representations are causally connected (i .e, if the
behavior of the object is always in compliance with them) it
becomes possible for an object to modify the.se aspects of its

behavior. One object could modify the way it is printed,
another object could adopt a different procedure for making
instances, etc.

Actually the distinction between declarative reflection and

procedural reflection should more be viewed as a continuum.
A language like F.O.L. (Weyhrauch, 1980) is situated
somewere in the middle: F.O.L. guarantees the accuracy of
the self-representation by a technique called semantic attach-
ment. The force of the self-representation is guaranteed by
reffection principles. It is far less trivial to prove that the
combination of these two techniques actually also succeeds in
maintaining the consistency between the self-representation
and the system.

150

A second motivation is inspired by the development of
frame-based languages, which introduced the idea to encapsu-
late domain-data with all sorts of reflective data and pro-
cedures (Roberts and Goldstein. 1977) (Minsky, 1974). An
object would thus not only represent information about the
thing in the domain it represents, but also about (the imple-
mentation and interpretation of) the object itself: when is it
created? by whom is it created? what constraints does it have
to fulfill? etc. This reflective information seems to be useful

for a range of purposes:

6. A History of OOL with Respect to Refkction

- it helps the user cope with the complexity of a large
system by providing documentation, history, and expla-
nation facilities,

The previous section discussed ex‘amples of existing rrflective
architectures in procedure-ha.., logic-based and rule-based
languages. We now turn to object-oriented languages.
Although the first OOLs. such us SIMULA (Dahl and

Nypaard, 1966) or SMALLTALK- (Kay, 1972), did not
yet incorporate facilities for refiectivr computation, i\ must be
said that the concept of reflection tits most naturally in the
spirit of object-oriented programming. An important issue in
OOL is abstraction: an object is free to realise its role in the
overall system in whatever way it wants to. Thus, it is
natural to think that an ohjrrt not only performs computation
about its domain, but also about how it can realise this
(object-) computation.

- it keeps track of relations among representations, such
as consistencies, dependencies and constraints,
- it encapsulates the value of the data-item with a
defauit-value, a form to compute it, etc.
- it guards the status and behavior of the data-item and
activates procedures when specific events happen (e.g.
the value becomes instantiated or changed).

OOPSLA ‘87 Proceedings

Designers of OOLs have actually felt the need to provide
such facilities. Two strong motivations exist. A first
motivation is the design of specialised interpreters. It seems
to be very difficult to find an agreement on the fundamental
principles of object-oriented programming. As it turns out
the programming language community is still now actively

OOLs have responded to this need by providing reflection in
ad hoc ways. Reflective facilities were mixed in the object-
level structures. In languages such as SMALLTALK-

(Kay, 1972) and FLAVORS (Weinreh and Moon. 1981). an
object not only contains information about the entity that is
represented by the object, but also about the representation
itself, i.e. about the object and its behavior. For example,
in SMALLTALK, the class Person may contain a method to
compute the age of a person as well as a method telling how
a Person object should be printed. Also in FLAVORS,
every flavor is given a set of methods which represent the
reflective facilities a flavor can make usage of (cfr. figure 1).

October 4-8, 1987

:OESCRIBE (message): 0
GET-HANDLER-FOR: (08JFCT OPERATION)
MAKE-INSTANCE: (FLAVOR-NAME &REST INIT.OPTIONS)
:OPERATION-HANDLED-P (message): (OPFRAIION)
SYS:PRINT-SELF (message :PRINT-SELF):

(OBJECT STREAM PRINT-OFPTH SLASHIFY-P)
:SENO-IF-HANDLES (message): (HESSACF 6REST ARCS)
:WHICH-OPERATIONS (message): 0

Fig. I. The structure cd the vanilla-flavor

There are two problems with this way of providing reflective

facilities. One is that these languages always support only a

fixed set of reflective facilities. Adding a new facility means

changing the interpreter itself. For example, if we want to

add a reflective facility which makes it possible to specify

how an object should be edited, we have to modify the

language-interpreter such that it actually uses this explicit

edit-method whenever the object has to be edited.

