

UNCLASSIFIED

Courant Mathematics and Computing Laboratory

New York University

Mathematics and Computing CO0O-3077-151

THE PL/I PROGRAMMING LANGUAGE

Paul Abrahams

March 1978

U. S. Department of Energy

Contract EY-76-C-02-3077

UNCLASSIFIED

This report is to appear as an article on the PL/I
programming language in the Encyclopedia of Computer

Science and Technology published by Marcel Dekker, Inc,

ii

Table of Contents

INTRODUCT TON . & v vt et e e e et e o e oo s o oo oo oo ooasesesssessasssssasesessssseesssss 1
Syntactic CoNVENELIONS . @i it ittt it ettt et ettt et e e eeeeeeneeeeeeeeeseseeneeeeas 6
DA T A TYPE S . i i it it i e i e e e e e e e e e et et et e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaes 9
Nl o 0L il A R 1 1 9
SR il T e B Y T P 11
PiCtUred Ty P S e v i i ittt ittt ettt e e e eeeneeneeneeeeeeneeeeeeeeneeeeeeeeneeneeneeas 13
Pointers, Areas and Off St S . v v i it ittt ittt it ettt et et eeseeneeneenen 19
I = 20
BTN o T = R 22
o 23
@ a1 24
N = 14 T 25
S b i B R 26
DE C L AR AT ION S . & i i i it i i e et et e et ettt ettt ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeeees 29
Manifest, Explicit, Contextual, and Implicit Declarations.............. 29
Declarations of Statement-NamesS.ttt ittt ineeeeneenneneensens 31
Attribute Consistency and Completene S S . v vt i et e et eeeeeeneeeeeeeoeeneean 32
Standard and User Defined DefaultsS. ...ttt inteeeeeeneeeeeeeoneeaeeas 38
The LIKE-ALLribute. . ittt i it et e e et e e e e e et e et ettt ettt eeeeeeeaean 41
EXPRESSIONS, TYPE CONVERSION, AND ASSIGNMENT. ittt ittt eeeeeeeeeeeeeeas 43
Prefix and InNfiX EXPreSSionS . v e e et eeeeeeeeeeeneeneeeneeeeeaeeaeeaeenns 45
BULltin FUNCLI0N S e i i it it ittt e et et e et et e eaeeaeeeeeeeeeeeeeaeeaeeaeeans 51
TYPE CONVE T S O ¢ vt e et et et e et ettt e et ae oo soeseeseeeeeeesnesassassaeeas 64
a1 11 X i @ o 68
The Assignment—-Statementttt ittt ettt ettt e eeeeeeeeaean 69
ST ORAGE T Y PE S . & it it it i ittt et ettt et oot oo o s asesenesesesesesensssssasssenas 72
R w= N B B il 3 e £ R 72
AULOMAtiC SEOTAgE . i i i it it ettt et et e e ettt et e et aeeaeeeeeeeeeeeeeeeeaeean 73
Controlled StLorage. v v ittt ittt et ettt ettt ettt eeeeeeeeeeeeeeaeaean 73
Based STOrage . i i ittt ittt it e ittt et ee e e eeseeeeeee et 74
The Refer—Opt a0 . @i it ittt ittt ettt et et eeeeeeeeeeeeeeeeeaeeaeeaeeas 77
Left-to-Right CorrespondencCe. ... ittt ittt ettt eeeeeeeneeeaeeaeeaeean 79
Al10CAtioN dN Al EaAS . it ittt ittt eeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeasen 80
Parameter ST OTage . i v vttt ittt ettt ettt ae s eesoeseeeeeeeeeeeassaneassans 81
Defined SLOTrage . i v ittt ittt ettt et e teeeeeeneeeeeeeeeeoeeaeeaeenns 82
N I 011 o o 84
Tnitialdzation. o u ittt it it e it e ettt et eeseeeeeeeeeeeeeeaeeaesneas 86
PROCEDURES, SCOPES, AND ENVIRONMENT T S. . . . ittt it ittt ettt ettt eeeeeeeeeeeeees 88

iii

Arguments and Parameler S . . v oot it et et eeeeeeeeeeeeeeeeeeoeoeaeasaeasens 91
(@ w1 = 93
ST A0 = X o 94
The GENERIC-AtLtLribuUbe. .. it i it et e eeeean 95
BloCKS ANd SCOPE S e i vttt ettt ettt e e eeneeeeeeneeeeeeeeneeeeeeeeeeeeeeeeeeneeas 96
Internal and ExXternal SCOP . . i it ittt eeeeeeeeeeeeeeeeeaeaeaeaeaeaeens 99
Entry Values and ENvironment S. @i it n i et eetoeeeeeneeneeeeeeeeaeeaeean 100
ON-UNITS AND ON—-STATEMEN T S . . ittt ittt ittt ettt e ettt e eeeeeeeeeseeeeeeeeeees 102
The ON-Statement, REVERT-Statement, and SIGNAL-Statement.............. 105
Enablement and Disablement.ttt ittt ittt eeeeeeeeeeeeeeneeeneaean 108
Builtin Functions for ON-Conditions. ...t etiettetneeeeeeeeeeaeeneenn 109
Categorization of the ON-CondifionS. . u i ettt tt ettt eeeeeeeeeoeeaeenens 110
OTHER STATEMENTS AFFECTING FLOW OF CONTROL.ttt ittt tteeeeeeeeeenn 115
Conditional Statement s. ...ttt ittt ettt ettt ettt et et eeaeeeaeaean 115
The DO-Statement . @ittt ittt it et et sttt et e eeoesoenossassansanes 116
The GOTO—statement . .. ittt ittt et et et ee e e o esosseesansanseees 119
The STOP-Statement and the Null-Statement......... .ottt neennn.. 121
FILES AND RECORD INPUT—-OUT T PU Tttt ittt ittt ettt e e eeeeeeeeeseseeeseeees 122
File ALtribuULes. @ vttt it it e it ettt ettt eoeeesoeseesannaneas 122
File Opening and Attribute Determination............oi ittt ennnnnan 123
File ClOSinNg . e e e ee e e eeeeeeeeeeeeeeeeeeaeeaeeeeeeneeeeeeeeeeeoeeaenaeean 127
Operations on ReCOrd FilesS. .. u it ittt tteeeeeeeeeeeeeeeeeeeeeeaeeaeean 127
STREAM INPUT—OUT T PUT . & i ittt ittt ettt e et eoeoeseseesssseasesseasesensseseas 135
| it S I = i P 137
List-Directed Input—-OutpuUl @ittt ittt ittt ettt ettt eeeenenaneasans 138
Data-Directed InpUL-—OULPUL . @i it ittt ittt et ettt et et eeeeneneneaeaeaeans 140
Edit-Directed InpUL—OUut UL . vt ittt ittt et ettt et e e e eeeesoeneesaeeaeeas 142
BIBLTIOGRAPHY & i it it i e e e e e e e e e e et et et e e e e e ettt 150
ED T T ORIAL NOTE S . it it ittt it ettt e s e oot oosesesenasesesasesesssssesssses NOTES-1
Acknowledgement .. v it ittt ittt ettt et et ettt NOTES-1
ol = i NOTES-1
AboUt the AULNOT . . .@ i i i it i i it i it ettt ettt et ettt eeeeeeeneeaeeaea NOTES-2

iv

INTRODUCTION

PL/T is a large and powerful multipurpose programming
language. The intent of the designers of PL/I was to create
a language that could be used in business and in scientific
applications, as well as in systems programming applications
such as writing operating systems. The original design was
developed in 1963 by a committee of people drawn from IBM
and from SHARE, an IBM user group. For a long time the only
important implementations of PL/I were those developed by IBM
on the 360 and 370 computers, and the implementation on the
GE 645 at the MULTICS Project at MIT. However, during the
early 1970's a number of other implementations arose. The
implementation of PL/I by other organizations was given impetus
by the development of a national and international standard
for PL/I by a subcommittee of the American National Standards
Institute, in conjunction with a similar subcommittee of the

European Computer Manufacturers' Association.

The definition of Standard PL/I was formally released
late in 1976, but the content of the standard was publicly known
well before then. The standard itself was written in a novel
manner as a set of algorithms, expressed in highly stylized
English, for the operation of a hypothetical PL/I machine.
The version of PL/I described in this article is Standard PL/I.

The design of PL/I drew heavily on the major languages
that existed in 1963: Fortran, Cobol , and Algol 60. The

syntax of PL/I most resembles that of Fortran, but without

Fortran's rigid rules for program formatting. The notion of
block structure was taken from Algol 60, while PL/I structures
were taken from the record descriptions of Cobol. However, a
great many features were added to PL/I that have no counter-

part in its ancestor languages.

An example of a PL/I program is given in figure 1. A
program is written as a sequence of external procedures , which
are defined in such a way that they can be compiled separately
and then linked together when the program is executed. Within
an external procedure, there can be internal procedures.

In this example, there is one internal procedure, named
GET_DIGRAM. Each procedure in the program constitutes a block,
In addition, a block can be delimited by the PL/I statements
BEGIN and END (as in Algol 60).

The internal procedure GET_DIGRAM communicates with the
outer procedure DIGRAMS via arguments passed to GET_DIGRAM
by the CALL statement. From the viewpoint of GET_DIGRAM,
these arguments appear as parameters and are listed in the

PROCEDURE—-statement

The variables used in this program are given in the
DECLARE-statements. In general, a variable (or other use of
an identifier) is described by a set of attributes. Not all
of these need be given in the DECLARE-statement; those that
are not given are deduced through the application of a set of
defaulting rules. In fact, defaulting is applied in a great

many contexts within PL/T.

On account of its comprehensive nature, PL/I is a diffi-
cult language to learn in its entirety. For that reason it
was designed so that a user could learn just those parts of
the language that he needed, and ignore the rest of it until
the occasion arose to use some previously untried feature.
The extensive defaulting conventions were included, for a
large part, to make it possible to write programs without
having to learn about obscure and irrelevant attributes. For
instance, one can write business programs in PL/I without
ever realizing that the language includes complex numbers and

an extensive repertoire of mathematical builtin functions.

Since Standard PL/I is intended to be implemented on a
variety of machines, the standard provides that a number of
characteristics of the language are implementation-defined.

For example, machines differ in their word lengths; therefore

the maximum number of digits that need be carried in a

floating point computation is left implemented-defined. 1In the
description of PL/I given in this article, implementation-defined

features of the language are referred to frequently.

As of this writing, a standard subset version of PL/I
is under development by the American National Standards Insti-
tute. The definition of this standard subset will probably be
released by the time that this article appears. Moreover, an
extension of the subset to include facilities for real time
and concurrent programming is also under development by the

same group.

Figure 1. A Sample PL/I Program

/* THIS PROGRAM READS IN A TEXT AND COUNTS THE NUMBER OF TIMES
THAT EACH ALPHABETIC DIGRAM OCCURS. A DIGRAM IS A SEQUENCE
OF TWO ADJACENT CHARACTERS. FOR INSTANCE, THE DIGRAMS IN
'"GRUNGE" ARE GR, RU, UN, NG, AND GE.
* /
DIGRAMS: PROCEDURE OPTIONS (MAIN) ;
DECLARE COUNT (26,26) FIXED (4);
/* COUNT (I, J) GIVES THE CURRENT COUNT OF OCCURRENCES
OF THE DIGRAM FORMED FROM THE I-TH LETTER AND
THE J-TH LETTER.
*/
DECLARE ALPH CHARACTER (26) INITIAL
("ABCDEFGHIJKLMNOPQRSTUVWXYZ');
DECLARE (P1,P2) FIXED; /* ALPHABETIC POSITION OF LETTER */
DECLARE (L1,L2) CHARACTER(1l) ;
/* FIRST AND SECOND LETTERS OF DIGRAM */
DECLARE DONE BIT (1) INITIAL ('0'B);
/* COMPLETION FLAG */
/* SET ALL ELEMENTS OF THE COUNT ARRAY TO ZERO */

COUNT = 0;

/* READ AND PROCESS DIGRAMS */
RDLOOP : DO WHILE ('l'B); /* DO FOREVER */
CALL GET_DIGRAM(L1,L2,DONE);
IF DONE THEN
GO TO PRINT;
Pl = INDEX (ALPH, L1);
P2 = INDEX (ALPH, L2);

/* N.B. ——INDEX RETURNS ZERO IF LETTER NOT IN ALPHABET */

IF PI * P2 > 0 THEN /* DIGRAM IS ALPHABETIC */
COUNT (P1,P2) =COUNT (P1,P2)+1;
END RDLOOP;

/* PRINT THE RESULTS */

PRINT: DO P1 = 1 TO 26;
DO P2 = 1 TO 26;
IF COUNT (P1, P2) > 0 THEN /* DIGRAM APPEARED */

PUT EDIT (SUBSTR (ALPH,P1,1) ,
SUBSTR (ALPH,P2,1), COUNT (P1l,P2))
(SKIP,2 A(l), X(2), F(4));

END;

END;

STOP; /* END EXECUTION OF PROGRAM */
Figure 1. Continued

/* INTERNAL PROCEDURE TO EXTRACT THE NEXT PAIR
FROM THE INPUT TEXT

/*

GET_DIGRAM: PROCEDURE (L1,L2,FLAG);
DECLARE (L1,L2) CHARACTER(1l); /* LETTER PAIR */
DECLARE FLAG BIT(1); /* END-OF-DATA INDICATOR */

DECLARE CARD CHARACTER (80); /* INPUT LINE IMAGE */
DECLARE POSN FIXED STATIC INITIAL(80);
/* CHARACTER POSITION IN INPUT
CARD */
DECLARE SYSIN RECORD INPUT FILE;
/* INPUT READ FROM FILE SYSIN */
ON ENDFILE (SYSIN) /* WHEN INPUT EXHAUSTED */
GO TO INPUT_FINISHED;
IF POSN > 79 THEN DO;
READ FILE (SYSIN) INTO(CARD); /* READ A CARD */
POSN =1; /* PROCESS FROM START OF CARD */
END;
L1 = SUBSTR(CARD, POSN, 1);
L2 = SUBSTR (CARD, POSN+1,1);
POSN = POSN+1; /* MOVE TO NEXT PAIR */
RETURN; /* EXIT FROM THIS PROCEDURE */

/* COME HERE IF THE READ STATEMENT ENCOUNTERED AN END OF FILE */

INPUT_FINISHED:
FLAG = '1'B; /* SIGNAL COMPLETION TO CALLER */
RETURN ;
END GET_DIGRAM;
END DIGRAMS;

Syntactic Conventions

A PL/I external procedure consists of a sequence of
statements. With the exceptions of the IF-statement and the
ON-statement, every statement is followed by a semicolon.

The program is presented in free field format, i.e., statements
do not occupy a fixed position on the line. In fact, line
boundaries are ignored altogether, so a statement can be split
over several lines, or several statements can occupy a single
line. With the exception of the assignment statement and the
null statement, the type of a statement is indicated by the
keyword with which it begins.

A statement, in turn, 1is written as a sequence of tokens
each of which may be either a delimiter or a nondelimiter.

The types of tokens are:

Delimiters Nondelimiters
operator identifier

period arithmetic constant
comma string constant

left or right parenthesis isub [discussed below]
colon

semicolon

text inclusion
Two adjacent nondelimiters must have at least one blank
between them, and other than that adjacent tokens may have

any number of blanks between them. For example the statement

DO IVAL = Q TO (A + 3);

could be written more compactly as
DO IVAL=Q TO (A+3);

but it could not be further condensed to
DOIVAL=QTO (A+3);

The last example is in fact a valid PL/I statement with an
entirely different meaning. A comment may be used in any
place where a blank can appear. A comment is written as the
characters "/*" followed by a sequence of characters

not containing "*/" , followed by "*/" , e.g.,
/* THIS IS A COMMENT */

An identifier consists of a letter followed by any number of
letters, digits, and break characters "_" , e.g.,
POPE_LEO_THE_15TH. The syntax of most of the other kinds of

tokens is discussed below.
A text inclusion has the form
$INCLUDE textname;

The textname refers to an externally stored piece of text,
which replaces the text inclusion when the program is trans-
lated. On account of the variation in operating environments
on different machines, the interpretation of the textname is
implementation defined. With this facility, it is possible
to use the same version of a chunk of program in many differ-
ent external procedures, even ones written by different

programmers.

Keywords can be used as identifiers; in this respect PL/I

differs from COBOL, which treats keywords as reserved words,

and from ALGOL, which uses a distinct typeface to represent

them. For example,
IF IF THEN THEN = ELSE;

is a valid sequence of statements in PL/I. The first statement
is an IF statement that tests the variable IF; the second is
an assignment statement whose target is the variable THEN.
Most of the long key words can be abbreviated, e.g. , CTL for
CONTROLLED or NOFOFL for NOFIXEDOVERFLOW. The names of some

builtin functions can also be abbreviated.

There are three different kinds of PL/I statements that
head groups of statements: the DO statement, the PROCEDURE
statement, and the BEGIN statement. For all three, the group
is ended by an END statement. If a statement name is attached
to the statement that heads a group, then the same statement
name can also be attached to the END statement that terminates
the group, thus indicating which statement is closed out by
the END. A single END statement can close out more than one

group, however, as the following example illustrates:

ALEPH: PROCEDURE;

DO;

BEIT: BEGIN;

END BEIT;

END ALEPH;

The final END statement closes out both the leading PROCEDURE
statement and the DO statement that follows it.

DATA TYPES

The different kinds of data in PL/I can be classified
into groups called data types, or simply types. The avail-
able types are either aggregate types or scalar types. An
aggregate is composed from simpler types, and can be either
an array or a structure. Arrays and structures are discussed
below. The scalar types can be grouped into printable and
nonprintable types, sometimes known as computational and
noncomputational. For each type, there can be variables and
values of that type; for some types there can also be

constants.

A constant associates a name with a single unchanging
value, while a variable associates a name with a location
where a value can be stored. The value of a variable is in
general time-dependent. Variables are introduced into the

program by DECLARE-statements, e.g.,
DECLARE LETTER_SEQUENCE CHARACTER (15) VARYING;

which declares the variable LETTER_SEQUENCE to have character
strings of length from 0 to 15 as its wvalues. However, a
variable can be declared even though no DECLARE-statement is
written for it (see "Declarations" below), and certain kinds

of constants are also introduced through DECLARE-statements.

Arithmetic Types

The printable types consist of the arithmetic types and
the string types. The arithmetic types are characterized by

four kinds of attributes: the base (binary or decimal),

the scale (fixed or float), the mode (real or complex) and
the precision. Since all combinations of base, scale, and
mode are permitted, there are eight arithmetic types, pre-
cision aside. The precision of a fixed type consists of a
number-of-digits and a scale—-factor; that of a float type
consists just of the number- of- digits. For example, the
type REAL FIXED DECIMAL(6,2) (the "(6,2)" indicates the
precision) contains wvalues of the form +DDDD.DD, where the
D's are decimal digits. If the scale factor is omitted, it
is taken as zero. The binary types are similar, except

that binary rather than decimal digits are used. The fixed
and float types correspond to the fixed point and floating
point arithmetic data available on most computers. FIXED is
a generalization of the integer type found in a number of
other programming languages, since the integer type does not
provide for scaling. FLOAT corresponds to the real type of
other languages. A notable feature of the float types is
that they can be used to express the desired accuracy of a
numerical computation independently of the word length of

the computer carrying out the computation.

The type of an arithmetic constant is indicated by its
form. A real fixed decimal constant consists of a sequence
of decimal digits with an optional decimal point and sign,

e.g., — 17.76 . Fixed constants can be scaled; for instance,

78F—-4 has the value 0.0078, obtained by multiplying 78 by 1074
A real float decimal constant consists of a real fixed decimal

constant followed by an exponent part indicated by the letter E,

10

e.g., 4.832E+12. Binary constants are formed similarly,
except that only binary digits are used, and the number is

followed by the letter B, e.g., 10.1B or 11E16B (designating

3 x 1016). Complex constants do not exist as such; a complex
constant is formed as the sum of a real constant and an imag-

inary constant, e.g., 4+3I.

String Tvpes

The string types are character and bit, each of which
in turn may be varying or nonvarying . However, string wvalues
are sequences of characters or bits, and the varying and non-
varying attributes are not applied to them. Each string type
has a maximum length associated with it; for the nonvarying
types, the actual length is always equal to the maximum
length. For instance, the type CHARACTER(14) VARYING describes
character strings whose length varies from 0 to 14 characters,
while the type BIT(8) NONVARYING (NONVARYING is the default)
describes bit strings that are always exactly 8 bits long.
A character-string constant is written as a sequence of
characters enclosed in single quotes, with internal quotes

doubled, e.g.,
'THE FARMER''S DAUGHTER'

The null character string, which contains no characters, is
written as ''. A bit-string constant is written as a sequence
of binary digits enclosed in single quotes and followed by B,
e.g., '101001'B; the null bit string is written as ''B. Bit

strings can also be written in base-4, base-8, or base-16

11

notation. For instance, '7400'B3 indicates the base-8 (octal)
constant 7400 (equivalent to '111100000000 " B), while 'A81'B4
indicates a base-16 constant. (The digit after the B indicates
a power of 2.) This extended notation is not available for
binary arithmetic constants. The one-bit values 'l'B and '0'B
are particularly useful, as they are the results returned by
the PL/I comparison operators; 'l'B represents true and '0'B

represents false.

When a string, either bit or character, is declared, the
maximum length need not be given by a constant, so that the

declaration
DECLARE NEWSTR CHARACTER (K1+2);

is permissible. The expression Kl+2 must be well-defined at
the time that NEWSTR is created. Strings that appear as
parameters of procedures may have their maximum lengths given
by *, e.g ,

DECLARE PARAM_ 3 CHARACTER (*);

In this case, the maximum length of PARAM 3 is determined by
the argument corresponding to PARAM 3. Strings used as para-
meters must have their maximum lengths given either by * or

by an expression composed purely of constants; more general
expressions are not permitted (but are not particularly useful

in this context in any case).

12

Pictured Types

The pictured types are derived from similar types in COBOL,
but are more general, A pictured type has an associated picture,
e.g., 999v.99, that describes the appearance of the values of
that type. The values are represented as character strings, and
the semantics of PL/I are such that an implementation is actually
obliged to store them that way. There are no constants of
pictured type. Pictures can be used in input-output formats as
well as in declarations; an example of the declaration of a

pictured type is
DECLARE SALARY PICTURE 'SS$,3$SV.S$S!' ;

A pictured type has a picture associated with it. The
picture is given by a character string. Within the picture,
parenthesized counts can be used to indicate repeated characters,
so that the picture '$$$$S$' can also be written as '(5)$'.

A picture can be either a character picture or a numeric
picture. A numeric pictured type contains, in addition to the

picture itself, a mode specification (either REAL or COMPLEX)

Character pictures are rather simple. They consist of
just the characters A, 9, and X. The character A stands for
a letter or a blank; the character 9 stands for a digit or a
blank; and the character X stands for anything. Character
pictures are used to validate strings, i.e., to insure that

they are in the proper form. Thus, if we have the declaration
DECLARE STRING_TEST PICTURE ' (3)AXX9';

we can assign to STRING_TEST values consisting of three letters

13

(or blanks) followed by any two characters followed by a
single digit (or blank). If the assigned value does not

have these characteristics, an error will be signalled.

A numeric picture is one that contains a character other
than A, 9, or X. By this definition, a picture consisting of
all 9's is a character picture rather than a numeric picture.
A numeric pictured type has an associated arithmetic type,
which is determined by the form of the picture together with
the mode. The picture itself is independent of the mode.

Thus if we have the declarations

DECLARE RPIC REAL PICTURE 'ZzZ';
DECLARE CPIC COMPLEX PICTURE 'ZzZZ';

RPIC has an associated arithmetic type of REAL FIXED DECIMAL(3,0),

CPIC has an associated arithmetic type of COMPLEX

FIXED DECIMAL(3,0). (The associated arithmetic type is neces-
sarily decimal.) If the picture contains either of the
characters E or K, it is a float picture (i.e., its associated
arithmetic type is float); otherwise, assuming it is numeric,
it is a fixed picture. The associated arithmetic type can be
thought of as specifying the meaning of the values, as distinct
from the representation of the values. The meaning becomes

important when pictured values are used in arithmetic operations.

When a numeric value is assigned to a pictured variable,
the value is edited to conform to the picture. The characters
in the picture determine how the editing is to be done, assuming

that the value has already been converted to the associated

14

while

arithmetic type. Editing by means of a picture is illustrated
by the following example: Suppose that the value 34.8 is to

be edited using the picture S9999V.99. Then the pictured value
will be +0034.80. 1In this example the S indicates an explicit
sign, the 9's indicate explicit digits, the V indicates an
implicit decimal point (used to align the numeric value with
the characters of the picture) and the period is an insertion
character. The meanings of the different picture characters
are given in Table 1, and their use is illustrated in Table 2.
The I, R, and T characters represent digits with sign-—
overpunching, i.e., the sign of the entire value is combined
with the digit to form a single character. Sign-overpunching
is the standard input convention for COBOL; on a keypunch,

the characters are formed by punching both a sign (ll-row for -,
12-row for +) and a digit in a single column. Although CR and
DB are two characters rather than one, the two characters
always go together, and are used to indicate a negative

quantity. CR stands for "credit" and DB for "debit".

The drifting characters $, Z, +, -, and S are used to edit
leading zeros into blanks. When a sequence of drifting charac-
ters appears (they must all be the same one), the character
drifts to the position to the left of the leading nonzero digit
in the value, and the remaining positions to the left are
blanked out. Any insertion characters within the blanked-out

positions are themselves blanked out.

The period is a true insertion character, in that its

presence or absence has no effect on the value represented by

15

the picture. The period need not appear next to the V, even
though the sequence "V." is often used. A single $, S, +, or -
can be placed at the beginning or at the end of a picture, in
which case it signifies an explicit insertion rather than a
drifting position. For instance, the value 92 edited by the
picture '(5)$V.$SS' yields the string 'B0$S92.00+'; in this

case the S causes a sign to be inserted, and is not a drifting

character.

Although pictures are ordinarily used to edit real values,
they can be used to edit complex values also. When a variable
is declared to be pictured and complex, the picture is used
to edit both the real and imaginary parts of any complex wvalue
assigned to the variable, and the two parts are concatenated.
However, there is no way to use pictures to insert "I" into

the edited representation of a complex number.

16

Table 1. Meaning of Picture Symbols

(a) Character-picture symbols

A alphabetic character
9 digit or blank permitted
X anything permitted

(b) Numeric-picture symbols

9 digit

Y digit with zero mapped to blank

Z digit with zero-suppression

S drifting or inserted dollar sign

* drifting asterisk (check protection)

+ drifting or inserted sign for positive wvalues

= drifting or inserted sign for negative wvalues

S drifting or inserted sign for all values

CR credit symbol, inserted for negative wvalues

DB debit symbol, inserted for negative wvalues

I digit with positive value indicated by overpunch
R digit with negative value indicated by overpunch
T digit with sign always indicated by overpunch

. inserted period

z inserted comma

B inserted blank

/ inserted slash

v implied decimal point

E start of exponent, E inserted

K start of exponent, nothing inserted

17

Table 2. Examples of Numeric Pictures

Picture Numeric Value Pictured String
999 1 1

99v9o A 10
YY/YY/YY 760404 76/04 /b5
2227 23 bb23
7,777 123 mh123
7,777 1234 01234
Z.VZ7S -1.6 -1.6
Z.VZ7+ .03 BHo 3+
ZV.727+ 0.03 b.03+
-72275 2 povh2 S
+722275 2 +6662 $
2299 0] Bboo
$SV.S$S 1.23 Bs1.23
SSBSSS 2345 $20b345
$SSBSSS 345 Phs345
e+ 6 b+e

- 6 e

SSS 6 b+6
§***V.** .07 5***_07
5***.\]** M 5****07
S$S99CR 8 pbs 0 8Hb
S$S99CR -123 BS123CR
$$SS99DB =123 ©$S123DB
999T 71 07A
999T 71 073
I999 1776 A776
1999 -1776 1776
72727R 71 71

ZZ7ZR =71 7J
99.V999BKS99 123456 1.23460+04
V.99999E99 123 .12300E03
999VIF3 12345 0123
99999F -2 12.34 01234

Note: A indicates 1 with positive overpunch.
J indicates 1 with negative overpunch.

18

Pointers, Areas and Offsets

The nonprintable types of data in PL/I are pointers, areas,
offsets, files, labels, entries, and formats. A pointer can
be thought of as the location of a piece of data; it resembles
the ref (reference) notion of Algol 68. However, pointer
variables in PL/I are untyped; that is, a pointer variable
can contain a pointer to data of any type whatsoever. The
only pointer constant is the null pointer, which does not
point at anything and therefore does not compare equal to any
pointer to an existing object. The null pointer is obtained
as the value of the builtin function NULL of no arguments.
Pointers are used in conjunction with based variables, which
act as templates for an area of storage. Based variables are

discussed below.

An area is a region in which space for based variables
can be allocated. Areas can be cleared of their allocations
in a single operation, thus allowing for wholesale freeing.
Moreover, areas can be moved from one place to another by
means of assignment to area variables, or through input-output
operations. There is one area constant, the empty area,
which is obtained as the value of the builtin function EMPTY
of no arguments. Assignment of the empty area to any area
variable clears the area of its allocations. More precisely,
the old value of the variable is destroyed (though a copy may
exist elsewhere), and the new value is an area with nothing

allocated in it. The declaration of an area specifies (at

19

least by default) an area size in implementation-defined units

(bytes, words, etc.), e.g.,
DECLARE STRUCTURE_AREA AREA (2000);

When an area is moved, pointers to objects within the area
lose their validity. Therefore, PL/I also provides offsets,
which are pointers relativized to the origin of a given area.
When an area is moved, the offsets of the objects within the
area remain unchanged. Conceptually, pointers and offsets are

related by the equation
pointer = offset + area

but in an actual implementation that equation need not hold.
There is one offset constant, the null offset, which is obtained

by converting the null pointer to an offset.

To make it easier to work with offsets, it is possible
to declare an offset with an implicit area association (which

can be overridden), e.g.,

DECLARE OFF_FROM_A3 OFFSET (A3);
DECLARE A3 AREA (300);

When OFF_FROM_A3 is referenced in a context where a pointer is
required, the offset value in OFF_FROM_A3 is converted to a

pointer relative to the area A3.

Files
A file is, conceptually, a port through which communication
is established between the program and a dataset. A dataset,

in turn, is a collection of information residing on an external

20

medium, accessible to the program only through input-output
operations. During the course of execution of a program,

a given file may be connected to different datasets , or to

no dataset, at different times. Input-output operations
reference a file, which must be connected to an appropriate
dataset; the operations then take place on the dataset. A file
connected to a dataset is said to be open; one not connected

to a dataset is said to be closed.

The file itself is a file value; each file value is
uniquely associated with a file constant, declared, for example,

by
DECLARE FILECON FILE CONSTANT;

File variables are declared similarly, e.g., by
DECLARE FILEVAR FILE VARIABLE;

If neither CONSTANT nor VARIABLE is specified in the declaration,
the usual default is CONSTANT. Moreover, declarations of file
constants are introduced implicitly in a number of contexts,

so that in practice the programmer rarely needs to write these

declarations. For instance, the PL/I statement
PUT LIST(A,B);

causes the values of A and B to be written onto the dataset
associated with the file named SYSPRINT (assumed since no other
file was specified in the PUT-statement) . If no declaration is

explicitly given for SYSPRINT, the declaration

DECLARE SYSPRINT FILE CONSTANT;

21

is assumed. When the PUT-statement is executed, the file
SYSPRINT is opened as a PRINT file (assuming it is not already

open) .

Labels

A label is a name attached to an executable statement so
that control can be transferred to that statement by means of
a GOTO-statement. A label value has two components: a designator
(such as an address) of the statement named by the label, and
an environment, which records the state of execution of the
program at the time when the block containing the label was
entered. The environment is necessary because the address by
itself does not always provide sufficient information to deter-—
mine unambiguously the state of execution after a GOTO-statement
has been carried out (see the section "Entry Values and Environ-

ments" below) .

Label constants are declared by the appearance of a label

as a statement-name , as in

BOOK_FOUND: VOLUME

FOLIO (J);

which declares BOOK_FOUND as a label constant. In fact, label
constants cannot be declared in any way other than by their
appearance as statement-names. Not all statement—-names declare
label constants, however; some of them declare entry constants
and format constants. The type of constant declared by a
statement-name is determined by the type of statement to which
it is attached. Label variables are declared using the

attribute LABREL, e.g.,

22

DECLARE LABVAR LABEL VARIABLE;

A statement-name can be written with one or more subscripts,
and by this convention constant arrays of labels can be created.
For instance, if a block contains executable statements with the
statement-names CASE (-1), CASE(0), CASE(l), and CASE(2), the
appearance of these statement-names constitutes a declaration
of CASE as a constant array of labels, whose single subscript
has a lower bound of -1 and an upper bound of 2 . It is quite
permissible to attach several of these subscripted statement-
names to a single statement, to give them in nonincreasing
order, to attach them to statements also bearing nonsubscripted
statement—-names, or even to omit some index values from the set.
For instance, if CASE(0) were omitted from the above set, the
set would still be valid, but a transfer to CASE (0) would be
in error. Typically, an element of a constant array of labels

is selected by a statement such as
GO TO CASE (CASE_NUMBER) ;

Entries

An entry is an entry point to a procedure (see "Procedures,
Scopes, and Environments" below) treated as a datum. An entry
constant i1s declared by the appearance of a statement-name
attached to a PROCEDURE-statement or an ENTRY-statement. For

instance,

PROCESS_NAME: PROCEDURE (NAME, SPECS) ;

declares PROCESS_NAME as an entry constant, whose associated

23

value is the (single) entry point to the procedure headed by
the PROCEDURE-statement. Entry values, like label values,
carry environments with them. Entry variables and arrays of
entry constants are available. A typical application of an
entry variable arises in writing a procedure to integrate an
arbitrary function; within the procedure, the function is
declared as an entry variable (and a parameter) , and the

actual function to be integrated is passed as an argument.

When an external procedure references an entry in
another external procedure, then the first procedure must

declare the second explicitly as an entry constant, as in

DECLARE SEARCHVAL EXTERNAL ENTRY (CHARACTER(*))
RETURNS (FIXED) ;

The CONSTANT attribute is assumed by default in this case.
The procedure containing this declaration expects SEARCHVAL
to be an entry to an external procedure, whose expected argu-
ment is a character string of unspecified length, and which

returns a fixed value.

Formats

A format is used to specify the form of data on a dataset
accessed through a stream file (see "Edit-Directed Input-Output"
below). A format constant is declared by the appearance of a

statement—-name on a FORMAT-statement, e.g.,
FMT3: FORMAT (SKIP,3A,X(M),A);

As with labels and entries, format variables and arrays of

format constants are included in PL/I. Format variables

24

are declared using the attribute FORMAT, e.g.,
DECLARE FMTVAR FORMAT VARIABLE;

Since formats can contain references to variables, e.g., the

M in the example FMT3 above, format values carry environments.

Arrays

Two types of aggregates are provided in PL/I: arrays
and structures. An array is a collection of elements all having
the same type; a particular member of the collection is selected
using an appropriate sequence of subscripts. A structure, on
the other hand, is a collection of elements having possibly
different types; a particular member of the collection is
selected by using an appropriate name as the selector. A
powerful feature of PL/I is that it allows aggregates to be
treated as data objects in most contexts, so that it is
possible, for instance, to add two arrays in a single opera-
tion, or to write a procedure that returns a structure as its

value.

An array 1s characterized by a sequence of dimensions;
the dimensionality of the array is the number of its dimensions.
Each dimension has a lower bound and an upper bound, and these

can be arbitrary integers. For example, the declaration
DECLARE MESH(-100:100,200) FLOAT BINARY (40);

declares MESH to be a two-dimensional array. The first sub-
script has lower bound -100 and upper bound 100, while the

second has lower bound 1 (assumed since none is given) and

25

upper bound 200. When reference is made to an element of an
array, the subscripts can be arbitrary expressions, as long as

the values of those expressions can be converted to integers.

As with character strings, bounds can be given by expres-
sions as well as constants. For an array parameter, a pair of
bounds (not a single one) can be given by *. The * can also
be used in a quite different sense to indicate a cross-section
of an array. For instance, MESH(3,*) designates a one-dimaisional
array, with lower bound 1 and upper bound 200, consisting of
those elements of MESH whose first subscript is 3. Any number
of the subscripts in an array reference can be replaced by *'s;

the dimensionality of the resulting array is the number of *'s.

Array variables take on array values . Array values can
arise during the evaluation of an expression, e.g., when two
arrays are added together. Aside from labels, entries, and

formats, there are no array constants in PL/I.

Structures

A structure is a collection of named elements, each of
which can itself be a structure. An example of a two-level

structure declaration is

DECLARE
1 EMPLOYEE_RECORD,

2 NAME,
3 FIRST CHARACTER (10) VARYING,
3 MIDDLE_INITIAL CHARACTER(1),
3 LAST CHARACTER(15) VARYING,

2 ID_NUMBER FIXED DECIMAL(9),

2 SALARY FIXED DECIMAL (7 ,2);

26

The number in front of each component is a level number. The
structure as a whole is at level one. The members of the
level-one structure are the level-two components; those of

the level-two components are the level-three components, etc.
It is possible to write structure declarations using nonconse-—
cutive level numbers, but there is always an equivalent
structure using consecutive ones. In any event, the logical

levels are always consecutively numbered.

The organization of a structured value is just like that
of a structured variable. A structured value contains a number
of components, and can be treated as a single object. For
example, two structures can be added just as two arrays can be

added. There are no structure constants.

The elements of a structure are referred to using
qualified names, although abbreviated versions are permissible.
The fully-qualified names of the elements of the structure

given above are:

EMPLOYEE_RECORD (itself a structure)
EMPLOYEE_RECORD .NAME (itself a structure)
EMPLOYEE_RECORD.NAME.FIRST
EMPLOYEE_RECORD.NAME .MIDDLE_INITIAL
EMPLOYEE_RECORD.NAME.LAST
EMPLOYEE_RECORD.ID_NUMBER
EMPLOYEE_RECORD.SALARY

Abbreviated versions of qualified names are obtained by leaving

out any of the component identifiers other than the last one.

27

These abbreviated forms can be used as long as the result is
not ambiguous, i.e., as long as it cannot refer to more than

one obiject.

Arrays of structures and structures of arrays are possible,
and can be nested to any depth. An example of such a nested

structure is given by:

DECLARE
1 CAR (30),
2 COUNTRY_OF_ORIGIN FIXED DECIMAL(3),
2 DEALERS (40),
3 CITY CHARACTER (20) VARYING,
3 STATE CHARACTER(2),
3 COMPANY CHARACTER (30) VARYING;
In such a nested entity, dimensionality is inherited. Thus
CITY is a two-dimensional array since one dimension is inherited
from CAR and the other from DEALERS. CITY(*,17) designates
the array composed of the elements

CAR (1) .DEALERS.CITY (17)
CAR(2) .DEALERS.CITY (17)

CAR(30) .DEALERS.CITY (17)

In writing a reference to an element of CITY or a similar
object, the subscripts can be written in any position as long
as they are in the right order. Thus CITY(*,17) could also
have been written as CAR(*) .CITY(17) or as DEALERS(*,17).CITY.

28

DECLARATIONS

A declaration associates a set of attributes with an
identifier. The attributes specify the characteristics of the
object denoted by the identifier, such as its data type.

Within an external procedure, a given identifier can be declared
more than once, since the identifier can be declared in differ-
ent blocks, or as a member of different structures, or both.
Nevertheless, each declaration of an identifier designates a
distinct object having its own attributes. The rules for name
resolution determine how an occurrence of an identifier is
resolved to the appropriate declaration (see "Blocks and Scopes"

below) .

Every occurrence of an identifier within an external
procedure must have a corresponding declaration within that
external procedure. Moreover, every declaration must have a
complete and consistent set of attributes. To satisfy these
principles, PL/I includes extensive conventions for defaulting
declarations, i.e., for creating declarations that were not
written in the program and for deducing attributes of incomplete

declarations.

Manifest, Explicit, Contextual, and Implicit Declarations

An identifier that is declared in a DECLARE-statement

written by the programmer is said to be manifestly declared.*

* The term "manifest", though convenient, is not standard
usage.

29

An identifier that is manifestly declared, or that appears in
a parameter list, or appears as a statement name, is said to
be explicitly declared. An identifier appearing in a parameter
list may, but need not, be manifestly declared; an identifier

appearing in a statement-name must not be manifestly declared.

If an identifier appears in a procedure and no explicit
declaration exists for that identifier, then a default declara-
tion is created if possible. The default declaration is placed
in the outermost block of the external procedure. If the
identifier is used in such a way as to suggest what its
attributes should be, it is said to be contextually declared;
otherwise it is implicitly declared. For instance, if the
identifier OUT has not been manifestly declared and the state-

ment
PUT FILE (OUT) LIST (VALX,VALY);

appears, then OUT will be contextually declared with the attri-
butes FILE and CONSTANT. Similarly, if the identifier EXP has

not been manifestly declared and the statement
Y = EXP (A**2);

appears, EXP will be contextually declared with the attribute
BUILTIN. A program is in error if it induces conflicting

contextual declarations.

An implicit declaration is created for an identifier
if it is declared neither explicitly nor contextually. In
this case, the created declaration initially has no attributes,

and all the attributes are added by default later on.

30

Declarations of Statement—-Names

The appearance of an identifier as a statement-name
completely determines its attributes. The data type of the
identifier is determined by the kind of statement named, as
well as whether or not the identifier is subscripted. If the
named statement is an ENTRY-statement or a PROCEDURE-statement
the identifier acquires the attributes ENTRY and CONSTANT; if
the named statement is a FORMAT-statement the identifier
acquires the attributes FORMAT and CONSTANT; and if it is any
other statement the identifier acquires the attributes
LABEL and CONSTANT. Moreover, 1if the statement-name is sub-
scripted, then the identifier acquires an appropriate

DIMENSION-attribute.

The implied declaration of an entry constant cannot be
fully constructed until the types of its parameters are known.
When the parameter types are known, the entry constant can be
characterized completely. At that point the parameter speci-
fications and the RETURNS-attribute , if any, are added to the
declaration. For instance, the statements

FN: PROCEDURE (A,B) RETURNS (CHARACTER(1Z2) VARYING);

DECLARE A CHARACTER (*);
DECLARE B POINTER;

END FN;

lead to the derived declaration

DECLARE FN ENTRY (CHARACTER(*),POINTER)
RETURNS CHARACTER(12) VARYING) CONSTANT,;

31

Attribute Consistency and Completeness

The diagram of Figure 2 can be used to determine whether
a set of attributes is consistent and complete, except for a
few peculiar cases. In this diagram, the following conventions

are followed:
1. Double lines indicate the definition of a term.