A second problem is that they mix object-level and reflective

level, which may possibly lead to obscurities. For example,

if we represent the concept of a book by means of an object,

it may no longer be clear wether the slot with name

“Author” represents the author of the book (i.e. domain data)

or the author of the object (i.e. reflective data).

One step towards a cleaner handling of reflective facilities

was set by the introduction of metaclasses by

SMALLTALK- (Goldberg and Robson, 1983). In

SMALLTALK- classes are not yet objects. The internal

structure and message-passing behavior of an object can be

specified in its class, but the structure and behavior of a class

cannot be specified. The idea behind this development in

SMALLTALK- (which was later also adopted in LOOPS

(Bobrow and Stefik. 1981)) is that it should also be possible

to specify the internal structure and computation of a class.

Meta-classes serve this purpose.

Meta-classes already made one improvement towards the

disctinction between object-information and reflective informa-

tion: a meta-class only specifies system-internal information

about its class (because there are no domain-data which

correspond to this level). However, the confusing situation at

the class-level still remained: a class in SMALLTALK-

still mixes information about the domain and information

about the implementation.

Actually one disadvantage of the introduction of meta-classes

is that they introduce some confusion because the relation

class/meta-class -and instance/class does not run in parallel

(although it is presented as if they do). As a study by Bom-

ing and O’Shea (Borning and O’Shea.1987) reveals, users of

SMALLTALK are often confused with meta-classes. We sug-

gest that this confusion might well arise because of the undis-

ciplined split between system information and domain infor-

mation. A class in SMALLTALK is sometimes viewed as an

object being an instance of a meta-class (i.e. as something
containing reflective information), at other times it is viewed

as a class containing information about the domain (i.e.
representing an abstraction).

Another step towards the origin of reflective architectures was

taken by the development of OOLs such as PLASMA (Smith

and Hewitt, 1975). ACTORS (Lieberman. I98 I). RLL

(Greiner, 1980) and OBJVLISP (Briot and Cointe. 1986).

These languages try to bring more uniformity in object-

oriented programming by representing everything in terms of

objects. They all contribute to the uniformity of the different

notions existing in OOLs by representing everything in terms

of objects: class, instance, meta-class, instance-variable,

method, message, environment and continuation of a mes-

sage. This increased uniformity makes it possible to treat

more aspects of object-oriented systems as data for reflective

computation.

In general, it can be said that the evolution of OOLs tends

towards a broader use of reflective facilities. In the beginning

reflective facilities were only used in minor ways. A class

would for example only represent the reflective information

telling what its instances were. However, as OOLs evolved,

the self-representations became richer and applied in a

broader way (from instances only, to classes, to meta-classes,

to messages, etc).

However none of the existing languages has ever actually

recognised reflection as the primary programming concept

developers of OOL are (unconsciously) looking for. The

languages mentioned above only support a finite set of

reflective facilities, often designed and implemented in an ad

hoc way. The next section discusses in what ways an OOL

with a reflective architecture differs from these languages. It

highlights the issues that were missing in the existing

languages.

7. A Reflective Architecture in an OOL

This section discusses an OOL with an architecture for pro-

cedural reflection. The discussion is based on a concrete

experiment that was performed to introduce a reflective archi-

tecture in the language KRS (Steels,1986). The resulting

language is called 3-KRS (Maes.1987). The important inno-

vation of 3-KRS is that it fulfills the following crucial proper-

ties of an object-oriented reflective arrhitecturr4:

1. A first property is that it presents the first OOL adopting a

disciplined split between object-level and reflective level.

Every object in the language is given a meta-object. A meta-

object also has a pointer to its object. The structures con-

tained in an object exclusively represent information about the

domain entity that is represented by the object. The structures

contained in the meta-object of the object hold all the

4 None of the languages discussed above Wills the entire list.
although they might fullill one or more of the properties.

October 4-8,1987 OOPSLA ‘87 Proceedings 151

reflective information that is available about the object. The
meta-object holds information about the implementation and
interpretation of the object (cfr. figure 2). It incorporates for
example methods specifying how the object inherits informa-
tion, how the object is printed, how a new instance of he
object is made, etc.