2. Rectangles indicate specific attributes. If a rectangle

is dashed, it indicates an optional attribute.
3. Ovals indicate sets of attributes.

4. Horizontal lines indicate sets for which all (nondashed)

elements must be present)

5. Vertical lines indicate sets from which one alternative

must be chosen.

A set of attributes is complete and consistent if it can be
constructed from this diagram; it is consistent if it is a

subset of a complete and consistent set.

The interpretation of this diagram is illustrated by the

attribute set
INTERNAL VARIABLE AUTOMATIC ALIGNED POINTER INITIAL

Starting from the node "consistent-set", a scope and a declara-
tion-type must both be chosen. The scope can be either INTERNAL
or EXTERNAL; INTERNAL is chosen. The declaration-type can be

a variable, a named-constant, etc.; 1t 1is chosen to be a
variable. In that case, the attribute VARIABLE must be present,
as well as a storage-type and a data-declaration. The

storage-type is chosen to be a storage-class; the storage-class

32

adTI04dLNOD TIEVT *

aasvd LYWE0d
|
OILVYLS @oﬁ@ﬁomw@amﬁu 4114
[| _
DILYWOINY AYINI
II e, 2
mmﬁuzmmmuouw 'NOTISNIWIA! —1 INVLSNOD A“mmmumagu-m%@
b — =
[gdawan | DTHANED
|
NALINYEYA | NOILIANOD
o _ |
. NOILI50d ——— QINIJFa | NILIING

o e e w e om — . ~

AmmMHuaommuoumv Awwmpmzou|ﬁ®€mmv TYNHALX A

~

i1
Qoﬁ&u%wwxmum%»u;mmmuﬁw, ATEYINVA E TYNIIINI
wmmuecoﬂumpmaOWWV!!AWMMMMMHYHHHLMWmuucmumHmQ%W.

5398 93NQTI3IY JUDISTSUOD pue d3a1dwod 7 sanbtg

[XdTaWod |

I avayg |
q!
opou AT J=={_oamiord)
[ONIZYVANON | HALOVUVHD |

i]

[ONIXIYA | [114 |
L &\ butays .Mv
XATIWOD | [MIYWIDAA | | _ eawqm _
J]

HETECT NId L mmme
Il

onmHummmnllllAMH spouw HV!AMI mﬂmom HViIAHW aseq HYHHHHAMMwoezuﬂumHv
Awawunﬂmcoﬂumusmemmv

mwwpthSOﬁumuz&Eoucomv
1

mmmutamcoﬁumuzaEMMv
i

A“ om»ucmum%u

<
™

aATT

*
[zanronyLs QENDITYNA

_ |

AmHeHzH «ll ad&3- muwwwv | aanorv

- = 1
htllilllthucmEcmﬂHmMVIIIIIIIIJonmzmzHoTnuuuuuhmOHumHuomm@umummv

penutjuo) ‘"z 2Inbtd

Jovadn

A AAA :;,eummHo ~ meaaaso_
1
oo

j QIAUM TM.@HHZSDG&W _ LOdNI _

P o r)\ QIODT TAHumm;@uoowwv

" INTH nd100
|TTadNT
rllllligzmmmem ummnEmmuumwv
-
1 INIKNOYIANG Tluwmlcawunwuumm%swwwww

]
— — JE—

N JASII0 _ 0
, I
NMAINIOL u

ril;ﬁHHHHWII!A“»oumuQM ﬂv
|

" qv00T e 7advT |

- o - — —d
{Lvwdod |

- - - = =y
. SNOILdO ——— SNYALAY pe———| ANING

- — — —

mﬁhuaamagﬂumwmmﬂeuﬁww

panuTiuo) -z 2anbitg

is chosen to be AUTOMATIC. The data-description may, but

need not, contain DIMENSION; in this case it does not contain
DIMENSION. The data-description must also contain an alignment,
chosen to be ALIGNED, and either a data-type with optional
INITIAL, or STRUCTURE. In this case, INITIAL is present

(the actual initial values are ignored). The data-type 1is
chosen to be noncomputational. Of the alternatives for non-
computational-type, locator is selected; of the alternatives
for locator, POINTER is selected. Thus the entire set of
attributes is shown to be complete and consistent. (The order

in which the attributes are given is immaterial.)

Not all consistency violations are shown up by reference

to this diagram. For example, the combination
AUTOMATIC EXTERNAL

and the combination
STATIC LABEL INITIAL

are both invalid, but pass the test of the diagram. Specific
auxiliary rules are needed in order to disallow these and
similar cases. The requirement for completeness is relaxed

for the case of file constants, i.e., declarations with the
attributes FILE and CONSTANT; although the file-description-set

must be consistent, it need not be complete.

Certain attributes either permit or require subspecifica-
tion; these are listed in Table 3. For example, the BASED
attribute permits, but does not require, the subspecification

of an auxiliary pointer (see "Based Storage" below) , while the

36

Table 3. Attributes Requiring or Permitting Subspecification

A. Subspecification Required

Attribute Required
Specification

CHARACTER length
BIT length
AREA size of area
DIMENSION dimensionality
RETURNS type of returned wvalue
PRECISION number-of-digits, possible scale-factor
PICTURE picture specification
GENERIC generic specification
ENTRY with CONSTANT parameter types
POSITION position count
DEFINED base variable
LIKE likened variable

B. Subspecification Permitted

Attribute Permitted
Subspecification
BASED basing pointer
OFFSET area
ENTRY with VARIABLE parameter types

37

CHARACTER attribute requires the subspecification of a string
length.

The ENTRY-attribute and the RETURNS-attribute themselves
contain attribute sets as subspecifications . These attribute
sets are known as descriptors, and must also be complete and
consistent. The descriptors in the ENTRY-attribute describe
the parameters expected by a procedure, while the descriptors
in a RETURNS-attribute describe the value returned by a proce-
dure.* To be complete and consistent, a descriptor must be
derivable from the "data-type" node in the diagram of Figure 2,
but may optionally contain the MEMBER-attribute. The descriptor
for a structure as a whole looks like the declaration of a
structure variable with the identifiers left off, e.g.,

DECLARE GENFUNC ENTRY (

1 (),

2 FIXED BINARY,
2 CHARACTER (30) VARYING);

Standard and User Defined Defaults

The PL/I defaulting rules specify how an incomplete but
consistent set of attributes is to be completed. Although
there is a standard set of defaulting rules, the DEFAULT-
statement can be used to override them. The defaulting rules,
whether standard or user-defined, consist of a predicate and
a default attribute set. The predicate indicates a test to

be applied to the attributes already present in the declaration

* Since procedures can accept structures as arguments and
can return structures as values, the specification of a
single parameter or of a returned value can contain more
than one descriptor.

38

(or descriptor), while the default attribute set indicates
additional attributes to be supplied provided that they are
consistent with the ones already present. Inconsistency, in
this case, is not an error; it simply means that the default

is not applied.
The principal standard defaulting rules are:

1. Add the attributes FIXED, REAL, and BINARY. For instance,if FIXED alone
is present, REAL and BINARY are added *

2. If the arithmetic attributes are present but no precision
has been specified, add an implementation-defined precision
whose subspecification depends on the arithmetic attri-

butes already present.
3. If CHARACTER or BIT is present, assume NONVARYING.

4. If CHARACTER or BIT is present but no length has been
specified, assume a length of 1. If AREA is present but
no area size has been specified, assume an implementation-
defined value for the area size. If POSITION is present

but no count has been specified, assume a count of 1.

5 If neither VARIABLE nor CONSTANT has been specified,
assume VARIABLE unless ENTRY or FILE is present. If ENTRY
or FILE is present by itself, assume CONSTANT. If ENTRY
or FILE is present along with other attributes, the default

depends on what those other attributes are.

6 If FILE and CONSTANT, or ENTRY and CONSTANT, or CONDITION is present,
assume that the scope is EXTERNAL; in all
other cases assume that it is INTERNAL.

* This rule differs from the one used in the well-known IBM
implementation of PL/I.

39

7. If EXTERNAL is present, assume that the storage class is
STATIC; in all other cases assume that it is AUTOMATIC.

8. If CHARACTER or BIT is present, assume UNALIGNED;

otherwise assume ALIGNED.*

As a consequence of the defaulting rules, an implicitly declared
identifier, which starts with an empty attribute set, will

acquire the attribute set

REAL FIXED BINARY PRECISION (di,0) VARIABLE INTERNAL
AUTOMATIC ALIGNED

Here di, 1s the implementation-defined default number-of-digits
for the attribute combination FIXED BINARY. Similar constants
d2,d3, and dsa are specified for FIXED DECIMAL, FLOAT BINARY,
and FLOAT DECIMAL.

The DEFAULT-statement contains a predicate and one or more
default attribute sets. Declarations are completed by applying
the user-supplied DEFAULT-statements in the order that they
appear in the program, and then applying the system default
rules. Unlike DECLARE-statements, DEFAULT-statements are order-—
dependent. A default attribute set is added if and only if
the appropriate predicate is satisfied and none of the elements
in the set leads to a conflict. The predicate can include both
attributes and identifier ranges, indicated by the keyword
RANGE. The predicate is formed as a boolean combination of
attributes and ranges. RANGE(*) is satisfied by any identifier,
but not by a descriptor. RANGE (al:a2) 1is satisfied by any

* This rule does not apply to structures. The alignment of a
structure, if given explicitly, is passed down to all element-
ary members of the structure unless a conflicting alignment
is given at a lower level.

40

identifier starting with a letter between al and a2 inclusive,
while RANGE (init) is satisfied by any identifier starting

with init. For instance,

DEFAULT (RANGE (AB) |FLOAT & —"BINARY) COMPLEX STATIC;
applied to the declaration

DECLARE AB35 FIXED;
yields

DECLARE AB35 FIXED COMPLEX STATIC;
and applied to the declaration

DECLARE XYz FLOAT DECIMAL;
yields

DECLARE XYZ FLOAT DECIMAL COMPLEX STATIC;
However, it has no effect when applied to

DECLARE AB35 REAL FIXED;

since COMPLEX conflicts with REAL. It also has no effect when

applied to
DECLARE XYZ FLOAT BINARY;
since the predicate is not satisfied.

The LIKE-Attribute

The LIKE-attribute can be used to copy part of a structure
declaration into another declaration. It is useful when a
program uses many similarly organized structures. For instance,

if a program includes the declarations

41

DECLARE
1 ASSEMBLY BASED,
2 NEXT_PART POINTER,
2 FIRST_COMPONENT POINTER,
2 DESCRIPTION,
3 PART_NUMBER PICTURE 'X(5)9',
3 COST FIXED DECIMAL(6,2) ;
DECLARE 1 GROUP (20) STATIC LIKE ASSEMBLY;

then the second declaration is equivalent to
DECLARE
1 GROUP (20) STATIC,

2 NEXT_PART POINTER,

2 FIRST_COMPONENT POINTER,

2 DESCRIPTION,
3 PART_NUMBER PICTURE 'X(5)9',
3 COST FIXED DECIMAL(6,2);

The LIKE-attribute causes copying of members only; attributes
at the level of the LIKE-attribute are not copied. 1In this
example, a reference to GROUP (20) .NEXT_PART requires that the
qualifying identifier GROUP be included, since otherwise the
reference would be ambiguous. This behavior is a general

property of structures declared using the LIKE-attribute.

42

EXPRESSIONS, TYPE CONVERSION, AND ASSIGNMENT
The kinds of expressions acceptable in PL/I are similar

to those found in most higher-level languages. These are:
literal constants
references to variables and named constants
parenthesized expressions
function calls
prefix expressions
infix expressions
references to builtin functions

The only kinds of literal constants recognized are arithmetic
constants and string constants. Other constants are obtained
either as named constants, e.g., statement-names, or as the
results of builtin functions, e.g., NULL. References to
variables may have subscripts, pointer qualifications (see
below), and name qualifications. An example of a reference

with all three 1is
PT-> X(I,J).B

Although the pointer—qualifier symbol —-> looks like an operator

it is not treated as one (see "Based Storage" below).

Parentheses are used within expressions in three ways:
to designate subscripts of arrays, to designate arguments of
functions, and to group components of expressions containing
operators. When an expression containing operators, e.g., +

and *, is enclosed in parentheses, it is treated as a single

43

entity —— this is the usual convention in mathematical nota-
tion. When a reference to a variable is enclosed in paren-—
theses, it is then treated as a general expression rather
than as a variable. This rule only makes a difference in

the context of a procedure call.

A function call has two parts: the reference to the
function and the argument list. The function reference need
not have the form of a single identifier, since functions
can return entry values, can be subscripted, and can be
members of structures. Function calls, subscripted references,
and references to builtin functions all have the same syntactic
form, so a knowledge of the relevant declarations is necessary
in order to distinguish them. An example of a rather complex

function call is
A.B(3) (I, "NEXT') (X)

In this case, A.B(3) is an element of an array of structures
(or a structure of arrays) containing an entry wvalue. That
entry value designates a procedure that expects two arguments
—-— in this case, I and the string constant 'NEXT' -- and
itself returns an entry value. The entry value obtained from
this second procedure is then applied to the argument X. A
function expecting no arguments is called by using an empty

argument list. Thus
NEXT_SUIT()

would call the procedure NEXT_SUIT with no arguments.

If E is a procedure that itself returns an entry value, then

44

F(E)

indicates that F is to be called with an argument consisting

of the entry value associated with E, while
F(E())

indicates that F is to be called with an argument obtained
by calling E as a function of no arguments. This convention
is somewhat different from the one used in Algol 60 and many

of its descendants.

Function calls are discussed in more detail under

"Procedures, Scopes and Environments" below.

Prefix and Infix Expressions

A prefix expression consists of an expression preceded by
a prefix operator, while an infix expression consists of two
expressions with an infix operator between them. When an
expression contains a string of operators, the meaning is
determined by the precedences of the operators. Those opera-
tors with highest precedence are applied first, then those of
next highest precedence, etc. The infix operators, grouped

by precedence from high to low, are:

* %

Table 4 summarizes the meanings of the operators.

45

Table 4. PL/I Operators and Their Meanings

Infix Operators

el exponentiation

* multiplication

/ division

+ addition

- subtraction

|| concatenation

= equal

= not equal

< less than

> greater than

<= less than or equal
>= greater than or equal
< not less

> not greater

Prefix Operators

+ 11
—
[
9]

[J
3
O
+

46

When a sequence of adjacent operators, all of the same prece-
dence, appears, the operators are applied from left to right
except in the case of **, which is applied from right to left.

Thus
A * B / C ** D** E
is interpreted as
(A * B) / (C ** (D ** E))

Prefix operators are always applied first unless they conflict
with the ** operator; in that case the ** is applied first,

so that
_ _A**3
is interpreted as
- (A ** 3)
even though
- A * 3
is interpreted as
(= A) * 3
There are five arithmetic operators in PL/TI:

+ addition

— subtraction

* multiplication
/ division

** exponentiation

In order to apply any of the first four, the operands must
first be converted to a common base, scale, and mode according

to the following rules:

47

Base: binary i1if either operand binary, otherwise decimal

Scale: float if either operand float, otherwise fixed
Mode: complex if either operand complex, otherwise real
The operands need not have the same precision, however. The

rules for the results of these operations assume that there
is a maximum value N for the number-of-digits of the result.
The "precision rules" then give the number-of-digits (and,
for the case of fixed, the scale-factor) of the result.

They are arranged so that digits on the right are never
thrown away except in the case of division, where it cannot
be avoided. If the operands are float, then the number-of-
digits of the result is the maximum of the numbers-of-digits
of the operands. Otherwise, assume that the two operands,
which are necessarily fixed, have precision (p,q) and (r,s)
respectively. The result precision (m,n) for the four opera-

tions is given by:

+,— m = min(N, max(p-gq,r-s) + max(qg,s) + 1)
n = max (g, s)
* m = min (N, p+r+1)
n = gt+s
/ m = N
n = N-p+g—-s

Should the result value exceed the capacity of the result
precision, the FIXEDOVERFLOW-condition is raised, indicating

an error (see "ON-Units and ON-Statements" below).

The situation with regard to exponentiation is somewhat

more complicated. Suppose that the formula x ** y is being

48

computed. If either x or y is float, the result is float,
and the result precision is that of p. If x is real and
fixed, and y is a small integer constant, then the result
is also real and fixed, and the precision of the result
is given by:

m= (p + 1) vy -1

n=gqg=*y
In any other case where both x and y are real, the result is
real. If either x or y is complex, the result is complex.

In certain cases, such as x real and fixed with a negative

value and y not an integer, an error is indicated.

The comparison operators are:

= equal

= not equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to
o< not less than

> not greater than

The operators <= and 7> are equivalent, as are the operators
>= and 7<; 7> and 7< are included mainly for intellectual

compatibility with COBOL, which uses the phrases NOT GREATER

and NOT LESS. All of the comparison operators return a
one-bit wvalue: 'l'B if the comparison is satisfied, and '0'B
if it is not. The equality and inequality comparisons can be

applied to any type of data, although for most of the non-
printable types both operands must have the same type. (The

49

only exception is that pointers can be compared to offsets.)

The comparison operators that test for inequality cannot
be applied to complex arithmetic data or to nonprintable data,
but they can be applied to real arithmetic data, to pictured
data, and to strings. The meanings of these operators
applied to arithmetic data are the usual ones; a numeric
pictured datum is treated as the numeric value that it repre-
sents. When character strings of unequal length are compared,
the shorter one is filled on the right with blanks to bring it
to the same length as the longer one. The ordered comparisons
are then done left to right on the basis of the implementation-—
defined collating sequence, which defines an order for the
individual characters. For instance, the letters are ordered
alphabetically and the digits numerically. Two character
strings compare equal if they are identical after the shorter
one has been blank-filled on the right. The ability to
perform ordered comparisons of character strings is particu-
larly useful in applications that involve sorting names.
Similar rules apply to bit strings: If two bit strings are
of unequal length, the shorter one is filled on the right with
zero—bits prior to the comparison. If the strings differ, the
comparison is done bit-by-bit from the left with the rule that

a one-bit is greater than a zero-bit.

If the two operands of a comparison have different types,
they are converted to a common type. If one has an arithmetic
type, the other is converted to an arithmetic type. If neither

has an arithmetic type, but one has a character type and the

50

other has a bit type, the bit-type operand is converted to

character.

The concatenation operator, "||", is used to put two
strings together. For instance, the value of

'"AVER' || 'AGE'
is the string 'AVERAGE'. If one operand is a bit string and

the other is a character string, the bit string is converted

to a character string (as it is for comparisons)

There are also three logical operators:

& and
| or
- not
'6¢' and "|" are infix operators, while “” is a prefix operator,

The operands of these operators are expected to be bit strings,
so that if they have any other type, they are converted to bit

strings.

Builtin Functions

PL/I includes a large variety of builtin functions. A list
of these, together with a brief explanation of what each one
does, is given in Table 5. Some of the more important builtin

functions will now be described.

The first group of builtin functions deals with strings.
The descriptions of the functions will be given for character

strings, but the definitions for bit strings are analogous.

The builtin function LENGTH (X) returns as its value the

51

actual length of the character string x. It is useful in
two contexts: determining the length of a string passed as

a parameter, and determining the current length of a varying
string. In both of these cases, the declaration of the
string does not provide enough information to determine the

length.

The builtin function SUBSTR(x,y,z) 1is used to extract a
portion of a string. x is the string, y is the position of
the first character to be extracted, and z is the number of
characters to be extracted. If z is omitted, all of the string

starting with the character at position y. is extracted. The

null string is a possible result. SUBSTR can also be used
on the left side of an assignment. For example, given the
statements

DECLARE CHAR8 CHARACTER(8);

CHARS = 'TOM JONES';
SUBSTR (CHARS8,2,5) = '"IM HA';
the resulting value of CHARS is 'TIM HANES '. A builtin function

used on the left side of an assignment in this way is called

a pseudovariable.

The builtin function INDEX(x,y) finds the first position
within the string x where the string y occurs. If y does not

occur at all within x, the value of INDEX is 0. For example:

value of INDEX ('SYNCOPATION', 'COP') = 4

value of INDEX ('SYNCOPATION', 'COPE') = 0

The builtin function VERIFY (x,y) finds the first character in

52

Table 5. SUMMARY OF THE PL/I BUILTIN FUNCTIONS

In this table, descriptions of the various PL/I builtin
functions are given. These descriptions are intended to
indicate the intent of each function, and in some cases the
principal restrictions on their arguments. In the descriptions
of the functions, square brackets are used to indicate optional

arguments.

1. ABS(x) — the absolute value of x. If x is complex,

the value is its modulus.
2. ACOS(x) — the arc cosine of x. x must not be complex.

3. ADD(x,vy,p, [g]l) - the sum of x and y with precision
(p,q) or (p,0) if the result is fixed, and with precision

(p) if the result is float.

4. ADDR(x) — a pointer to the generation of x.
5. AFTER(sa,ca) - the portion of the string sa that follows
the first occurrence of ca within sa. If ca does not

occur within sa, the value is the null string.

6. ALLOCATION (x) - the number of generations of the controlled

variable x that currently exist.
7. ASIN(x) - the arc sine of x. x must not be complex.

8. ATAN(y[,x]) — the arc tangent of y/x if x is given,

and of y otherwise.

9. ATAND (y[,x]) — the arc tangent in degrees of y/x if x 1is
given, and of y otherwise. x and y must be real.
10. ATANH (x) - the hyperbolic arc tangent of x.

53

11.

12.

13.

14.

15.

l6.

17.

18.

19.

20.

21.

22.

23.

24.

Table 5. Continued

BEFORE (sa, ca) - the portion of the string sa that precedes
the first occurrence of ca within sa. If ca does not

occur within sa, the value is the null string.

BINARY (x[,pl[,g]l]]l) - the result of converting x to binary,

with precision determined by p and g if one or both is given.

BIT(x, [1e]l) - the result of converting x to bit, with

length le if Ie is given.

BOOL (x, vy, ca) — the boolean function of x and y whose truth

table is specified by the four-bit value ca.

CEIL(x) — the least integer greater than or equal to x.

x must not be complex.

CHARACTER (sal, le]) - the result of converting sa to charac-

ter, with length lIe if le is given.

COLLATE() - the implementation-defined collating sequence,

as a character string.

COMPLEX (x, y) — the complex number x + 1 V.
CONJG (x) - the complex conjugate of x.
COPY (sa, le) — the string consisting of le copies of sa

concatenated together.
COS (x) - the cosine of x.

COSD(x) — the cosine of x, with x given in degrees.

x must not be complex.
COSH (x) - the hyperbolic cosine of x.

DATE() - the current date, in the form yymmdd, where
yy 1s the year, mm is the month, and dd the day.

54

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

DECAT (sa, ca,pa) - a portion of the string sa. sa is
partitioned into three pieces by the first occurrence
of ca. The three-bit string pa specifies which of the
three pieces (before ca, ca itself, after ca) are to be

concatenated to form the value of DECAT.

DECIMAL (x[,pl,ql]) - the result of converting x to deci-
mal, with precision determined by p and g if one or both

is given.

DIMENSION (x,n) — the number of elements in the n-th
dimension of the array x, defined as HBOUND (x,n) -

LBOUND (x,n) + 1.

DIVIDE(x,y,p [,9]) - the quotient of x and y with
precision (p,q) or (p,0) if the result is fixed, and

with precision (p) if it is float.

DOT(x,yl,pl,g]l]) - the dot product of x and y, with

precision determined by p and g if one or both is giwven.

EMPTY() - the empty area-value.
ERF (x) - the statistical error function of x.
ERFC(x) - the complement of the statistical error func-

tion of x.

EVERY (x) - the value 'l'B if every bit in x is a one-bit,
and '0'B otherwise. For this purpose, all scalar-elements

of x are converted to bit.
EXP (x) — the exponential function of x.

FIXED(x, pl,qg]) - the result of converting x to fixed,

with precision determined by p and, if it is given, q.

FLOAT (x,p) - the result of converting x to float with

precision (p).

55

37.

38.

39.

40.

41.

42.

43.

44 .

45.

46.

47.

48.

49.

50.

51.

FLOOR (x) — the greatest integer less than or equal to x.

X must be real.

HBOUND (x,n) — the upper bound of the n-th dimension of

the array x.

HIGH(le) - a string of Ie copies of the highest character

in the collating sequence.
IMAG(x) - the imaginary part of the complex number x.

INDEX (sa, ca) - the position within the string sa of the
first occurrence of the string ca. The value is 0 if ca

does not occur within sa.

LBOUND (x,n) - the lower bound of the n-th subscript of

the array x.
LENGTH (sa) - the length of the string sa.

LINENO (fn) - the current line number (within a page) of
the print file fn.

LOG(x) — the natural logarithm of x.

LOG10 (x) - the logarithm to the base 10 of x. x must

not be complex.

LOG2 (x) — the logarithm to the base 2 of x. x must not

be complex.

LOW(le) — a string of le copies of the lowest character

in the collating sequence.

MAX (x1, X2, ..., X%Xn) — the largest of the numerical wvalues
of the xi . The xi. must not be complex.
MIN(x1, X2, ..., X%Xn) — the smallest of the numerical values
of the xi. The xi must not be complex.

MOD (x,y) — the value of x modulo y. x and y must not be
complex.

56

52.

sion

MULTIPLY (x,v,Pl,gq]) — the product of x and y with preci-
(p,g) or (p,0) if the result is fixed, and with

precision (p) if it is float.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

NULL() - the null pointer.

OFFSET (pt,ar) - the result of converting the pointer

pt to an offset within the area ar.

ONCHAR() - the leftmost erroneous character within the
current ONSOURCE-value . When the conversion-condition

is raised, the current ONSOURCE-value is set to the string
whose conversion was being attempted, and it retains this

value during the execution of the associated on-unit.

ONCODE() — an implementation-defined integer indicating
the nature of the on-condition associated with the current

on—-unit.

ONFIELD() - the contents of an erroneous field encountered
during data-direct input, causing the name condition to be

raised.

ONFILE() - the name of the file being processed when an

input-output condition was raised.

ONKEY () - the name of an erroneous key that caused the

KEY-condition to be raised during record input-output.

ONLOC() - the name of the procedure entry-point active

when the current on-unit was raised.

ONSOURCE () — the current onsource-value. When the CONVER-
SION-condition is raised, the current ONSOURCE-value is

set to the string whose conversion was being attempted,

PAGENO (fn) - the number of the current page within the
print file fn.

57

63.

64.

65.

66.

67.

68.

69.

70.

71.

2.

73.

4.

75.

76.

POINTER (ofe, ar)—- the result of converting the offset

ofe within the area ar to a pointer.

PRECISION (x,pl,q]) - the result of converting x to
precision (p,q) or (p,0) if x is fixed, and to precision

(p) 1if x is float.

PROD (x) - the product of all the elements of the array x.
REAL (x) - the real part of the complex number x.
REVERSE (sa) - the bits or characters of the string sa

taken in reverse order.

ROUND (x, n) - the result of rounding up the numerical value
of x. If x is fixed, the result has a scale-factor of n;
otherwise the result has a number-of-digits of n.

n must be an integer constant.

SIGN(x) — the wvalue +1, 0, or -1 according to whether x is

positive, zero or negative
SIN(x) — the sine of x.

SIND (x) — the sine of x, with x given in degrees.

X must not be complex.

SINH (x) - the hyperbolic sine of x.
SOME (x) — the value '1l'B if at least one bit in x is a
one-bit, and '0'B otherwise. For this purpose, all

scalar—-elements of x are converted to bit.
SQRT (x) — the square root of x.

STRING (sa) — the result of concatenating together the

scalar-elements of sa after converting them to bit.

SUBSTR (sa, st[,1le]) — the substring of sa consisting of le

characters or bits of sa beginning with the st-th one.

58

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Table 5. Continued
If le is omitted, the substring consists of the

characters or bits from the st-th one to the last.

SUBTRACT (x,y,pl,q9]l) - the difference of x and y with
precision (p,q) or (p,0) if the result is fixed, and

with precision (p) if it is float.

SUM(x) — the sum of all the elements of the array x.
TAN(x) — the tangent of x.
TAND (x) — the tangent of x, with x given in degrees.

x must not be complex.

TANH (x) — the hyperbolic tangent of x.
TIME() - the current time, in the form hhmmss where
hh gives the hour, mm gives the minute, and ss...s gives

the second carried to an implementation-defined number of

fractional decimal places.

TRANSLATE (sa, ral,pal) - the result of replacing, within
sa, each character of pa by the corresponding character

of ra. If pa is omitted, it is taken to be the collating

sequence
TRUNC (x) — the result of truncating x to the nearest integer
in the direction of zero. x must not be complex.

UNSPEC (x) — the internal representation of x, as a bit string
VALID (sa) - the value 'l1'B if the current value of the

pictured variable sa conforms to the picture and '0'B

otherwise

VERIFY (sa,ca) — the position within the string sa of the
first character or bit of sa that does not appear within ca
ca thus behaves as a set rather than a sequence. If all
characters or bits of sa occur within ca, the value of VERIFY

is O.

59

the string x that is not a character of the string y. If all
the characters of x appear in y, then the value of VERIFY is 0.

For example:
value of VERIFY ('CABDRIVER', 'ABCDE') = 5
value of VERIFY('CEDE', '"ABCDE') = 0

The builtin function REVERSE (x) reverses its argument, so for

example:
value of REVERSE ('GALLOP') = 'POLLAG'

This function is useful in right-to-left scanning; the string
to be scanned is reversed and then scanned left to right. The
builtin function COLLATE() (the "()" indicates that COLLATE

is a function of no arguments) has as its value the implemen-
tation-defined collating sequence, i.e., the string consisting
of all acceptable characters ordered from least to greatest.

The builtin function COPY (x,n) creates n copies of the string x.

For example,
value of COPY('CHA',3) = 'CHACHACHA'

The arithmetic builtin functions enable the user to control
the attributes of arithmetic results. These fall into two
groups. First, there are builtin functions ADD, SUBTRACT,
MULTIPLY, and DIVIDE that behave like the corresponding infix
operators, except that the precision of the result is explicitly

specified. For example,
MULTIPLY (M1,M2,5, 3)

produces a result whose precision is (5,3), and whose remaining

attributes are determined by the attributes of M1 and M2.

60

Second, there are builtin functions FIXED, FLOAT, BINARY, and
DECIMAL that convert their argument to the specified attribute

with the specified precision. For instance,
DECIMAL (M1, 4,2)

converts Ml to fixed decimal with precision (4,2); the mode of

the result is the mode of M1.

The conversion builtin functions FIXED, FLOAT, BINARY, and
DECIMAL can be used not only to convert among arithmetic types
but also to convert from the string types. The rules for the
conversion are discussed under "Type Conversion" below. There
are further conversion functions REAL(x) which converts x to
real type (and for a complex number, takes its real part);
IMAG(x), which takes the imaginary part of the complex number
x (and yields if x is not a complex number); and COMPLEX (x,V),
which converts x and y to a common real type and then forms
the complex number x + iy . For conversion to string types, the
builtin functions CHARACTER(x,n) and BIT(x,n) can be used.
CHARACTER (x,n) first converts x to character type and then
adjusts the length of the result to n either by truncating on
the right or by filling on the right with blanks. BIT behaves
similarly, either truncating or filling with zero-bits. The
second argument of either of these functions may be omitted,

in which case no truncation or filling is done.

The mathematical builtin functions included in PL/I are
listed in Table 6. With the exceptions indicated, they can
accept arguments of any arithmetic type, including complex

types. For some mathematical functions there is more than one

61

possible range for the result value, and the choice of principal

value is specified in the table.

The function ATAN (arctangent) can accept either one or
two arguments. The two-argument version is useful in converting
rectangular coordinates to polar coordinates. If the rectangular
coordinates are given by the pair (x,y), then ATAN(x,y) gives
the corresponding polar angle in the range from -T to +T . Since
the value of the tangent function repeats every T/2 radians,

the sign of y is needed to determine the correct value.

A number of the builtin functions fall into no particular
category. The builtin function SUM(x) accepts an array as
argument, and returns as value the sum of all the elements of
the array. The builtin function PROD, for "product", behaves
similarly. The builtin function DOT(x,y) expects its arguments
to be one-dimensional arrays both having the same bounds;
it takes the mathematical dot product of x and y. The builtin
function BOOL(x, vy, z) takes as arguments two bit strings x and
y of arbitrary length, and a third bit string z of length 4.

z determines a boolean function that is applied to x and y.
If z is the sequence bib2b3bs , then the function is defined

by:

bit of x bit of y result

= = o o
= o = o
o o ,U‘ ,6

(O8] N —

62

Table 6.

PL/I Mathematical

Name Description

ABS absolute value

ACOS arc cosine

ASIN arc sine

ATAN1 arc tangent (one argument)

ATAN2 arc tangent of quotient
(two arguments)

ATAND1 arc tangent of gquotient
in degrees (one argument)

ATAND2 arc tangent of quotient
in degrees (2 arguments)

ATANH hyperbolic arctangent

COoSs cosine

COSD cosine in degrees

COSH hyperbolic cosine

ERF error function

ERFC complement of error func-
tion

EXP exponential

LOG natural logarithm

LOG2 Base 2 logarithm

LOG10 base 10 logarithm

SIN sine

SIND sine in degrees

SINH hyperbolic sine

SQRT square root

TAN tangent

TAND tangent in degrees

TANH hyperbolic tangent

63

Complex
Arguments?

Mathematical Builtin Functions

Constraints on
Result R
(Principal Value)

yes
no
no

yes

no

no

yes

yes

no

yes

no

no

yes

yes

no

no

yes

no

yes

yes

yes

no

yes

R >0
0 <R <T
-TM/2 <R < M/2

-T/2 < R < /2
(real argument)

-t < Re(R) <M

(complex argument)

-90 < R £ 90

-180 < R £ 180

-l < Im(R)

IA
b= |

Re(R) > 0 or
Re (R)=0 and Im(R)

The builtin function VALID can be used to check the
validity of pictured data, i.e., to ensure that the wvalue
stored in a pictured variable fits the description given by
the picture. VALID(x) returns 'l'B if the pictured variable
x contains a valid wvalue, and '0'B otherwise. Invalid wvalues
can arise since an arbitrary character string can be read
into or assigned to a pictured variable, and ordinarily no

validity check is made at the time of reading or assignment.

The builtin functions EVERY and SOME are useful in
testing properties of aggregates. EVERY(x) returns '1'B if
its argument (after conversion to bit type, if necessary)
consists entirely of one-bits, and '0O'B otherwise. SOME (x) ,
on the other hand, returns 'l1'B if its argument contains at
least one one-bit, and '0'B otherwise. For example, if A is
an array of arithmetic type, then the expression A > 0 will
be an array with a one-bit in each position i where A(i) > 0.
Therefore EVERY (A>0) will return '1l'B if all elements of A
are greater than 0, while SOME (A>0) will return '1l'B if at

least one element of A is greater than O.

Type Conversion

In PL/I it is possible to convert from any printable
type to any other, although for certain values the conversion
may be illegal. Conversions may be invoked either explicitly,
using builtin functions such as FLOAT or CHARACTER, or
implicitly in contexts such as operands of operators or

arguments of functions. For instance, the concatenation

64

operator requires that its operands be strings of the same type
(bit or character), so that the operands must be converted
appropriately —-- even if they are of arithmetic type. The

text of a procedure defines the types of its parameters, and

if the arguments of a procedure do not already have the expect-
ed types, they too must be converted. 1In fact, PL/I provides
implicit conversions in almost every context where conversion

is possible.

The conversions among arithmetic types generally follow
the principle of preserving the meaning of the converted
value. For example, the result of converting the fixed wvalue
7.3 to complex float decimal with precision (8) is
.73000000E+01+0I. 1In conversion to a fixed type when digits
must be dropped, the result value is obtained by truncating
towards 0, although in certain unusual cases an implementation
may produce a slightly different result. When converting
from real to complex an imaginary part 0 of is added, while
when converting from complex to real the imaginary part is

dropped.

The conversion between bit and character is straightfor-
ward; zero-bits correspond to the character "0", and one-bits
correspond to the character "1". A character string to be
converted to bit type must consist entirely of these two
characters, or an error is signalled -- specifically, the
CONVERSION-condition. It is possible for the programmer to
modify the converted value so as to correct the error (see

"Categorization of the ON-Conditions" below) .

65

The most complicated conversions are those between the
string types and the arithmetic types. A character string is
converted to a number by treating the string as the represen-

tation of a number. Thus, given the statements
DECLARE NUMV FIXED DECIMAL(5,2);
NUMV = 'bb2.13E1D';

the string 'Bb2.13E1D' is converted first to the float value
that it represents, and then to the fixed decimal wvalue 21.30.
The blanks surrounding the number are always permissible.

An all-blank value converts to zero. If the character string
does not represent a valid number, then the CONVERSION-condi-
tion is signalled. As in the case of conversion from character

to bit, it is possible for the programmer to correct the error.

Conversion from a number to a character string yields,
in effect, the result of printing the number. Ordinarily that

result includes leading blanks. For instance, the effect of
DECLARE NUMV FIXED DECIMAL (4);
DECLARE CONV_RESULT CHARACTER (20) VARYING;
NUMV = 17;
CONV_RESULT = NUMV;

is to assign the string 'BBBBH17' to NUMV. In most cases the
length of the resulting string is the number-of-digits after
conversion (if necessary) to fixed decimal, plus three.

Three spare positions are needed in order to accommodate a
possible sign, a possible decimal point, and a possible leading

zero.

66

Conversion from an arithmetic value to a bit string is
accomplished by first converting the arithmetic value to real
fixed binary and then converting the integer part of the
value to the corresponding bit string. For instance, convert-
ing the value 12.6 to a bit string yields '001100'B, with an
intermediate conversion from fixed decimal with precision
(3,1) to fixed binary with precision (10,4), (The rules for
obtaining the intermediate precision are somewhat complicated,
but it can be seen that two digits to the left of the decimal
point may require as many as six nonzero bits to represent
their value.) Conversion from a bit string to an arithmetic
type 1s accomplished by treating the bit string as a binary

number, and then converting from that number to the desired
type.

It is also possible to convert from pointer to offset,
or vice versa, provided that an area is given. Thus if AR
is an area and P is a pointer, the expression OFFSET (P, AR)
gives the result of converting P to an offset relative to AR.
Similarly, if OFS is an offset, POINTER(OFS,A) gives the
result of converting OFS to a pointer relative to A. A pointer

can be declared with an area-reference, as in
DECLARE AR2 AREA;
DECLARE 02 OFFSET (AR2);

In this case, 02 can implicitly be converted to a pointer,

and the area AR2 is used in the conversion.

67

Promotion

The PL/I operators, and many of the builtin functions
also, can be applied to aggregates as well as to scalars. When
two aggregates of the same organization, i.e., two structures
with equal numbers of components or two arrays of the same
dimensionality, are used as the operands of an operator, the
result also has that organization, and the result is formed
by combining corresponding components of the operands.

For example, in
DECLARE A(3,4) FIXED BINARY;
DECLARE B(3,4) FIXED BINARY;
DECLARE C(3,4) FIXED BINARY;
A =B + C;

the assignment to A is accomplished by adding B(1,1) to C(1,1),
B(l1,2) to C(1,2), etc., to form a new array of sums with
dimensionality (3,4). The array of sums is then copied into A.
In certain peculiar cases the temporary array containing the

sum is actually needed, and it does not suffice simply to add
the elements of B and C one by one and place the result directly

in A.

It is also possible to combine scalars with structures,
scalars with arrays, and structures with arrays. However, it
is not possible to combine structures having different numbers
of members, or arrays having different dimensionalities. A
scalar is combined with a structure by promoting it to a
similar structure, all of whose members have the same value as

the scalar. Similarly, a scalar is combined with an array by

68

promoting the scalar to a similar array. The case of combin-
ing a structure with an array is more complicated; first the
original structure is promoted to an array of structures, and
later each element of the original array is promoted to a
structure. A simple instance of promotion is given by the
expression A+l, where A is an array of arithmetic type. The
value of this expression is obtained by creating an array of
1's, having the same dimensionality as A, and then adding
this new array to A, element by element. The effect is just

the same as adding 1 to each element of A.

The Assignment—-Statement

The assignment-statement contains a left side, which is
a list of targets, and a right side, which is an expression.
Fach of the targets designates a location capable of receiving
a value. The statement is executed by evaluating the expres-
sion and then storing its value, after appropriate conversion,
into the location designated by each target, in order from

left to right. For instance, the assignment-statement

causes 1 to be stored into A, B(I), and C. The targets of
an assignment-statement may be variables or pseudo-variables.

For instance, the assignment-statement
SUBSTR (TEXT, I, LEN) = WORD;

stores the value of WORD into the indicated substring of TEXT

(after adjusting the size of the value to be LEN). Similarly,

69

IMAG(Z) = SIN(X);

causes the imaginary part of the (necessarily) complex vari-
able Z to be set to the value of SIN(X) , while the real part
of Z is left undisturbed.

Since the type of the value obtained from the right side
of an assignment-statement may disagree with the type of a
target, promotion or conversion, or both, may be necessary.
If the target is a scalar, then the usual rules for scalar
conversion are applied; the type of the target defines the
type to which the value must be converted. If the target is
a structure or array, then the value must be promoted to the
type of that structure or array, by replicating elements as
necessary. Following the promotion, element-by-element scalar

conversion may be necessary. For instance, in the example

DECLARE HVAR (30) FLOAT BINARY;
HVAR = 0;

the scalar value is promoted to an array of 30 fixed zeros.
Each of these is then converted to an appropriate float zero,

and assigned to the corresponding element of the array.”

A variation on the assignment-statement, called
by-name assignment, can be used to assign elements from one
structure to another according to the names of the elements
rather than according to their positions in the structure.

For instance, given the declarations

* In actual practice, the conversion is usually done before
rather than after the promotion. The result is the same.

70

DECLARE

1 RED,
2 BLUE,
2 GREEN,
3 ORANGE,
3 WHITE,
2 BLACK,
2 GRAY ;
DECLARE
1 VIOLET,
2 BLACK,
2 WHITE,
2 GREEN,
3 ORANGE,
3 VIOLET,
2 TAN,
2 BLUE;

the effect of the assignment-statement

RED = VIOLET, BY NAME;

is to perform the individual assignments

RED.BLUE = VIOLET.BLUE;
RED.GREEN.ORANGE = VIOLET.GREEN.ORANGE;
RED.BLACK = VIOLET.BLACK;

Those members not in common between the two structures are
ignored. By—-name assignment can be extended to accommodate

expressions that involve structures.