Instantiation-Method

(Mets-Object-x5689>
Inheritance-Method

Fig. 2. An object and its metaqbject.

Note that the meta-relation is not collapsed with the instance-
relation (as it is in SMALLTALK- or LOOPS). The object
John has a type-link to the Person object and a meta-link to
its me&object (named “Meta-Object-#5689”).5

Note also that although there is a one-to-one relation between
objects and meta-objects (which might suggest to combine
them into one object), it is important that object and meta-
object are also physically separated (which is again not true
for the meta-classes of SMALLTALK). This way a standard
message protocol can be developed between an object and its
meta-object. This protocol makes it possible to create
abstractions of the behavior of an object (i.e. ready-made
meta-objects), and to temporarily attach such a special
behavior to an object.

2. A second property is that the self-representation of an
object-oriented system is uniform. Every entity in a 3-KRS
system is an object: instances, ciassrs, slots, methods, meta-
objects, messages, etc. Consequently every aspect of a 3-
KRS system can be reflected upon. All these objects have
meta-objects which represent the self-representation
corresponding to that object. Note that since meta-objects are
again objects. meta-objects have to be created in a lazy way.
KRS incorporates a lazy-construction mechanism which takes
care of this (Van Marcke, 1986): meta-objects are only con-
structed when they are actually needed.

3. A third property is that 3-KRS provides a cornpIe& self-
representation. The meta-objects contain all the information
about objects that is available in the 3-KRS language. Actu-
ally, the contents of meta-objects was designed on the basis
of the interpreter. The code of the interpreter was divided in
blocks which represent how a specific aspect of a certain type

5 However the “meta” slot of an object is also inherited. When the
object John does not override the “meta” slot. it will when needed make
a copy of the meta-object of Person.

of object is implemented. All of these blocks were afterwards
reified (i.e. made explicit) under the: form of objects (fillers
of slots in the meta-objects). 3-KRS incorporates a set of
primitive meta-objects which together represent the complete
3-KRS interpreter (cfr. figure 3). When a specific object is
created in some application, it will automatically inherit one
of these meta-objects from its type.

neta \I nete
<Hesseqe-Heta> cObjrct-Definition-Mete>

Fig. 3. The primitive meta-objccts of 3-KRS. or the theory the language

J-KRS incorporates about the implementation of its objects and the
interpretation of its programs.

“Meta-Object” is the most general me&object. it roughly
contains what was illustrated in figure 2. The other meta-
objects in the figure above add to or specialise the informa-
tion in Meta-Object. For example, Message-Meta represents
the information that is available about message-objects. It
adds to Meta-Object slots representing the method to be used
to evaluate the message and the continuation and environment
of the evaluation.

4. A fourth property is that the self-representation of a 3-
KRS system is consistent. The self-representation is actually
used to implement the system. The explicit representation of
the interpreter that is embedded in the meta-objects is used to
implement the system. Whenever some operation has to be
performed on an object, e.g. an instance of the object has to
be created or the object has to answer a message, or a
message-object has to be evaluated, the meta-object of the
object is requested to perform the action. The technique that
is used in order to avoid an infinite loop is that there is a
second, implicit interpreter which is used to implement the
default (or standard) behavio@.

5. A final property is that the self-representation can also at

6 The real (i.e. implicit) interpreter of the .7-KRS language tests for
every operation that it has to perfnrm on an object whether the meta-
object of this object specities a deviating method for this operation. “De-
viating” meaning here: dilierent from (overriding) the methods of the
primitive meta-objects listed in tigure 3. If so. ~hc interpreter will apply
the explicit method (3-KRS program). If nor. it handles this operation im-
plicitly. This implicit handling guarantees the same results as the explicit
methods described in the primitive meta-objects.

152 OOPSLA ‘87 Proceedings October 4-8, 1987

run-time be modified, and these modifications actually have

an impact on the run-time computation. The self-

representation of the system is explicit, i.e. it consists of

objects. Thus, any computation may access this self-

representation and make modifications to it. These

modifications will result in actual modifications of the

behavior of the system.