71

STORAGE TYPES

PL/I provides a variety of ways to manage the storage
of variables. Each variable has a storage type, which can
be either parameter, defined, or a storage class. The parameter
and defined storage types indicate that the variable is an
alias, i.e., an alternate name, for storage that has already
been obtained by other means. The storage classes provide
different ways of allocating and freeing storage; the storage
classes are static, automatic, controlled, and based. The
storage type of a variable is determined by its declaration
after all defaulting of declarations has been done; in most
cases the default is the automatic type. The storage used
to hold the value of a variable is called a generation. A
generation can exist even though it is not currently associated

with any wvariable.

Static Storage

The static storage class is the simplest one. When a
variable is declared to be static, its generation is allocated
at the start of program execution and remains allocated
throughout program execution. When a static variable is
declared within a procedure, the values of that variable are
kept from one call of the procedure to the next. Even in the
case of a recursive procedure, there is just one copy of the
variable, and that copy is available at all levels of recur-
sion. Static storage is much like the standard form of storage

in FORTRAN.

72

Automatic Storage

Storage for an automatic variable is allocated on entrance
to the block where the variable is declared, and freed on exit
from that block. Whenever the block is entered, a fresh gener-
ation is obtained for the variable. 1In practice it sometimes
happens that values of automatic variables are retained from
one block entrance to the next, but this behavior is not any-
thing that the programmer can rely upon. When an automatic
variable is declared within a recursive procedure, a new
generation is created for each level of recursion, and remains
associated with the variable at that recursion level until
the recursion level is terminated. Automatic storage resembles

the ordinary local storage of Algol

Controlled Storage

Controlled storage is explicitly allocated and freed by
the programmer using the ALLOCATE-statement and the FREE-state-
ment. FEach time the variable is allocated, a new generation
for it is created and placed on a pushdown stack; each time the
variable is freed, the generation at the top of the stack is
destroyed. There is one such stack for each controlled variable,
and the current value of the variable is always obtained from
the generation at the top of the stack. In other words, the

generations follow a last-in-first-out rule.

The values of string lengths and array dimensions in the

declaration of a controlled variable can be given by expressions.

73

The expressions are evaluated when a new generation is allocated,
and so the different generations need not all have the same

sizes. For example, suppose that we are given the statements:

DECLARE N FIXED;
DECLARE CONTV CHARACTER (N) CONTROLLED;

N = 5;

ALLOCATE CONTV;
CONTV = 'FIRST' ;
N = 7;

ALLOCATE CONTV;
CONTV = 'SECOND';

If CONTV has not been previously allocated, these statements
will create a stack consisting of two generations. The genera-
tion at the top of the stack will have length 7 and value
'"SECONDH' (the assignment adds a blank on the right) , while
the other generation will have length 5 and value 'FIRST'.

Thus the current value of CONTV will be 'SECONDD'. If the

statements

FREE CONTV;
PUT LIST (CONTV);

are executed, then the generation at the top of the stack will
be destroyed and CONTV will refer to the first generation.
Consequently the PUT-statement will cause FIRST to be printed.

Based Storage

Based variables are useful in creating linked data struc-
tures, and also have applications in record input-output. A
based variable does not have any storage of its own; instead,
the declaration acts as a template and describes a generation

of storage. In order to use the variable to refer to a

74

particular generation of storage, a pointer to that generation
must also be provided. The pointer and the based variable,
taken together, constitute a based reference. In many cases,

the pointer is given implicitly rather than explicitly.

An example of a declaration of a based variable and a
pointer is
DECLARE
1 ARRAY_ELT BASED,
2 ARRAY (10) FLOAT,
2 NEXT_ELT POINTER;
DECLARE AP POINTER;
ARRAY_ELT describes a generation of storage, namely, a struc-

ture containing a float array and a pointer. The based

reference
A —> ARRAY(4)

designates a particular element within the ARRAY_ELT structure
pointed at by the pointer AP , and if AP does not point at such
a structure the reference is invalid. PL/I does not provide
any mechanism for checking that a pointer is indeed pointing

at a generation of the correct type, and so it is entirely the
programmer's responsibility. The errors that result when a
pointer points at an object of the wrong type can often be
extremely difficult to track down.

The statement
ALLOCATE ARRAY_ELT SET (AP);

causes a generation matching the type of ARRAY_ELT to be
created and also causes the pointer AP to point at that genera-

tion. Thus, after this ALLOCATE-statement has been executed,

75

a reference to AP -> ARRAY (4) will be valid. If subsequently

the statement
FREE AP —-> ARRAY_ELT;

is executed (and the value of AP has not been changed in the
meantime), the generation pointed at by AP will be destroyed,
and subsequent references to that generation will be meaning-

less.

In this example, the structure includes not only the
array but also a pointer. That pointer can be used to form
a list of arrays, each one pointing to its successor. An
element is added to the head of the list by allocating it
and setting its NEXT_ELT component to the previous list head.
Similarly, the head of the list is deleted by setting the
new list head to the NEXT_ELT component of the old list head
and then freeing the old list head. One of the main uses
of based variables and pointers in PL/I is constructing lists
such as this one. 1In order to end a list, a special null
pointer is needed, and that pointer is provided by the NULL

builtin function.

It is inconvenient to have to write a pointer with every
based reference. Therefore it is possible to declare an

implicit pointer in the declaration of a based variable, e.g.,

DECLARE BFIX BASED (BFP) FIXED;
DECLARE BFP POINTER;

A reference to BFIX by itself is taken to mean BFP -> BFIX.

Moreover, the statement

76

LOCATE BFIX;
is equivalent to

ALLOCATE BFIX SET (BFP);
and the statement

FREE BFIX;
is equivalent to

FREE BFP —-> BFIX;

The template given by a based variable can be applied to
storage of types other than based. 1In order to obtain a pointer
to a generation, the ADDR builtin function is used. ADDR(V)
yields a pointer to the generation specified by v . As an

example, the statements

DECLARE BCOMP FLOAT COMPLEX BASED;
DECLARE SCOMP FLOAT COMPLEX STATIC;
ADDR (SCOMP) —-> BCOMP = 2EO0 + 3EO0I;

cause the static variable SCOMP to be set to the value 2E0+3EO0I.

The Refer—-Option

The string lengths and array bounds of a based variable
can be specified by expressions as well as by constants. For

example, the declaration
DECLARE BCS CHARACTER (M) BASED;

indicates that the length of BCS is given by the current value
of M. When BCS is allocated, the generation that is created
will have a length given by the current value of M, and when

reference is made to BCS, the value of M must agree with the

77

length of the string in the generation referred to. If a
number of generations, all corresponding to BCS , exist, it
may be difficult to ensure that the current value of M is
correct, since the generations may have different string
lengths. In order to deal with this difficulty, PL/I allows
the string length to be specified along with the string
itself; both the string and the length are stored in a single
structure, sometimes called a self-defining structure. For

instance, the structure

DECLARE
1 STRING_STRUC BASED (STP),
2 LEN FIXED,
2 NEXT POINTER,
2 STRING CHARACTER(LEN1 REFER(LEN)) ;
DECLARE STP POINTER;
could be used to create a list of strings, each having a
different length. When one of these structures is allocated,
the length of the string is obtained as the current value of
LEN1l, and at the same time the current value of LEN1l is auto-
matically stored within the LEN component of the newly created
generation. When one of these structures is referenced, the
length of STRING is obtained from the LEN component of that
structure. Both LEN and LENl are needed, for the following
reason. Were LEN used without the so-called refer-option,
the allocation size would be taken from STP->LEN prior to the
allocation, which would be either undefined or the string
length of a previously allocated generation. On the other
hand, were LENl used, it would then be necessary to reset it

to LEN before referencing STRING, since otherwise the length

78

of STRING would not be correct.

A based variable may contain any number of refer-options
These can be used to specify upper or lower array bounds as

well as string lengths and area sizes.

Left—-to—-Right Correspondence

It is often necessary to create data structures in which
the elements do not all have the same type, as in the following
example:

DECLARE
1 FLOAT_ELEMENT BASED (ELPTR),
2 ELTYPE FIXED, /* 1 FOR FLOAT */

2 NEXT POINTER,
2 VALUE FLOAT;

DECLARE
1 FIXED_ELEMENT BASED (ELPTR),
2 ELTYPE FIXED, /* 2 FOR FIXED */
2 NEXT POINTER,
2 VALUE FIXED;

DECLARE
1 CHAR_ELEMENT BASED (ELPTR),
2 ELTYPE FIXED, /* 3 FOR CHARACTER */
2 NEXT POINTER,
2 VALUE CHARACTER (24);

DECLARE ELPTR POINTER;

A list can be formed containing elements of all three kinds,
storing a type code in ELTYPE in order to distinguish among
them. In order to reference an element, it is necessary to
specify either FLOAT_ELEMENT, FIXED_ELEMENT, or CHAR_ELEMENT
even before the type of the element is known, since a refer-—
ence to ELTYPE by itself is syntactically ambiguous. Therefore

under certain conditions PL/I allows a reference to a component

79

of a based structure even when the variable in the reference
does not agree with the generation being referenced. The
primary condition is that the generation and the variable must
agree up to that component, although there are further detailed
requirements that are beyond the scope of this article. Based
references satisfying this constraint are said to be in
left-to-right correspondence, since they agree reading from
left to right. Thus it is permissible to use
FLOAT_ELEMENT.ELTYPE to refer to, and therefore to test, the
type code stored in any one of the three kinds of elements.
Even if ELPTR is pointing at a generation having the type of
CHAR_ELEMENT, the ELTYPE component of that generation can be
referenced using FLOAT_ELEMENT.ELTYPE. Since ELTYPE is the
first component of each element, the elements necessarily
agree up to that component. Moreover, the NEXT components of
the three kinds of elements can be referenced interchangeably
since in each kind of element NEXT has type pointer and is
preceded by an element having type fixed (with the remaining

attributes defaulted identically in all cases).

Allocation in Areas

A based variable can be allocated in a specified area,

as in the following example:
DECLARE BV FIXED BASED (P);
DECLARE A AREA (200);
ALLOCATE BV IN(A);

Since BV has been allocated in A, the OFFSET builtin function

80

can be used to convert P into an offset relative to A, as
given by

OFFSET (P, A)

The allocation can assign a value directly to an offset

variable, as in the example

DECLARE OFS OFFSET (A);
DECLARE BV1 BASED (OFS) ;
ALLOCATE BV1 IN(A);

Since BVl is based on OFS, the offset of BVl relative to A is
assigned to OFS when the ALLOCATE-statement is executed.

Parameter Storage

A variable acquires the parameter storage type by virtue
of its appearance in a parameter list of either a PROCEDURE-
statement or an ENTRY-statement. The PARAMETER attribute can,
but need not, be declared for a parameter; it is invalid to
use that attribute for any other kind of variable. A parameter
describes a generation of storage passed as an argument to the
procedure that declares the parameter. Thus, allocation and
freeing of the parameter is the responsibility of the procedure's
caller. Since a parameter is allocated before the procedure
declaring it is entered, the procedure itself cannot specify
an initial value for the parameter. See "Arguments and

Parameters" below for further information about parameters.

81

Defined Storage

The defined storage type, like the parameter storage
type, is an alias. The declaration of a defined variable
specifies a base item, which is a portion (or possibly all)
of some other variable. The defined variable provides another
way of referencing part or all of the storage occupied by the
base item. The base item can be part of a variable having any
storage type other than defined or based, and so circular

defining is excluded.

There are three kinds of defining: simple-defining,
isub-defining, and overlay-defining. The sort of defining that
is in effect is determined by the relation between the defined
variable and the base variable. Since defined variables are
aliases, they are not allocated nor freed, nor are initial

values specified for them.
An example of simple-defining is
DECLARE A (5,8) FIXED;
DECLARE ADEF (2:4) DEFINED(A(1,*));

ADEF is defined to consist of the elements A(1,2), A(l,3), and
A(l,4). For simple-defining to be in effect, the attributes

of the defined variable must agree with those of the base item,
except that the array bounds of the defined variable may be more
restrictive than the corresponding bounds of the base item. A
major use of simple-defining is to specify portions of arrays

that are to be passed as arguments to procedures.

82

Isub-defining is in effect when the base item contains
special subscripts, known as isubs. These subscripts have

the form 1SUB, 2SUB, etc. An example of isub-defining is
DECLARE A (10,10) FIXED;
DECLARE ADEF (9,8) DEFINED (A (1SUB+1 , 2SUB+2));

A reference to an element of ADEF is translated into a refer-
ence to an element of A by substituting the first subscript
for 1SUB and the second subscript for 2SUB. For instance,
ADEF (8, 6) refers to A(9,8). The defined array need not have

the same dimensionality as the base item. For example, in

DECLARE B (30,30) FLOAT;
DECLARE BDIAG (30) DEFINED (B(1SUB, 1SUB)) ;

the one-dimensional array BDIAG consists of the diagonal

elements of the array B, while in

DECLARE C(15) POINTER;
DECLARE C2(5,3) DEFINED (C(3*(1SUB-1)+2SUB));

the two-dimensional array C2 is defined onto the one-dimensional

array C.

Overlay-defining is used in order to apply different
descriptions to strings. For the purposes of overlay-defining,
character data and pictures are together considered as
character-class data, while bit strings are considered as

bit-class data. An example of overlay-defining is:

83

DECLARE CS CHARACTER(30);
DECLARE ODEF1 (3) CHARACTER(5) POSITION(10) DEFINED(CS);
DECLARE
1 ODEF2 DEFINED(CS) ,
2 OCS1 CHARACTER(14),
2 0OCS2 PICTURE 'S$$$V.S$S'; /* 6 CHARACTER POSITIONS*/
The relationship between CS and ODEF1l, and between CS and ODEF2,
is illustrated in Figure 3. The POSITION attribute in the
declaration of ODEF1l indicates that the character sequence
comprising ODEF1 starts at character 10 of CS. ODEF (1)
consists of characters 10-14 of CS, ODEF1(2) of characters
15-19 of CS, and ODEF1(3) of characters 20-24 of CS. The
treatment of ODEF2 is similar. In overlay-defining both the
defined variable and the base item must consist entirely of
unaligned data (see "Alignment" below) of the same class, but

a string can be overlaid onto an array as well as the other

way round.

Alignment

The declaration of a variable can specify an alignment,
either ALIGNED or UNALIGNED. An aligned variable is stored so
as to favor speed of access over space; typically, storage for
an aligned variable is placed at a word boundary or other
natural demarcation for the machine at hand. An unaligned
variable is stored so as to favor space over speed of access,
and is arranged in storage so as to minimize unused space.

The default alignment for nonvarying strings and for pictures

is unaligned; for everything else it is aligned.

84

Cs

REERBEEEEERNRYEERETE YRR R R R T R

ODEF1 (1) ODEF1(2) ODEF1(3)

(a) Overlaying ODEF1 onto CS

Cs

[T 2] 3[4 5] 6] 7{ 8] shoh1fp2i 3 alsheh 7 8liopop1p2b3papspeR 7R 9B]

QCs1 0Cs?2

(b) Overlaying ODEF2 onto CS

Figure 3. Example of Overlay-Defining

85

In most situations, the alignment of a variable has no
effect on its behavior. The exception is that aggregates
composed of unaligned strings and pictures are stored with
all their components adjacent, i.e., as a sequence of adjacent
characters (or bits, in the case of unaligned bit strings).
The sequence can then be used as a base item for overlay-

defining.

Initialization

It is possible to specify an initialization for a vari-
able, as long as its storage type is not an alias, i.e., 1is
neither parameter nor defined. The initialization is specified

using the INITIAL-attribute. For example, in the declaration
DECLARE A(40) FIXED INITIAL((40)0);

the array A is initialized to all zeroes. The initialization
can be specified by a single item, by a repeated item, or by
a repeated list, which can itself contain items of these types.

Nesting to any depth is permitted. Thus
DECLARE B (20) FIXED INITIAL(2,3, (5)4, (3) (-1,-2));

causes the first 13 elements of B to be initialized to the

sequence
2344444 -1-2-1-2-1 -2

For a multidimensional array, initializations are performed

with the last subscript varying most rapidly. Thus

DECLARE C(3,2) FIXED INITIAL(1,2,3,4,5,6);

86

causes the initializations

c(l1,1) =1 C(L,2) =2
c(2,1) =3 C(2,2) = 4
C(3,1) =5 C(3,2) =6

Initialization always takes place at the time of alloca-
tion. Thus, for static variables, the initialization is
performed at the start of program execution. For automatic
variables, it is performed at each entrance to the declaring
block. For controlled and based variables, it 1is performed
when an ALLOCATE-statement for the variable is executed, and
is applied to the newly allocated generation. Parameters
and defined variables cannot be initialized with the

INITIAL-attribute

87

PROCEDURES, SCOPES, AND ENVIRONMENTS

Textually, a procedure is a body of code, delimited by
a PROCEDURE-statement at the beginning and an END-statement
at the end. Associated with the procedure are one or more
entry points, each of which provides a way of invoking some
portion of the code contained within the procedure. The entry
points are defined by the PROCEDURE-statement, as well as by
any ENTRY-statements that appear within the procedure. The
characteristics of an entry point include its name, the
number and types of its parameters, and the type of its
returned value, if any. Each entry point, in turn, defines

an entry constant.

A procedure is called either by means of a function
reference within an expression or by means of a subroutine
reference within a CALL-statement. The procedure call itself
consists of an entry-valued reference and an argument list,
possibly empty. For instance, the procedure call
F(X+3, '"INVALID') has an entry-valued reference F and an
argument list consisting of the two arguments X+3 and
'"INVALID'. The value of F must be an entry point of the
procedure being called. Usually F is just the name of the
procedure, but F could also be, for instance, an entry vari-
able. An empty argument list for a function reference must be
indicated explicitly by (). If an entry point returns a
value, then it must be called by a function reference; other-

wise it must be called by a subroutine reference.

88

An example of a procedure definition is:

P1l:
P2: PROCEDURE (QVAL, SIZE) RETURNS (FLOAT BINARY) ;
DECLARE QVAL FLOAT BINARY;
DECLARE SIZE FIXED DECIMAL(4);
DECLARE J FIXED BINARY;
DECLARE TOTAL FLOAT BINARY INITIAL(O);
DO J = 1 TO SIZE;
TOTAL = TOTAL + F(QVAL,J);
END;
RETURN (TOTAL) ;
P3: ENTRY (RVAL, RES, SIZE) ;
DECLARE RVAL FLOAT BINARY;
DO J = 1 TO SIZE;
RES = RES + F(RVAL,J);
END;
RETURN;
END P1;
This procedure has three entry points. Pl and P2 are synonymous
(but do not compare equal), and are entry constants designating
the entry point at the PROCEDURE-statement. Since that entry
point returns a value (with attributes FLOAT BINARY), Pl and
P2 can only be called as function references, i.e., as compon-
ents of an expression. P3 is the entry constant naming the
entry point starting at the ENTRY-statement. It does not return

a value, and so P3 can only be invoked from a CALL-statement,
e.g., by
CALL P3(A(2),B(2),22);

P2 has two parameters, namely, QVAL and SIZE, while P3 has three
parameters, namely, RVAL, RES, and SIZE. As this example shows,
the entry points need not have the same parameters, and if any
parameters are in common, they need not appear in the same

position. It is invalid to reference a parameter not associated

89

with the entry point actually used to enter a procedure. For
instance, it is invalid to reference RVAL if the procedure is

entered through P1 or P2.

The RETURN-Statement

The RETURN- statement is used to end execution of a proce-

dure. It may have either the form
RETURN (expr) ;

or the form
RETURN;

If the procedure is called by a function reference, then the
RETURN-statement must contain an expression. Conversely, if
the procedure is called by a subroutine reference, then the

RETURN-statement must not contain an expression.

When a RETURN-statement containing an expression is
executed, the expression is evaluated. The value of the
expression is then taken as the value of the function reference
that called the procedure. If necessary, the value of the
expression is converted to the type specified in the RETURNS-
clause of the entry point where the procedure was entered.

A procedure can return an aggregate as well as a scalar.
Moreover, the returned type may have asterisks in its speci-

fication, e.g.,
RETURNS (CHARACTER (*)) ;

for an entry point that returns a character string of arbitrary

length.

90

Execution of a RETURN-statement not containing an expres-
sion ends execution of the procedure and causes control to
return to the point of call. The END-statement of a procedure
is treated as having an implicit RETURN-statement Jjust in front
of it, so that if control flows to the END-statement, execution
of the procedure is terminated. It is an error to allow control
to flow to the END-statement of a procedure that was called

as a function reference.

Arguments and Parameters

An entry point of a procedure can have a sequence of
parameters associated with it. A call on the entry point must
include a corresponding sequence of arguments, which act as

inputs to the procedure. If

(1) the argument is a reference to a variable (possibly

subscripted or name—-qualified) , and

(2) the attributes of the argument agree with those

of the parameter,

then the parameter becomes an alias for the argument, and
assignments to the parameter affect the argument. In all

other cases, the argument is considered to be a dummy. That
is, when the call is made, a generation of storage —-- the

dummy —-—- is set aside for the argument, and the value of the
argument is copied into that generation. If the type of the
argument disagrees with the type of the parameter, the argu-
ment is converted to the parameter type and the converted value

is assigned to the dummy. The parameter is then an alias for

91

the dummy, and after the call is completed the dummy is
discarded. Thus, assignments to a parameter that corresponds
to a dummy argument have no effect at the point of call.

Constants and expressions are always passed as dummy arguments.