The 3.KRS experiment is extensively described in (Maes,

1987). It shows that it is feasible to build a reflective archi-

tecture in an object-oriented language and that there are even

specific advantages to object-oriented reflection. These

advantages are a result of the encapsulation and abstraction

facilities provided by object-oriented languages. The next

section illustrates these advantages. It presents two examples

of programming in an object-oriented reflective architecture.

8. A New Programming Style

Although the implementation of 3-KRS is far from trivial,

from the programmer’s point of view the language has a sim-

ple and elegant design. The basic unit of information in the

system is the object. An object groups information about the

entity in the domain it represents. Every object in 3-KRS

has a meta-object. The meta-object of an object groups

information about the implementation and interpretation of the

object. An object may at any point interrupt its object-

computation, reflect on itself (as represented in its meta-

object) and modify its future behavior.

Reflective computation may be guided hy the object itself or

by the interpreter. An object may cause reflective computa-

tion by specifying reflective code, i.e. code that mentions its

meta-object. The interpreter causes reflective computation for

an object whenever the interpreter has to perform an opera-

tion on the object and the object has a special meta-object.

At that moment the interpretation of the object is delegated to

this special meta-object .

This reflective architecture supports the modular construction

of reflective programs. The abstraction and encapsulation

facilities inherent to OOLs make it possible to program

object-computation (objects) and reflective computation

(meta-objects) independently of each other. There is a stan-

dard message protocol between an object and its meta-object

which guarantees that the two modules will also be able to

work with each other’. This makes it possible to temporarily

associate a certain reflective computation with an object

without having to change the object itself. Another advantage

is that libraries of reflective computation can be constructed.

This section (schematically) illustrates what programming in a

reflective OOL is like. It demonstrates the particular style of

’ More specifically, the meta-object has to specify values for a
predefined set of slots (variables and methods), which for the 3-KRS ex-
periment roughly correspnd to IIW names listed in figure 2. Actually this
set varies according to the type of object at hand. E.g. the meta-object of
a program-object in addition has to specify an evaluation-method.

modular programming that is supported hy reflective architec-

tures. More (operational code) examples of programming in

3-KRS can be found in (Maes,l987).

A first example illustrates the object-oriented equivalent of the

tracing example presented in section 4. The reflective archi-

tecture of 3-KRS provides a modular solution for implement-

ing reflective computation such as stepping and tracing of

programs. One can temporarily associate a meta-object with

a program (-object) such that during its evaluation various

tracing or stepping utilities are performed. Note that the

object itself remains unchanged, only its meta-object is tem-

porarily specialised to a meta-object adapted to stepping or

tracing.

Figure 4 illustrates the idea. Message-#3456 is an object

representing some message. It has a meta-object, called

Message-Meद which may be a copy of the default

me&object for a message or a user-defined specialisation of

this. The Tracer-Meta object is designed to be temporarily

attached to any program-object. The meta-link from the

program-object to the old meta-object is temporarily replaced

by a meta-link to (a copy of) the Tracer-Meta. Tracer-

Meta-#8765 inherits from this old meta-object and overrides

the Eval-Method: it adds some actions before and after the

eval-method of the old meta-object (such that the evaluation

itself is still handled by Message-Meta-#2342). These actions

will take care that when Message-#3456 is evaluated, some

information is printed before and after the evaluation.

a program that
1

Of the type, followed
by another print-out

Fig. 4. Associating a traciq behavior temporarily

Notice that it is not only possible to add before or after

methods. The eval-method itself could also be overridden or

specialised (it is again an object that can he manipulated).

A second example illustrates how a local deviating interpreter

may be realised. A major advantage of a language with a

reflective architecture is that it is open-ended, i.e. that it can

he adapted to user-specific needs. But even more, a

reflective architecture makes it possible to dynamically build

and change interpreters from within the language itself. It

allows for example to extend the language with meaningful

constructs without stepping outside the interpreter. Note that

this way the language itself can lx made more concise (and

thus more elhcient). The extra structure and computation

October 4-8,1987 OOPSLA ‘87 Proceedings 153

necessary to provide objects with special features such as

documentation, constraints or attachment da not have to be

supported for all objects in the system but can be provided

on a local basis.