PL/I uses the call-by-reference model of argument
transmission, i.e., the location of the argument is passed to
the procedure. The conventions for argument transmission are

shown by the following example:

CALLER: PROCEDURE
DECLARE X FIXED DECIMAL(5);
DECLARE Y FLOAT DECIMAL(7);
CALL CALLEE(X); /* X IS SET TO 12 BY THE CALL */
CALL CALLEE(Y); /* DUMMY CREATED, SO Y IS UNCHANGED
CALL CALLEE (24962); /* DUMMY CREATED */
CALL CALLEE ((X); /* DUMMY CREATED SINCE (X) IS

AN EXPRESSSION */

CALL CALLEE (X+14); /* DUMMY CREATED HERE, TOO */
END CALLER;

CALLEE: PROCEDURE (P);
DECLARE P FIXED DECIMAL(5); /* P IS THE PARAMETER*/
P =12;
END CALLEE;

Array sizes, string lengths, and area sizes of parameters

must be given either by constant-valued expressions or by

asterisks. An asterisk size is used when the size of the

92

corresponding argument is unknown, or varies from one call to
another. Thus a parameter declared as CHARACTER(*) will match

an argument declared as CHARACTER(e) , where e is any expression-
However, such a parameter will not match an argument declared

as CHARACTER (e) VARYING.

Options

Implementation-defined information can be attached either
to a PROCEDURE-statement or to the declaration of an entry
constant by means of the OPTIONS-attribute. A particularly

common option (but not a universal one) is illustrated by
PROCEDURE OPTIONS (MAIN) ;

where the MAIN option indicates that execution of the program
is to start with this procedure. In general, the information
given in an OPTIONS-attribute affects the manner in which the

procedure is compiled.

When a PL/I procedure references a procedure written in a
different programming language, the OPTIONS—-attribute can be
used to specify the language of that foreign procedure so that

appropriate calling sequences can be compiled. For instance,

DECLARE PRIMEFN ENTRY (FLOAT) RETURNS (FLOAT)
OPTIONS (FORTRAN) ;

would describe a procedure written in Fortran to be called from

a procedure written in PL/I.

93

Recursion

A PL/TI procedure is permitted to call itself, either
directly or indirectly. A procedure that calls itself is
said to be recursive, and the RECURSIVE option must be
specified on the PROCEDURE-statement of such a procedure.

An example of a recursive procedure is one that counts the
number of nodes in a binary tree. Each node is represented
as a based structure, and contains a value, a left son, and

a right son. Each son is either itself a pointer to a binary
tree, or null. The procedure in PL/I is:

COUNTNODES

PROCEDURE (NODEPTR) RECURSIVE RETURNS (FIXED) ;
DECLARE (LCOUNT, RCOUNT) FIXED INITIAL(O);
DECLARE
1 NODE BASED (NODEPTR),
2 LEFT_SON POINTER,
2 RIGHT_SON POINTER,
2 VALUE FIXED;
DECLARE NODEPTR POINTER;
DECLARE NULL BUILTIN;
IF LEFT_SON = NULL THEN
LCOUNT = COUNTNODES (LEFT_SON) ;
IF RIGHT_SON == NULL THEN
RCOUNT = COUNTNODES (RIGHT_SON) ;
RETURN (LCOUNT+RCOUNT+1) ;
END COUNTNODES;
The procedure is given a pointer to a binary tree as an
argument, and it returns the number of nodes in the tree as
its value. Recursiveness 1is a property of a procedure rather
than of its entry points, so that even if the recursive call

is on a different entry point, the procedure is still

considered to be recursive.

94

The GENERIC-Attribute

Often it is useful to create a family of entry points that
perform a similar function but that expect somewhat different
arguments, and to assign a single name to the family. The
GENERIC-attribute allows a single name, known as a generic
function, to be used for such a family of entry points; the
choice of entry points then depends on the nature of the argu-
ments. The GENERIC-attribute specifies a list of entry-point
names, and associates a sequence of generalized descriptors
with each name. A reference to the generic function is
translated into a reference to the first entry point whose
descriptors, as given by the GENERIC-attribute, match the
arguments of the generic function. An asterisk indicates a
descriptor that matches anything. The test for descriptor
matching is satisfied if the descriptor in the GENERIC-attribute
is contained in the attribute set of the argument; the attribute
set can contain attributes not in the descriptor. Only data

attributes can be tested in this way.
An example of a GENERIC-attribute is
DECLARE GF GENERIC (Gl WHEN (FIXED, FIXED),

G2 WHEN (FIXED, *),
G3 WHEN (*));

Using this declaration, and assuming the further declarations

DECLARE X FIXED BINARY;
DECLARE Y FLOAT DECIMAL;

the reference

95

GF (X, X+1) translates to GI1 (X,X+1)

The reference

GF (X, Y+1) translates to G2 (X,Y+1)
since the expression Y+1 has data type float. The reference
GF (X) translates to G3 (X)

since the first two descriptor sequences each require two

arguments.

Another application of the GENERIC-attribute is
illustrated by the declaration
DECLARE VARFN GENERIC (NF1 WHEN (FLOAT (1:20) BINARY),

NF2 WHEN (FLOAT (21:40) BINARY),

NES WHEN (*));
In this case, the entry point represented by VARFN is selected
on the basis of the precision of the argument, which is assumed
to be float binary. If the argument has from 1 to 20 binary
digits, NF1l is used; if the argument has from 21 to 40 binary
digits, NF2 is used; and if the argument has more than 40

binary digits, NF3 is used.

Blocks and Scopes

A block consists of a sequence of statements, starting
with a PROCEDURE-statement or a BEGIN-statement and extending
to the matching END-statement. Blocks of either kind can be
nested. The primary effect of the block structure of a program
is to define the scope of a name, i.e., the set of statements

from which the name can be referenced. A name declared in a

96

DECLARE-statement belongs to the innermost block containing
that DECLARE-statement. However, a name can also be declared
by virtue of its appearance as a parameter or as a statement-
name. A statement-name that names a PROCEDURE-statement, an
ENTRY-statement, or a BEGIN-statement belongs to the block
outside the one that contains that statement; any other
statement-name belongs to the block containing the statement
that it names. This rule is needed in order to allow
procedures to be called from the outside. A reference to a
name 1is resolved by searching the nest of blocks for a declar-
ation of the name, working from the inside out, and starting
with the statement containing the reference. Another way

of looking at it is that the scope of a name consists of the
block declaring the name and all contained blocks except

for those in which the scope is occluded by an inner declara-

tion of the same name.

An example illustrating the scope of names is given in
Figure 4. The parenthesized numbers are used to distinguish
different declarations of the same identifier. There is an
imaginary outer block used to hold the declarations of the
entry points of the external procedure (A and B in this case),
This block is needed since the entry points of a procedure
belong, not to the block of the procedure itself, but to the
next outer block. Since there is no such block for the

external procedure, one must be created.

97

Figure 4. Example Illustrating Scope

1 A PROCEDURE;

2 DECLARE X CHARACTER(1);

3 DECLARE B FIXED;

4 statement sequence 1

5 B: ENTRY (Y) ;

6 statement sequence 2

7 C: BEGIN;

8 DECLARE W FIXED;

9 DECLARE Y PICTURE '(6)S$"';
10 statement sequence 3

11 D: PROCEDURE;

12 DECLARE W FLOAT COMPLEX;
13 statement sequence 4
14 END D;

15 END C;

16 E: PROCEDURE;

17 DECLARE W FLOAT;

18 Statement sequence 5

19 F: B = 3;

20 G: ENTRY;

21 statement sequence 6

22 END E;

23 END A;

Statements belonging to
different blocks:

outer none

A(l) 1,2,3,4,5,6,23

C(7) 7,8,9,10,15

D(11) 11,12,13,14

E(1lo) 16,17,18,19,20,21,22

Statements in scopes of these names:

1-23

1-23

1-23

none
1-6,16-23
1-23
7-10,15

S QK mEW X
0 dUTUWN

Names belonging to
different blocks:

outer A(l), B(b)

A(1) X(2),B(3),Y(5),C(7),
E(16) ,G(20)

C(7) W(8),Y(9),D(11)

D(11) W(l2)

E(1lo) W(l7),F(19)

Y (9) 7-15

D(11) 7-15

W(l2) 11-14

E(106) 1-23

W(1l7) 16-22

F(19) 16-22

G (20) 1-23

98

Internal and External Scope

In most cases, declarations are defaulted to have internal
scope, meaning that the declaration designates an object
distinct from the objects designated by other declarations
of the same identifier. For instance, if the variable Q is
declared in three different blocks of a procedure with the
INTERNAL-attribute (possibly by default), then each of these
blocks has its own distinct Q. However, several declarations
can be made to refer to the same object by giving them external
scope. External scope cannot be applied to just any declara-—
tion; it is restricted to the static and controlled storage
classes, and to named constants. Identifiers declared to be
external must necessarily have the same attributes. As an

example, if the declaration
DECLARE A (14) STATIC EXTERNAL;

appears in two different blocks, then both declarations refer

to a single array. If an assignment is made to A(4) while
executing one of these blocks, then the change will be visible
in the other. Declarations of an external identifier can

appear both within a single external procedure and among several
external procedures. The default scope for manifestly declared
entry constants is external, since external procedures have

to be declared by the programmer while internal procedures are

automatically declared.

99

Entry Values and Environments

On account of the rules for scope of names in PL/I, a
procedure can refer to names in blocks surrounding the proce-
dure. Moreover, an entry point defines an entry value, and
that value can be assigned to an entry variable and subsequent-
ly invoked. Invocation of the entry point, in turn, requires
that references to outer-block names be resolved properly.

In order to achieve this effect, an entry value contains not
only a designation of an entry point but also an environment.
When the block surrounding the entry point is entered, the
environment of the entry point is defined. The entry wvalue
corresponding to the entry point then consists of the entry
point itself together with a record of all names inherited
from outer blocks and the wvariables (or constants) that these
names denote. In the case of recursive procedures, the
environment implicitly designates not only a set of variables,
but also a recursion level. The following example illustrates
these concepts

P: PROCEDURE;

Q: PROCEDURE (R, LEVEL) RECURSIVE;

DECLARE R ENTRY;
DECLARE LEVEL FIXED;
IF LEVEL=10 THEN
CALL R();
ELSE IF LEVEL=6 THEN
CALL Q(S,7);
ELSE
CALL Q(R,LEVEL+1);
S PROCEDURE;
PUT DATA (LEVEL) ;
STOP;
END S;
END Q;
T: PROCEDURE;
END T;

CALL Q(T,1) ;
END P;

100

The call on Q on the next-to-the-last line initiates a nest

of recursive calls. On each call, the wvalue of LEVEL increases
by 1. At the top level, the entry value T is passed as an
argument to Q; but since this entry value is never invoked,

it serves only as a place-holder. At the sixth level of
recursion, the entry value S is passed as part of the recur-
sive call on Q. The environment of this entry value consists
of the current set of outer-block variables —-- outer, that 1is,
to S . In particular, since S is internal to Q, the current
value of LEVEL —- 6 in this. case —-— is part of the environment
accompanying the entry constant S. On subsequent recursive
calls, the entry value is simply passed along (cf. the call
with parameters R and LEVEL+1l) . When the recursion level
reaches 10, R is called. The value of R is the entry constant

S obtained at level 6, and so
LEVEL = 6
is printed out and the program halts.

The PL/I rules for block structure, scoping of names, and
environments are derived from Algol 60. In fact, it is possible
to transcribe the example above rather directly into Algol 60,

and the behavior in Algol 60 would be the same.

101

ON-UNITS AND ON-STATEMENTS

One of the more innovative aspects of PL/I is the facility
that it provides for handling exceptional conditions —-- the
so-called ON-conditions. An exceptional condition may arise
either as the result of an error, such as a subscript out of
range, or from an anticipated event, such as encountering
end-of-file while reading from a dataset or reaching the end
of the program. PL/I has a set of ON-conditions corresponding
to these exceptional conditions. When the condition occurs,
it is said to be raised. Using an ON-statement, the programmer
can specify a response to the condition in the form of a
statement (or begin-block) to be executed. That response is
known as the ON-unit. If no ON-unit has been specified, a
standard ON-unit, known as the standard system action, is
executed. Depending on the nature of the ON-condition, it may
be possible for the program to continue where it left off after
the ON-unit is executed. The different kinds of ON-conditions

are listed in Table 7.

An example illustrating the use of ON-conditions and
ON-units is:

P: PROCEDURE;

ON ENDFILE (SYSIN)
GO TO PROCESS;
DO WHILE ('1l'B);
READ FILE (SYSIN) INTO (LINE_IMAGE);
END;
PROCESS : e
END P;

102

SoA ou
ou soA
SEYN ou
SoA ou
ou SEYN
SRSV ou
ou ou
sok ou
sok ou
SoA SoA
SoA ou
sahk ou
CPOSMOTTIY ¢OSTATssod
JuswSTgrUY

UInilsy TrWION

HOYYd Teubis ‘jusuumod

HOYEE TRUDTIS ‘3uswwoD

wo3T
SJICULT puUR JUSWWOD

HOYEE TeubTs ‘1uswwod

¥OYYHE TRrUDTIS /3uswuwod

uoT30® ou

psutIsp
—uoT3ejuswaTdul

obed mou © 1I1E13S
HOuYd TRUDTS /3usunuod
JOMIH

TeubTs ‘qusuwwoD
QUSUWWOD

HOTIH
TeUubTIS “3Uusuuod

uoTIOY
wa1sAg paepuels

SUOTITPUOD-NO OYL

andiano-andut
PIOOBI BUTIND PSISIUNODUS
y3zbusT 2109II0DUT JO PIOOSI

anTesa oTgriIussaadsa
WnNWTXew DUTPSOOXS UOT3
—exsdo OT3BWYITI® 3BOTF FO 3JTNSSI

InduT WwesIls pPo3DaIIp-eleD
UT PSI931UNodUs SWeu pszTubodsiun

andano-andut
PIOOSI HUTIAND PSISIUNODUD
Koy ergeidsoorun 10 oj3enTTdnp

snTea poljTwisd WNWIXBW DUTPSSIXD
—eI5d0o OT3ISWUATI® PIXTI JO 1ATnsal

uoTanDaxs weiboad Io pus

SI0II8
SWTJI-UOCTINOSXD SNOSURTTOOSTU

9TTF 3utad uo sbed J0 pus

STTI Indur uo e3P IO pPuUS

wioy Jodoxzd utr aou =dAl Isio®
~IeUD WOII pP93ISAUOD bUTa(g aniea
TeubTts Isumeaboxd

1J9T Soevds JUSTOTIFINSUT

UJTM BOIE UBR UT UOTJRDOTTE

ssne)d

L STIdel

(3TTF) AI0DHEY

MOTHAIHAO

(8T1TT) INYN

(STTT) X8

MOTAIHAOCTHXT A

HSINIA

o
(@)

“NMOwaE

(STT7F) ED5YJANH
(9TT7F) ETI4ANA
NOTSHHANOD
(ISTITIUSPT)

NOILIANOD

YHIY

UOTITPUOD

ou sak

SBA SoA

Soh ou

SESYN ou

ou g0k

SoA SESUN

ou sok

SoA ou

ou IV

CPOMOTTY ¢OBTUTSS0d
uInisy TeWwIOoN JuswsS TarRUd

HOYYd TeubIsS /1USWWoD

JUSWWOD

HOYYH TRUDTIS /3usumiod

MOYYEA TeubTs /1uswuuod

¥O¥YYH TRUubTIS /3usumuod

UoT30® Ou

HO¥Yy TeubTrs ‘jusuwcd
PSuUTISp-uoT3ejuswaTdWT

¥O¥UYH TeubIls /3usumos

UoT3I0Y

wel1sAgS pIepuerig

AONYHILIIEDSINS
HONYEONIFLS

H7IS i SUOTITPUOD POTUESTP ATTERTITUI

HAIATIAOYHZ
MOTHIHEANN
HZISDNIHEILS
MOTHIHAO
MOTHIHAOTHEX T A
NOISYHEANOD

ox9z AJ UCISTATP peidwsiae

snTesa oTgriusssadsa

WNWITUTW ueysl ISTTRWS UOTI

-eIxado OTI3SWYITI® JBOTI JO 1 TnsaI

psusdo sq 30UUBD STTI

uoTleasdo andiano-andut
pbutinp I0IIS UOTSSTWSURI]

sbuex Jo 3no adrTaosgns

juswubrsse Jo 18bary Jo
ylbueT speodxs Hurtals Jo ylbusT

butais 70 uoTzaod uS]1STXDUOU
SO0USIDIBI WYISCNS IO usunbie

peilsneyxs 2beI0ls STgRTTRAR

A3ToedeDd SpPOOOXS SNTeA PSXTI

asne)

pPenNUTIUOD [©Tqel

!SUOT3TPUOD paTgeus ATTeTATUl

HAIATQOYHY

MOTAYHIANL
(3TT3)
ATIACENIAFANG

<
(@)
—

(8TTT) LIWSNYYI

HONVIILJTIEOSHNS

HZISONIYIS

HONVIONIYLS
HO7I0LS

HZIS

UOTITPUOD

In this case, the ON ENDFILE statement specifies that when
end-of-file is encountered on the file SYSIN, the statement
GO TO PROCESS; is to be executed. Thus the file will be read
up to its end, and afterwards the statements at PROCESS will

be executed.

The ON-Statement, REVERT-Statement, and SIGNAL-Statement

The ON-statement specifies a list of ON-conditions
together with an ON-unit. The association of the ON-unit with
the ON-conditions is not made until the ON-statement is
actually executed. Moreover, execution of a subsequent ON-
statement can supersede the effect of an earlier one. For
instance, after execution of the two ON-statements

ON OVERFLOW, FIXEDOVERFLOW
GO TO TOOBIG;

ON FIXEDOVERFLOW
GO TO FIXEDBIG;

the ON-unit associated with the OVERFLOW condition is
GO TO TOOBIG;

while the ON-unit associated with the FIXEDOVERFLOW condition is
GO TO FIXEDBIG;

ON-statements have block scope, in the sense that they are
effective only until the block containing them is terminated.
When execution of a block is completed, the association between
ON-conditions and ON-units reverts to what it was in the previ-

ously-executing block. Thus a procedure can activate collection

105

of ON-units appropriate to its circumstances without affecting

the ON-units set up by its caller.

The ON—-unit itself can be either a BEGIN-block (delimited
by BEGIN and END) or a single unconditional statement. 1In
particular, an ON-unit cannot be either a DO-group or an IF-
statement. Actual execution of the ON-unit is carried out as
though the ON-unit were a procedure. In particular, ON-units
carry environments with them, and so any names occurring in an
ON-unit have the meaning applicable at the point of execution

of the corresponding ON-statement.

An ON-statement can specify the standard system action as
an ON-unit, using the keyword SYSTEM. Thus
ON SUBSCRIPTRANGE
SYSTEM;
specifies that the standard system action is to be taken if the
SUBSCRIPTRANGE-condition is raised. This facility can be used
to nullify the effect of previously executed ON-statements. It
is also possible to specify that a traceback, or other debugging
information, is to be printed in the event that a condition is

raised. That effect is gotten by using the SNAP keyword, as in
ON SIZE SNAP SYSTEM;

If the SIZE-condition is raised, the standard system action will
be taken, but in addition debugging information will be printed.
The actual choice of debugging information is implementation-

defined. The statement

ON SIZE SNAP;

106

would produce a different effect: if the SIZE-condition is
raised, the null-statement, which does nothing, will be executed,
In fact, the null-statement is not a valid ON-unit for the
SIZE-condition because it does not terminate in a GOTO-
statement. The question of validity of such ON-units is

discussed below.

The REVERT-statement can be used to cancel the effect of
an ON-statement, or several of them, without knowing what ON-
condition was in effect previously. The REVERT-statement speci-
fies a list of ON-conditions. Execution of the REVERT-statement
causes the ON-unit for each of these conditions to revert to
what it was in the previously-executing block. Thus, in the

sequence:
ON ENDFILE (SYSIN)
CALL ENDER;
BEGIN;

ON ENDFILE (SYSIN)
GO TO ALT_END;

REVERT ENDFILE (SYSIN) ;
END;

the REVERT-statement causes the on-condition
CALL ENDER;

to again be associated with the ENDFILE-condition for the file
SYSIN.

The SIGNAL-statement is used to raise a specified ON-

condition. For example, the statement

SIGNAL ZERODIVIDE;

107

causes the ZERODIVIDE-condition to be raised and the appropri-
ate ON-unit (possibly the standard system action) to be invoked.
This statement is particularly useful in debugging program logic
for handling ON-conditions. It is also the only way to raise

a programmer-defined condition (discussed below) .

Enablement and Disablement

A number of the ON-conditions require time-consuming code
(on most machines, at least) in order to check whether or not
they have occurred. The time needed to check whether a sub-
script is out of range, for instance, well may dominate the
time needed for the retrieval of a subscripted variable. There-
fore PL/I allows the programmer to either enable (turn on) or
disable (turn off) the check. Enablement and disablement are
provided only for certain ON-conditions. They are specified by
means of a condition prefix, which consists of either an ON-
condition name or the negation of an ON-condition name, in parentheses and
followed by a colon. The condition prefix can
be applied either to a single statement or to a block. For

example, in the sequence:

(OVERFLOW, NOSIZE) :
P: PROCEDURE;
(NOOVERFLOW) : Q = A + BTR(I);
END;

the SIZE-condition is disabled throughout the procedure P, while
the OVERFLOW-condition is enabled throughout P except for the

108

single statement where NOOVERFLOW is indicated. For that
statement, the condition is disabled, and no test will be made
for it. If a condition is raised in a statement where it

has been disabled, that is considered to be a programmer error,
and the implementation is not to be held responsible for its

consequences.

Enablement and disablement are static properties of a
program. In other words, it is possible to tell whether a
particular ON-condition is either enabled or disabled for a
particular statement Jjust by looking at the program, without
considering what its sequence of execution is. In this respect,
enablement and disablement differ from the ON-statements,
whose execution depends on program flow. Enablement and dis-
ablement affect whether a condition is or is not to be tested
for, while ON-statements determine what action is to be taken

if the condition is raised. The statement
ON UNDERFLOW;

does not disable the UNDERFLOW-condition; it merely states that
if that condition is detected, the null-statement is to be

executed.

Builtin Functions for ON-Conditions

During the execution of an ON-unit, a number of builtin
functions are available in order to determine the circumstances
that caused the corresponding ON-condition to be raised. Some

of these apply to all ON-conditions and are discussed here;

109

other are specific to particular ON-conditions and are
discussed in connection with those conditions. 1In general,
these builtin functions do not have meaningful values except
in the context of an ON-unit. They are all functions of no

arguments.

The ONCODE builtin function has as its value an imple-
mentation-defined integer used to indicate why the active ON-
condition was raised. A particular condition may have more
than one code value associated with it. One common convention
is that the value of ONCODE is zero 1if the ON-condition was
raised by a SIGNAL-statement. The ONLOC builtin function
returns as its value the name of the innermost entry point
active when the condition was raised. For input-output-related
ON-conditions, the ONFILE builtin function has as its wvalue
the name of the file that was being operated upon when the con-
dition was raised. The wvalues of both ONLOC and ONFILE are

in the form of character strings.

Categorization of the ON-Conditions

The various ON-conditions listed in Table 7 can be broken
down into three groups. The first group consists of the compu-
tational ON-conditions. Most conditions in this group are
raised in response to a particular kind of error. The computa-
tional ON-conditions are the only ones that can be enabled

and disabled. They are:

110

CONVERSION

FIXEDOVERFLOW

OVERFLOW

SIZE

STRINGRANGE

STRINGSIZE

SUBSCRIPTRANGE

UNDERFLOW

ZERODIVIDE
The occurrence of one of these conditions usually means that a
bad result has been generated, and so the active computation
cannot be continued. For this reason, the ON-units associated
with most of these conditions must not terminate normally,
i.e., must cause a transfer of control out of the ON-unit by
means of a GOTO-statement or similar construction. Normal
termination would mean that the active computation would be
resumed, and the nature of the condition is such that the
computation cannot be resumed. For instance, if a subscript

is out of range on an array reference, there is no way to

obtain an appropriate value for the reference.

Three of the computational ON-conditions are treated
somewhat differently. The CONVERSION-condition is raised when
data is being converted from character to some other type.
When this condition is raised, the programmer can modify the
character string to be converted. If a normal return takes
place from the ON-unit, i.e., the ON-unit completes without
a transfer of control, the conversion is reattempted with the

modified input string.

Two builtin functions are available for the modification:
ONSOURCE and ONCHAR. ONSOURCE has as its value the character

string to be converted, while ONCHAR has as its value the left-

111

most character in that string for which no valid continuation
exists. By examining ONSOURCE and ONCHAR, the programmer may
be able to determine the difficulty and what to do about it.
Moreover, ONSOURCE and ONCHAR can be used on the left side of
an assignment (within an ON-unit for the CONVERSION-condition),
and so the string to be converted can be modified by assign-
ments to either ONSOURCE or ONCHAR (which can also be used as
pseudovariables). For example, if a character string is being
converted to a bit string the following ON-unit might be
appropriate:
ON CONVERSION BEGIN;
DECLARE ONCHAR BUILTIN;
IF ONCHAR='D' THEN
ONCHAR = '0°';

ELSE ONCHAR = '1"';

END;
If the string to be converted does not consist entirely of ones
and zeros, each blank in that string will be replaced by a zero,

and each other deviant character will be replaced by a one.

The UNDERFLOW-condition also receives slightly different
treatment. Normal return from the UNDERFLOW-condition is
permitted, and the value of the computation that underflowed 1is
taken to be zero. The STRINGSIZE-condition arises when a string
is shortened as a result of a conversion or assignment. Upon
normal return from the ON-unit, the string is truncated on the
right to the required length. Since the standard system action
in this case is to do nothing, this condition is often ignored.
However, it can be used in either of two ways. If it is disabled,

then the compiler need not produce code to check for string

112

overflow. Moreover, if a nonstandard ON-unit is provided,
then the programmer can take some action. However, there is
no way that the programmer can modify the result produced
either for the UNDERFLOW-condition or for the STRINGSIZE-

condition.

The second group of ON-conditions is the input-output
conditions. Each of these conditions is associated with a
particular file, specified along with the condition name.
The input-output conditions are:

ENDPAGE
ENDFILE

KEY

NAME

RECORD
TRANSMIT
UNDEFINEDFILE

Some of these conditions are discussed further in connection

with input-output.
The remaining conditions are more varied. These are:

AREA

CONDITION

ERROR

FINISH

STORAGE
The AREA-condition is raised when an allocation is attempted in
an area, and there is insufficient space for the allocation.
If the associated ON-unit returns normally, the area-reference
in the ALLOCATE-statement is reevaluated, and the allocation is
reattempted. Therefore an appropriate response to the AREA-

condition is to assign a new area value to the area variable

referenced in the ALLOCATE-statement.

113

The programmer can define ON-conditions using the keyword
CONDITION and an identifier, known as the condition—-name. ON-
units can be provided for programmer—-named conditions, but they
can only be raised by a SIGNAL-statement. For instance, a

programmer might write:

ON CONDITION (TABLE_OVERFLOW)
CALL OVERFLOW_RECOVERY;

and then, in some other part of the program, write:

IF T > TABSIZE THEN
SIGNAL TABLE_OVERFLOW;

The ERROR-condition is raised under a variety of circum-—
stances, some of which can be implementation-defined. The
standard system action in response to a number of other ON-
conditions is to comment (i.e., display diagnostic information)
and then to raise the ERROR-condition. (It is quite acceptable

to have an ON-unit raise an ON-condition itself.)

The FINISH-condition is raised when the program completes.
It differs from all other conditions in that it is raised as
a normal aspect of program execution. The STORAGE-condition is
raised when the program runs out of storage. Since programs
consume storage in many different ways, the exact circumstances
under which it is raised are implementation-defined. Recovery

from this condition may or may not be possible.

114

OTHER STATEMENTS AFFECTING FLOW OF CONTROL

Conditional Statements

The conditional statement is used in order to test a
condition and take some action depending on the result. A
conditional statement starts with an IF-statement, specifying
the test, and may include an ELSE-part that specifies what
action to take if the test fails. For instance, the sequence

IF Q0 <= QMAX THEN
INDEX = INDEX+1;

ELSE
GO TO PART_7;

causes the assignment
INDEX = INDEX+1;

to be executed if the condition Q <= QMAX is true, and the

statement
GO TO PART_ 7

to be executed otherwise. The statement following either THEN
or ELSE can itself be a conditional statement, so that nests
of conditional statements can be built up. Moreover, either
THEN or ELSE can be followed by a DO-group (discussed below),
so that several statements can be executed after the test
rather than Jjust one. An example of a more complicated

conditional statement is:

115

IF A(I)=0 THEN DOj;
SIZE1=SIZE1+INCR;
SIZE2=SIZE2-INCR;
IF SIZE2<SIZE1l THEN
CALL ADJUST;
END;
END; IF A(I) >0 THEN
SIZE2=SIZE2+INCR;
ELSE
SIZE1=SIZE1-INCR;
It is not necessary that each IF-statement have a corresponding
ELSE-statement. In complicated conditional statements, each
ELSE is paired with the nearest preceding unpaired IF, working

from front to back.

The test in an IF-statement actually takes the form of
an expression, which is evaluated and converted to a bit
string. Since the comparison operators all produce one-bit
results, and since the logical operators also produce one-bit
results when their operands are one-bit wvalues, the conversion
is usually unnecessary. If the bit string obtained by
evaluating the test expression has at least one one-bit in it,
the test succeeds, and otherwise it fails. The test expression
must be scalar-valued, although if it is not scalar-valued the
SOME and EVERY builtin functions can be used to reduce it to

a scalar value.

The DO-Statement

The DO-statement has three main variants: the simple DO,
the DO-WHILE, and the specified DO. The simple DO is used in
order to convert, syntactically, a sequence of statements into

a single statement. A simple DO-group has the form:

116

DO;
statement-sequence

END;
The statements in the sequence are executed just once. Transfers
of control into and out of the sequence are permitted. The main

use of the simple DO-group is as part of a conditional statement,
The DO-WHILE variant has the form:
DO WHILE (expression);

A DO WHILE-group consists of a DO WHILE-statement followed by
a statement sequence and a matching END-statement. The state-
ments in the group are executed repeatedly, and the expression
in the DO WHILE-statement is tested before each execution. If
the test fails, control is transferred to the statement follow-
ing the group. If the expression is initially false, the group
is not executed at all. An example of a DO WHILE-group is:
DO WHILE (CVAL>O0);

DVAL=DVAL+G (CVAL) ;

CVAL=CVAL-DVAL;

END;

The specified DO itself has a number of variants. As with

the other two forms, a DO-group consists of a specified DO-
statement followed by a statement sequence followed by an END-

statement. The most common variant is illustrated by:
DO M = 0 TO 100 BY 2;

In this case the statements in the group are executed repeatedly.
Before the first execution, M is assigned the value 0. M is

then increased by 2 on each execution of the group, and has

117

the value 100 on the last execution of the group. Upon comple-
tion of the entire group, the value of M is 102. However,
transfer out of the group is permitted, and if that happens,

M retains the value assigned to it on the most recent iteration.

The TO-clause and the BY-clause can be written in either
order, and either of them can be omitted. If the TO-clause 1is
omitted, the group is iterated indefinitely, i.e., until a
transfer of control out of the group takes place. If the BY-
clause is omitted, a value of 1 is assumed for it. On each
iteration, the control variable (the variable following the
keyword DO) is incremented by the value given in the BY-clause.
If the BY-clause has a negative wvalue, then the control vari-
able is decremented rather than incremented. The loop terminates
when the value of the control variable is greater than the
value of the TO-clause (for a positive BY-value) or less than
the value of the TO-clause (for a negative BY-value). If the
termination test is satisfied by the initial value of the
control variable, the group is executed zero times. If neither
the TO-clause nor the BY-clause appears, the group is executed

for a single value of the control variable.

The TO-clause and the BY-clause are both evaluated prior
to execution of the statements within the DO-group. Thus any
changes to values of variables that appear within the TO-clause
or the BY-clause have no effect once the iteration has started.
The control variable need not have arithmetic type; a string or
pictured type is also acceptable. A WHILE-clause can also be

specified, e.g.,

118

DO JV = X BY Y WHILE (PROP (JV)<PROP (JV+1));
Another variant is illustrated by:
DO P = LIST_HEAD REPEAT (P->NEXT) WHILE (P7=NULL) ;
or
DO STRING='' REPEAT (STRING| |CHARS (I)) WHILE (LENGTH (STRING) <LMAX) ;

The control variable is assigned the given initial value on

the first iteration. On subsequent iterations, the value of
the REPEAT-clause is recalculated and assigned to the control
variable. The WHILE-clause can be omitted, although usually

it is desirable to include it.

The specified DO can consist of a sequence of specifications

rather than a single one. For instance, the statement
DO M = 3,7,M+2 BY 3 TO 15,0;

executes the group of statements that follows for the sequence
of values 3, 7, 9, 12, 15, 0. Each specification in the group

can have the general forms described above.

The GOTO-statement

The GOTO-statement causes control to be transferred to
the label specified in the statement. The statement actually
specifies a label-valued expression, and although that expres-
sion normally is a constant, i.e., a statement-name, it need
not be. For instance, it could be a subscripted reference to
an array of statement-names, so that the appropriate destina-

tion is selected by the value of an index.

119

The destination of a GOTO-statement need not be in the
same block as the statement itself. If the destination is
in a different block, then the effect of the statement is to
terminate execution of the current block and all blocks
between the statement and its destination. In other words,
at the moment when the GOTO-statement is executed, there will
be a hierarchy of active blocks, with the current block last
in the hierarchy. The label value obtained from the GOTO-
statement must designate, as its environment component, some
block in the hierarchy. Then all blocks between the designated
block and the current block, as well as the current block
itself, are terminated. The designated block then becomes
the current block, and control is transferred to the statement

named by the label wvalue.

A GOTO-statement whose destination is not in the same
block as the statement itself is called a nonlocal goto.
A nonlocal goto is expensive to execute relative to a local one.
Therefore the programmer is allowed to declare the LOCAL-
attribute for a label variable. The LOCAL-attribute consti-
tutes a claim by the programmer that any GOTO-statement using
the value of that label variable will be a local goto. Thus
the compiler need not examine the environment associated with
the label, and can generate instructions to execute the

requested transfer of control directly.

120

The STOP-Statement and the Null-Statement

The STOP-Statement has the form

STOP ;
and is used to stop execution of the program. It has the effect

of terminating the execution of all currently active blocks.

The null-statement has no text at all; it is written as
just a semicolon. Its main uses are to place a statement-name,
to fill out a branch of a conditional statement where no action
is to be taken, and to specify that no action is to be taken in

response to a specified ON-condition.

121

FILES AND RECORD INPUT-OUTPUT
File Attributes

The attributes of a file determine the kinds of operations
that can meaningfully be applied to that file. Moreover, they
dictate to some extent the characteristics of the dataset
associated with the file. The final determination of file
attributes takes place when the file is opened, i.e., associ-
ated with a dataset. If a file is opened and closed several

times, it can have different attributes at different openings.

The file attributes INPUT, OUTPUT, and UPDATE determine
the direction of information flow in an obvious way. An opened
file must have either the RECORD-attribute or the STREAM-
attribute. A record file is associated with a dataset con-
sisting of a sequence of records, which are read or written
as single units. A record may or may not have a key associ-
ated with it. If it does, then the file has the KEYED-
attribute. If the records are sequenced, i.e., the notion of
"next record" is meaningful, then the file has the SEQUENTIAL-
attribute; otherwise it has the DIRECT-attribute. A direct
file is necessarily keyed, since without a key there is no
way to designate a record within the file, while a sequential

file may or may not be keyed.

A stream file is associated with a dataset consisting of
a sequence of characters. Within the sequence of characters,
linemarks, pagemarks, and carriage-returns can appear. A

linemark marks the break between the characters on two succes-—

122

o
o
x
|. ...l |. ke -..l |. -..- |. ke ...l |. -..l |.
Ll Y
Lid LG LOdHI

123

Note:

TABLE 8. Complete Sets of File Attributes

STREAM
STREAM
STREAM
STREAM
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

The ENVIRONMENT-attribute may be added

INPUT
OUTPUT
OUTPUT
INPUT
INPUT
INPUT
OUTPUT
OUTPUT
OUTPUT
UPDATE
UPDATE
UPDATE

FILE

FILE

PRINT FILE

SEQUENTIAL FILE
SEQUENTIAL KEYED FILE
DIRECT KEYED FILE
SEQUENTIAL FILE
SEQUENTIAL KEYED FILE
DIRECT KEYED FILE
SEQUENTIAL FILE
SEQUENTIAL KEYED FILE
DIRECT KEYED FILE

to any of these combinations.

124

example, in the sequence

DECLARE CHANGES INPUT FILE;

OPEN FILE (CHANGES) KEYED;

the initial set of attributes used for opening the file CHANGES
is INPUT KEYED. Since these attributes are consistent with
each other, the opening can proceed. The RECORD and FILE
attributes are implied by the KEYED attribute, and so these

are added to obtain the set RECORD INPUT KEYED FILE. Although
both DIRECT and SEQUENTIAL are consistent with this set, the
default choice is SEQUENTIAL, and so SEQUENTIAL is added to

obtain the complete set
RECORD INPUT SEQUENTIAL KEYED FILE

The FILE-option in an OPEN-statement contains a file-valued
expression, which is either a constant or something that
evaluates to a file constant. It is assumed that each dataset
has a name (typically, known to the surrounding operating
system) and so the file opening has to specify the name of the
dataset to be linked to the file. The name can be specified
by a TITLE-option; if it is not, the name of the file constant
obtained by evaluating the FILE-option is used. Thus the
statements

DECLARE CHANGENAME CHARACTER(4);
CHANGENAME = 'C437"';

OPEN FILE (CHANGES) TITLE (CHANGENAME) STREAM INPUT;
OPEN FILE (OLDSET) RECORD INPUT DIRECT;

cause the file CHANGES to be associated with the dataset C437,
and cause the file OLDSET to be associated with the dataset OLDSET.

125

For stream files, other information can be given in the
OPEN-statement. For instance,

OPEN FILE(LISTING) PRINT LINESIZE(110) TAB(10,40,70)

PAGESIZE (50) ;

causes the file LISTING to be opened with the understanding
that a new line will be started after at most 110 characters,
a new page will be started after at most 50 lines, and tabstops
(discussed under "Edit-Directed Input-Output" below) will be
placed at column positions 10, 40, and 70. Were any of these
values to be omitted, implementation-defined values would be

assumed.

If an input-output statement is executed on a closed file,
then the file is implicitly opened. For instance, if the

statement
PUT FILE (ANS) (M, N) ;

is executed and the file ANS is not open, the file will be
opened with the implicit attributes STREAM and OUTPUT.

Similarly, if the statement
DELETE FILE (INV) KEY (PART_NAME) ;

is executed and the file INV is not open, it will be opened with
the implicit attributes RECORD and UPDATE. The implicit attri-
butes are treated as though they appeared on an OPEN-statement,
so any attributes given in the declaration of the file are

combined with those derived from the implicit opening.

126

File Closing

Just as the OPEN-statement creates the connection between
a file and a dataset, the CLOSE-statement breaks the connection.
All files are automatically closed at program termination. The
programmer can also specify actions such as dataset disposition
by means of an ENVIRONMENT-attribute attached to the CLOSE-

statement, e.qg.,
CLOSE FILE (BIBLIO) ENVIRONMENT (REWIND) ;

A file can be closed and later reopened with different attributes
An attempt to open a file that is already open, or to close a

file that is closed, has no effect.

Operations on Record Files

There are five statements applicable to record files:

READ

WRITE

LOCATE

REWRITE

DELETE
Each of these, in turn, has a number of clauses that can be
applied to it. The attributes of a file determine which state-
ments and clauses can meaningfully be applied to that file.
For instance, READ cannot be applied to an output file, DELETE
can only be applied to an update file, and any clause that
references a key can only be applied to a keyed file. The

meanings of the statements are summarized in Table 9, and the

meanings of the clauses are summarized in Table 10. Table 11

127

READ

REWRITE

WRITE

LOCATE

DELETE

Table 10.

FILE

INTO

FROM

KEY

KEYEFROM

KEYTO

IGNORE

SET

Table 9.

read a record from a dataset

Record Input-Output Statement

(input and update files only

replace a record on a dataset
(update files only)

add a record to a dataset
(output and update files only)

obtain buffer space for a record
(output files only)

delete a record from a dataset
(update files only)

specifies the

specifies the

Clauses on Record Input Output Statements

file accessed by this statement

generation to receive a record

being read

specifies the

generation containing a record

to be written

specifies a record to be read,

replaced,

or deleted

specifies the source for a key to be attached
to a record to be written

specifies where to put the key associated
with a record being read

specifies the number of records to be skipped
by execution of a read statement

specifies where to put a pointer to a newly
created generation

128

junod drys
BTgRTJABA A8 A

u

A
Aoy Y
Jajutod d
9TTd 4
A

9TgRTJRA

1094Tp palay g
TeTiuanbas posAsy s
Tertiusnbes s

"8dA3} 9TT4 STYl JoJ
uoTrledado aTqgessTwJlad ® S831BOTPUT X

TONDAIY (4)37114 3L31aaq

‘(3)311d 31313a

TONADE (A)Wodd (4)371I4 3LTM3IN

S(A)WOMA (J)31I4 ILTUMIY

XX | XXX

£(3)3114 3LTyMay

(M) woddAI(d) 13s (2)37I4 A 3LVI0T

‘(d)13as (1)311I4 A 31vI01

CUA)WOHAATY (A)Wodd (4)31I4 ILIAM

t(A)Wodd (4)31Id4 LTINS

f(A)oLAa (u)ayonoI (4)31Id4 avay

YO)AIM (u)3doNOT (4)3T7I4 avad

f(u)3yono1 (4)31I4 avay

(M)olAad (d)ias (4)3a1d4 avay

YODAIY (d)13s (4)3114 avay

‘(d)13s (4)3a114 avay

T(A)oLAIN (A)OLNI (4)371Id avay

YODAIM (A)OLINTI (4)3114 avad

XXX | X | X|IX|X|X|X

X
X | X | X | X | X XIX]|X]|X

Y(A)OINI (J)31I4 avad

ax

SH

NI X XIX|X|X|X|X

a

SH

ax SH

31vddn

lndino

1NdNI

juswelels JO wJod

sjuswalels

inding-andur

p4008Y 8TgessTuW.ad 'TT 8Tqel

shows how the different statement forms relate to the

different combinations of file attributes.

The chief characteristic of record input-output is
that it involves a direct transfer of information between
the dataset and addressable memory, without any formatting
or editing. It is therefore the programmer's responsibility
to be sure that the format of information on the dataset
agrees with the format in memory, as defined by the imple-
mentation. TIf the dataset is itself created by a PL/I pro-

gram, this is not too difficult.