Figure 5 illustrates a very simple example. The 3-KRS

language does not support multiple-inheritance. However, if a

multiple-inheritance behavior is needrd for some object (or

class of objects), it can be realised by a specialised meta-

object. The object Mickey-Mouse has a deviating interpreter

which takes care of the multiple-sources inheritance behavior

of this object. The specific strategy for the search of inherited

information is implemented explicitly in the language itself by

overriding the inheritance-method of the default meta-object.

I 1

I OiUHAN> <Object-Li3t (tHOUSE>0lUI4AH.~)>

94 k. I
Type

/I

TYPe

<JOHN> <GEORGE >

lYP@

\
<MICKEY-MOUSE>

TYPG
CHULTIPLE-INHERITANCE-~flA>-z <META-OB.lECT>

I I

Fig. 5. Implementing a local variation on the Isneuaec.

For frequently used variations on the language, abstractions

may be provided. The 3KRS system currently provides an

initial library of reflective behaviors including meta-objects

for pretty-printing, tracing and strpping. several variations on

the language (multiple-inheritance, frames, monitors, streams,

defaults, etc). The programmer can simply pick such a spe-

cial behavior and attach it to an object in his application.

Very few slots of such a meta-object remain to be filled.

Note finally that the architecture of object-oriented reflection

provides a sophisticated control of the granularity of reflective

computation. Local reflective computation can be obtained by

making reflective individual instances. E.g. a reflective

object John, or a reflective particular message. More general

reflective computation can be obtained by making reflective

abstract objects (which serve as the type of other objects).

E.g. one can make all person objects reflective, by making

the class person object reflective. Or one can make a class

of messages in the system behave in a special way, by mak-

ing their class message object reflective.

9. Discussion and Conclusions

We can conclude that the experiment of 3-KRS does for the

object-oriented paradigm what languages like 3-LISP, F.O.L.

and TEIRESIAS did for the procedure, logic and rule-based

paradigm respectively. Just like these languages, 3-KRS

introduced a new concept (or programming-construct) being

the notion of a meta-object. Meta-objects are just like the

other objects of the language, except that they represent

information about the computation performed by other objects

and that they are also taken into account by the interpreter of

the language when running a system.

Another common issue is the way the causal connection

requirement is handled. Just like the main part of the

languages discussed in section 5, 3-KRS represents an archi-

tecture for procedural reflection. 3-KRS is run by a meta-

circular interpreter: the self-representation that is given to a

system is an explicit representation of the implementation of

the system. Consequently this self-representation also

represents the system in terms of the concepts inherent in the

interpretation of an object-oriented language: handling mes-

sages, creating instances, etc.

This paper briefly introduced some of the concepts and exper-

iments in computational reflection. However, many aspects of

reflection, reflective architectures and particularly of object-

oriented reflection (its implementation and use) have not been

discussed in this paper. The interested reader may consult

(Maes,l987).

10. Acknowledgements

I am very grateful to Luc Steels, who supervised this

research and when necessary corrected its direction. I also

would like to thank Pierre Cointe for the valuable comments

he provided.

Il. Bibliography

Bobrow D. and Stefik M. (198 I) “The LOOPS manual”.

Tech. Rep. KB-VLSI-III- 13. Knowledge Systems Area.

Xerox Palo Alto Research Center. Palo Alto, Califor-

nia.

Borning A. and O’Shea T. (1987) “Deltatalk: An Empirically

and Aesthetically Motivated Simplification of the

Smalltak-80 Language”. In: Proreedings of the ECOOP

Conference. Paris, France.

Bowen K. (1986) “Meta-level Techniques in Logic Program-

ming”. In: Procfedings of thr Ifltrrnnrioflal Conference

on Artificial Intelligence and its Applications. Singapore.

Briot J.P. and Cointe P. (1986) “The OBJVLISP Model:

Definition of a Uniform Reflexive and Extensible

Object-Oriented Language”. In: Proceedings of the

European Conference on Artificial Inrellipcince - 1986.

Dahl 0. and Nygaard K. (t966) “SIMULA - An Algal-Based

Simulation-Language”. Communicadons of thr ACM.

9: 671-678.

Davis R. (1982) In: “Knowledge-Based Systems in Artificial

Intelligence”. Davis R. and Lenat D. MC Graw-Hill,

New York.

Friedman D. and Wand M. (1984) “Reification: Reflection

without meta-physics”. Communications of the ACM.

Vol 8.

154 OOPSIA ‘87 Proceedings October 4-8, 1987

Genesereth M. (1987) “Prescriptive Introspection”. In:

Me&Level Architecrures and Reflection. tis: P. Maes

and D. Nardi. North.Holland. Amsterdam, June 1987.

Goldberg A. and Kay A. (1976) “SMALLTALK- Instruc-

tion Manual”. Technical Report SSL-76-6, Xerox Palo

Alto Research Center. Palo Alto, California.

Goldberg A. and Robson D. (1983) “Smalltalk-80: The

Language and its Implementation”. Addison-Wesley.

Reading, Massachusetts.

Greiner R. (1980) “RLL- I : A Representation Language

Language ” . Stanford Heuristic Programming Project.

HPP-80-9. Stanford, California.

Hayes P. (1974) “The Language GOLUX”. University of

Essex Report. Essex, United Kingdom.

Laird J., Rosenhloom P. and Newell A. (1986) “Chunking in

SOAR: The Anatomy of a General Learning Mechan-

ism”. In: Machine Inrelligence. Vol I. Nr I. Kluwer

Academic Publishers.

Lieberman H. (1981) “A Preview of ACTl”. Massachusetts

Institute of Technology, Artificial Intelligence Labora-

tory. MIT AI-MEMO 625. Cambridge, Massachusetts.

Maes P. (1987) “Computational Reflection”. PhD. Thesis.

Laboratory for Artificial Intelligence, Vrije Universiteit

Brussel. Brussels, Belgium. January 1987.

Minsky M. (1974) “A Framework for Representing

Knowledge”. Massachusetts Institute of Technology,

Artificial Intelligence Laboratory. MIT AI-MEMO 306.

Cambridge, Massachusetts.

Roberts R. and Goldstein I. (1977) “The FRL Primer”.

Massachusetts Institute of Technology, Artificial Intelli-

gence Laboratory. MIT AI-MEMO 408. Cambridge,

Massachusetts.

Smith B. (1982) “Reflection and Semantics in a Procedural

Language”. Massachusetts Institute of Trchno!ogy.

Laboratory for Computer Science. Technical Report

272. Cambridge, Massachusetts.

Smith B. and Hewitt C. (197.5) “A PLASMA Primer

(draft)“. Massachusetts Institute of Technology. Artificial

Intelligence Lahratory. Cambridge, Massachusetts.

Steels L. (1986) “The KRS Concept System”. Vrije Universi-

teit Brussel. Artificial Intelligence Laboratory. Technical

Report 86-l. Brussels, Belgium.

Stefik M. and Bobrow D. (1986) “Object-Oriented Program-

ming: Themes and Variations”. In: Al magazine. Vol.

6. No. 4.

Van Marcke K. (1986) “A Parallel Algorithm for Con-

sistency Maintenance in Knowledge Representation”. In:

Proceedings of the Europran Conference on Artificial

1nrellipence. 1986. Brighton, England.

Weinreb D. and Moon D. (1981) “Lisp Machine Manual”.

Symbolics Inc. Cambridge, Massachusetts.

Weyhrauch R. (1980) “Prolegomena to a Theory of Mechan-

ized Formal Reasoning”. In: Artificiill Intellipencr Vol.

13 No. 1,2. North Holland. Amsterdam. The Nether-

lands.

October 4-8,1987 OOPSLA ‘87 Proceedings 155