The READ-statement causes a single record to be read
from a specified file. It can also be used to skip records
on a sequential file. Its simplest form, applied to a

sequential file, is illustrated by
READ FILE (CUST) INTO (CUST_INFO);

A single record is transferred from the dataset associated
with CUST into the wvariable CUST_INFO. If the size of the
record disagrees with the size of the variable, the RECORD-
condition is raised for the file. If there are no more records
left in the dataset, the ENDFILE-condition is raised for the
file.

The destination of a newly read record can be specified
either by an INTO-clause or by a SET-clause. If the INTO-
clause is given, then the record is read into a buffer, and
the pointer specified in the SET-clause is set to the location

of the record within the buffer. Although the SET-clause 1is

130

less convenient to use than the INTO-clause, it has two
advantages. First, the SET-clause can be used to read
records whose length is specified within the record itself.
The INTO-clause cannot be used for such records because the
size of the necessary variable is not known. Second, operat-—
ing on the record in the buffer avoids the need to copy

the record from the buffer to the wvariable.

The KEY-clause is used to specify the position within
the dataset of the record to be read. For instance, the

statement
READ FILE (EMPL) INTO (EMPLOYEE RECORD) KEY (EMP_NUMBER) ;

causes the record whose key is the character-string form of
EMP_NUMBER to be read into the wvariable EMPLOYEE_RECORD.

(If the key value is not a character string, it is converted
to one.) If the key designates a nonexistent record, the KEY-

condition is raised for the file.

The KEYTO-clause, 1in contrast, does not influence the
dataset position at all. Instead the key in the record being
read is assigned to the variable specified in the KEYTO-clause.
This facility is necessary since the key may not be part of

the record itself. For instance, the statement
READ FILE (EMPL) INTO (EMPLOYEE RECORD) KEYTO (EMP_NUMBER) ;

causes the next record from EMPL (which must be keyed sequential)
to be read into EMPLOYEE_RECORD, and the key associated with
that record to be assigned to EMP NUMBER.

131

The IGNORE-clause can be used in order to skip records.

For instance, the statement
READ FILE (EMPL) IGNORE (2);

causes two records on the dataset associated with EMPL to be
skipped. (EMPL must necessarily be sequential.) The IGNORE-
clause and the KEY-clause can be used together, and if the
count in the IGNORE-clause is zero the effect is to position
the dataset at the record designated by the KEY-clause. The
IGNORE—-clause and the KEYTO-clause can be used together to

read a key without reading the associated record.

The WRITE-statement can be used only with output or direct
update files. It causes the variable named in the FROM-clause
to be written onto the dataset. If the dataset is sequential,
the new record is written at its end; otherwise the position
of the new record is arbitrary. The KEYFROM-clause, which
specifies the key of the new record, must be used if the file

is keyed.

The LOCATE-statement can be used only with output files.
It is analogous to the READ-statement with the SET-option.
Execution of a LOCATE-statement causes space for the wvariable
named in the statement to be allocated in an output buffer,
and then causes the pointer named in the SET-clause to be set
to the location of this space. If the variable is declared
with a pointer, then the SET-clause can be omitted and the
pointer obtained from the declaration will be used. For

instance, given the statements

132

DECLARE RECSPACE CHARACTER(200) BASED (CHPTR) ;
DECLARE CHPTR POINTER;

the statements
LOCATE RECSPACE FILE (NEWSET) ;
and
LOCATE RECSPACE FILE (NEWSET) SET (CHPTR);

are equivalent. After execution of a LOCATE-statement, the
programmer can construct a record within the buffer, referenc-
ing the record using the variable and pointer specified in

the LOCATE-statement. The record is written when either
another LOCATE-statement or a WRITE-statement is executed

for the file. <Closing the file after executing the LOCATE-

statement also causes the record to be written.

The REWRITE-statement can only be used with update files;
it causes a record in the dataset to be replaced. The FROM-
option can be omitted if the preceding operation on the file
was a READ with the SET-clause; in this case the record just
read (which is assumed to have been modified) replaces its old
copy in the dataset. Otherwise the FROM-clause specifies the
source of the replacement record, and the KEY-clause, 1if given,
specifies which record is to be replaced. If the KEY-clause
is not given, then the file must be sequential, and the record
at the current position in the file is replaced. For the
replacement to be acceptable, the current position must be
well-defined, and the preceding operation on the file must not

have been a DELETE.

133

The DELETE-statement, like the REWRITE-statement, can only
be used with update files. 1If a key is specified, then the
record with that key is deleted. Otherwise the behavior is
similar to that of REWRITE: the record at the current position
is deleted; the current position must be well-defined; and the

preceding operation must not have been another DELETE.

134

STREAM INPUT-OUTPUT

Stream input-output differs from record input-output in
that a transformation is performed when information is moved
between a generation of storage and a dataset. On output, the
transformation consists of translating a data value (which
must be of a printable type) into a character representation
of that wvalue; on input, the transformation goes in the opposite
direction. The character representation need not represent
the value directly, since formatting conventions can be used.
For instance, the character sequence "4387" could represent
the value 43.87 on either input or output, were an appropriate
format to be used. The GET-statement is used for stream
input, while the PUT-statement is used for stream output.

Each of these statements has three variants: list-directed,
data-directed, and edit-directed . With the exception of a few
pathological cases, input is the inverse of output. Thus, if
information is written by a PUT-statement and later read by a
GET-statement of the same form, the original values in storage
will be unchanged. However, it is not in general true that
reading from a file and then writing what was read will yield

the contents of the original file.

The file to be operated on by a GET-statement or a PUT-
statement can be specified either explicitly or implicitly.

The statement
PUT FILE (TABLES) LIST (A, B);

causes the printable representation of the values of A and B

135

to be written onto the file TABLES. If the FILE-clause is
omitted, the standard input file SYSIN is assumed for GET-
statements, and the standard output file SYSPRINT (a print

file) is assumed for PUT-statements.

The stream input-output statements can be used to encode
and decode strings in storage by means of the STRING-clause.

For example, the statement
GET STRING(STR) LIST (A,B);

causes the wvalues of the variables A and B to be "read" from
the string STR, just as though STR was a sequence of characters

on an input file. Similarly,
PUT STRING(STR) LIST(A,B);

causes the values of A and B to be converted to their printable
representations, and then causes the sequence of representations
(with an intervening blank) to be assigned to the character

variable STR.

Line and page skips can be specified in the GET-statement
and the PUT-statement , although certain forms are applicable
only to a PUT-statement that designates a print file. For

instance,
PUT SKIP(2) LIST(A,B);

causes two lines to be skipped before A and B are printed, while
PUT PAGE LIST (A, B);

causes a new page to be started before A and B are printed.

The statement

136

PUT LINE(2) LIST(A,B);

causes the printer to be positioned to the second line on the
page before A and B are printed; it differs from SKIP in that
it selects an absolute page position rather than a page posi-
tion relative to the previous line. PAGE and LINE can only
be specified for print files. SKIP on an input file causes

the remainder of the input line to be skipped.

Data Lists

A GET-statement or a PUT-statement can contain one or
more data lists, specifying the items to be read or written.
In its simplest form, the data list is merely a sequence of

scalars, e.g.
PUT LIST (RATE,TIME,RATE*TIME) ;

As this example shows, expressions as well as variables can
appear in the data list of a PUT-statement. The items in

the data list of a GET-statement, however, have the same
restrictions as the targets of an assignment-statement, since
one cannot read a value into an expression. A data list can

also contain iterations, e.g.,
PUT LIST((I,F(I) DO I = 1 TO FNLIMIT));

Since any item can itself be an iteration, iterations can be
nested to any depth. The DO that controls the statement is

subject to the same restrictions as the specified-DO-statement.

A GET-statement can use an input value as an iteration

count, e.g.,

137

GET LIST((N, (COST(K) DO K =1 TO N));
Moreover, aggregates can be included in the data list, e.g.,

DECLARE MIX(40,40) FIXED;
PUT LIST((MIX(*,I) DO I = 1 TO 40));

In this example the elements of MIX will be printed out with
the first subscript varying most rapidly, as in Fortran. On
the other hand, the statement

PUT LIST (MIX);

with MIX declared as above will print out the elements of MIX
with the last subscript varying most rapidly (since this is the

implicit order in storage, as defined by the rules of PL/I).

List-Directed Input—-OQutput

The GET LIST-statement reads an unformatted sequence of
items from the input stream. The data to be read consists of

a list of items separated by blanks or commas, e.g.,
23,47, 'DAVID DAVIS'

Since the dataset is left positioned after the last character
that was read, it is possible to read items from the same line
using several separate GET LIST-statements in succession. The
successive items on the dataset are assigned to the successive
items in the data list. If the data list contains an aggregate,
then enough items are read from the dataset to fill the aggre-
gate. The dataset can also indicate empty items by means of

two commas in a row. For instance, the statement

138

GET LIST(M1,M2,M3);

applied to the input
22,,891

will cause M1l to be set to 22, M3 to be set to 891, and M2 to

be left unchanged.

The types of the items read from the dataset need not
agree with the types of the items in the data list; if there
is any disagreement, the item read is converted to the type
of the item in the data list. For instance, the input value
for a float variable can be written as an integer. A
character-string item on the dataset need not be quoted
unless it contains a comma or blank or starts with a quote.

Thus
THIS ISN'T BAD

can be read into a list of three character variables, and the
variables will receive the strings exactly as written.

However, if the dataset contains the item
VISNVVTV
the usual rules for interpreting a character-string constant

will be applied and the receiving variables will receive the

value
ISN'T

The PUT LIST-statement writes a sequence of items onto
the specified output file. Successive items are placed at

successive tabstop positions, and when a line is filled (as

139

defined by the linesize for the dataset) a new line is
started. TIf the output file is not a print file, however,
items are separated by single blanks rather than placed at

tabstops. Thus the effect of
PUT SKIP LIST((N DO I =1 TO 10));
might be to print the lines

1 2 3 4 5
6 7 8 9 10

under some appropriate assumptions about the linesize and
tabstop positions. Since a PUT LIST-statement does not force
an end of line, several PUT LIST-statements can place output

onto the same line.

Data—-Directed Input—-QOutput

The GET DATA- statement reads a sequence of variable names

and associated values, e.g.,
A=3 B=12 D=0;

The pairs in this sequence can be separated by either blanks
or commas (as with the GET LIST-statement), and the sequence is
ended by a semicolon. The GET DATA-statement itself can, but

need not, specify a list of variables, e.g.,
GET DATA(A,B,C,D,E);

or
GET DATA;

The second form is easier to use, but it has the disadvantage

140

that it forces a complete symbol table to be included in the
compiled program. The items in the input stream need not be
given in the same order as the variables in the list. More-
over, variables in the data list can be repeated or omitted

in the input stream. Subscripted and name-qualified variables
can also be included in the input stream, although name

qualifications must be complete. For instance,
A(3,7) = 'JOE', A(4, 7) = 'SAM', ST.COUV = 19.3;
is a valid input line, assuming an appropriate data list.

The PUT DATA-statement writes a list of variables,
together with their values, onto the output stream. As with
the GET DATA-statement, the PUT DATA-statement need not

contain a list. Execution of the statement
PUT DATA;

causes the values of all printable variables to be written
onto the output stream. Otherwise, the listed variables

are written out. If any of these variables are aggregates,
the scalar elements of the aggregate are written out,

using fully-qualified names and appropriate subscripts.
Unlike the other two forms of the PUT-statement, the

PUT DATA-statement cannot include expressions in the data
list, since expressions do not have names. If the output
file is a print file, successive items are placed at succes-
sive tabstops. Thus, assuming appropriate stored values and

tabstops, the effect of the statements

141

DECLARE
1 AGG(3),
2 (RED,BLUE) FIXED DECIMAL (2);
PUT DATA (AGG) ;

is to print out the lines

AGG.RED (1) = 4 AGG.BLUE (1) = 8 AGG.RED(2) =0
AGG.BLUE (2)= -5 AGG.RED(3) =7 AGG.BLUE (3) = 1;

Edit-Directed Input-QOutput

Edit-directed input-output is accomplished through the
GET and PUT EDIT-statements. For edit-directed input-output,
the transformation between the internal and external forms
of the data is governed by a format 1ist. When an item in
a data list is read, a format is obtained from the format
list and used to transform the character representation of
the item, as it appears in the input stream, into a stored
value. When an item in a data list is written, a format is
used to transform the value of the item into a sequence of
characters to be inserted into the output stream. For example,

the statement

GET EDIT (I, J) (F(4),F(3));
applied to the input stream

Bb25. 000063 .14

causes the variables I and J to be assigned the values 15
(obtained from the first four characters of the stream) and
3 (obtained from the next three characters of the stream).

Similarly,

142

PUT EDIT (25,3.142) (2F(7,2));
causes the characters
Bbh25.0000b3 .14

to be placed into the output stream. In this case, the 2 in
front of the format item F(7,2) indicates that the item is

to be repeated twice.

The available formats are listed in Table 12. There
are two kinds of formats: control formats and data formats.
Control formats control positioning of the dataset; they
cause skipping of information on input, and generation of
blanks, linemarks, pagemarks, and carriage-returns on output.
When a format list is interpreted, control formats are executed
as they are encountered; a control format does not use up an
item from the data list. A data format, on the other hand,
requires a corresponding item in the data list, and the
format item together with the data item determines what action

is to be taken.

When the data list is exhausted, interpretation of the

format list ceases. For instance, execution of the statement
PUT EDIT(J) (E(9),SKIP);

does not cause the control format SKIP to be executed, since
after J is paired with E(9) the data list is exhausted and
execution of the statement is complete. If the format list
is exhausted while items still remain in the data list, then

interpretation of the format list starts over again from the

143

Table 12. Format Types

(1) Data Formats

A (w) alphanumeric with field width w
(w can be omitted on output)
B (w) bitstring with field length w
Bl (w) (w can be omitted on output;
B2 (w) Bl indicates base 2, B2 indicates base 4,
B3 (w) B3 indicates base 8, and
B4 (w) B4 indicates base 16)
F(w,d, s) fixed with field width w, d digits to right

of decimal point, scaling s
(d and s are optional)

E(w,d, s) float with field width w, d digits to right
of decimal point in mantissa, s digits in
mantissa (d and s are optional)

P pic pictured according to picture pic

C(f1,12) complex with real part formatted using f1,
imaginary part formatted using f2
(f2 assumed the same as f1 if f2 omitted)

(2) Control Formats
X (w) blank or ignore field of width w
COLUMN (n) continue reading or writing at column position n
TAB (n) skip n tabstops
SKIP (n) skip n lines
LINE (n) position at nth line of printed page
PAGE start new printed page

(3) Remote Format

R (ref) use format obtained by evaluating
reference ref

144

Table 13.

Input Field

TWOBCATS
1011
ONE
Bb1011H
2437
2437
024270
024370
.2437
2437
CATS
2437E1
2437
2437E-2
2437
2437E-2
2.437E-2
2437E-2
(000

(000
b2437
24370b
2437
-2437

Examples of Input Formats

Format

145

Value

TWOBCATS
'1011'B

none —— CONVERSION raised

'1011'B

'010100011111'B

2437
2437
243.7
L2437
24370

none —— CONVERSION raised
none —— CONVERSION raised

2437E0
24.37E0
243.7E0
2.437E0
243.7E0
2.437E0
0

0

2437

none —— CONVERSION raised

24+371
-2.4+4371

Table 14.

Value

DYNASTY
2.48
DYNASTY
DYNASTY
'1011001'B
'1011001'B
'1011001'B
'1011001'B
'1011001'B
2.48

2.48

2.48

=25

24.86
24.86
-24.86
2.48
17.9+61
-17.9+61

Examples of Output

Format

P '"$3$5V, 99"
C(F(6,1))
C(F(6,1),F(6))

146

Formats

Qutput Field

DYNASTY
b2 .48
DYNAST
DYNASTYHHH
1011001
544

D2

D260

D (and STRINGSIZE raised)

BHoH62
pob2 . 5
b0.248

none —— SIZE raised

bhb2 . 486E+001
pobb2486E-002
pbb-24.9E+000
bs2.48
Bb17 . 9bkbe . 0
b-17 . 9bbbbbe

beginning. For instance,

DECLARE A(*) FLOAT;
PUT EDIT (A) (SKIP, 6E(14,5));
causes the contents of the array A to be written out with
six values on a line. As many lines as necessary are used.
A format list can contain repeated items and repeated
lists. The repetition counts and parameters in a format list
are not limited to constants; they can be arbitrary expres-

sions, as in the format list
((ME(14,11-K), (N) (A(L),X(5),A(L+1)))

Repetition counts that are not integer constants must

be written in parentheses.

An edit-directed statement can have more than one pair

of data lists and format lists, e.g.

PUT EDIT (A(*,3)) (SKIP,10E(14,DECPT))
(A(*,4)) (SKIP,6E(14,DECPT);

The behavior of input formats applied to various data values
is illustrated in Table 13. Except for the P-format and the
C-format, all of the input formats specify a field width,
which is the number of characters to be read from the input
stream. (The P-format and C-format specify the field width
implicitly.) For the B-formats, the E-format, and the F-format,
the numerical value to be read can have leading and trailing
blanks, which are ignored. Linemarks within a field are
ignored, so that a field can be split over two lines. For the

F-format and the E-format, the second parameter, if present,

147

indicates where an implicit decimal point should be inserted
if none appears explicitly in the input. For the F-format,
the third parameter specifies scaling to be applied to the
input value, while the third parameter of an E-format is

ignored.

The behavior of output formats is shown in Table 14.
The output formats have behavior inverse to the input formats.
The rules are not entirely inverse, however, since the input
formats assign meaning to certain fields that cannot be pro-
duced by the corresponding output formats. For instance, an
output F-format cannot produce trailing blanks, but an input
F-format can read trailing blanks. Moreover, unscaled output
fields always have explicit decimal points unless they are
integers, but unscaled input fields may have implicit decimal
points. Another difference is that on output, the A-format
and the B-formats need not contain field widths, since a field
width can be deduced by converting the output value to character

type or to bit type as appropriate.

A remote format can appear in a format list, either as
the only item in the list or in combination with other items.
The format item R(ref) is interpreted by evaluating the reference
ref, which must be format-valued, i.e., it must evaluate to the
statement-name of a FORMAT-statement. The contents of that
FORMAT-statement are then interpreted. For instance, the effect
of the statements

GET EDIT(A,B,C) (F(3),R(FF),F(2));
FF: FORMAT (F(5));

148

is the same as that of the statement
GET EDIT(A,B,C) (F(3),F(5),F(2));

Remote formats are useful when the same format is to be used
in a number of different PUT EDIT or GET EDIT-statements.

The same format can be used for both input and output.

149

BIBLIOGRAPHY

1. American National Standards Institute, "American
National Standard - Programming Language PL/I,"
Report ANSI X3. 53-1976, New York.

2. Beech, D., A Structural View of PL/I, ACM Computing
Surveys (2)1, March 1970, pp. 33-64.

3. Beech, D., and Marcotty, M., Unfurling the PL/I Standard,
SIGPLAN Notices (8)10, October 1973, pp. 12-43.

4. Frieburghouse, R., The MULTICS PL/I Compiler, 1969 Fall
Joint Computer Conference (35), AFIPS Press, Montvale,

New Jersey, pp. 187-199.

5. Honeywell Information Systems, Inc., "PL/I Language

Manual, " Cambridge, Massachusetts, 1974.

6. IBM Corporation, "PL/I Language Specifications,"
Number GY33-6003-2, 1970.

7. Lucas, P., and K. Walk, On the Formal Definition of PL/I,
Annual Review in Automatic Programming (6)3, 1969,

Pergamon Press, pp. 105-181.

8. Pollack, S., and Sterling, T., "A Guide to PL/I,"
Second Edition, Holt, Reinhart and Winston, New York, 1976

9. Radin, G., and Rogoway, H., NPL: Highlights of a New
Programming Language, Communications of the ACM (8)1,

January 1965, pp. 9-17.

150

This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A.

Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalf
of the Administration" Includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.

EDITORIAL NOTES

The material in this section is not part of the original publication, but was added by the editor in the
process of converting the document to a PDF.

For comments, corrections, etc. contact:
Peter_Flass (at) Yahoo (dot) com

Acknowledgement

Thanks are owed to the Internet Archive (www.archive.org) for hosting both the PDF (image) copy of
this publication, and also the OCR'd text, which proved remarkably accurate.

[http://www.archive.org/details/pliprogramminglaOQOabra]

Errata

Page 4 (Example 1) after “THE J-TH LETTER.”, '/*' changed to "*/'.
Page 5 Comment before 'GET_DIGRAM' changed '/*' to '*/ at end.
Page 7 Changed keywrods to keywords in last paragraph.
Page 18 pic 'z,zzz', val 1234, changed to result=1,234.
Page 50 Changed comparision to comparison in last paragraph.
Page 51 Changed conerted to converted in paragraph 2.
Page 54 BIT(x,[le]) changed to BIT(x[,le]).
CEIL changed to read “x must not be complex.”
CHARACTER(sa,[le]) changed to CHARACTER(sal,le]).
Page 59 VERIFY — The name of the second argument 'ca' is unreadable.
Page.63 'ACON' changed ACOS.
Page 64.. VALID 'varible' should read 'variable'.
Page 67 OFFSET(P,AR) changed to “relative to AR.”
Page 74 previuosly changed to previously in first paragraph.
Page 76 convenient changed to inconvenient in paragraph 3.
Page 113 “reevaluatd” changed to “reevaluated.”
Page 116 Semicolon inserted between “END” and “IF A(I).”
Page 142 Comma after “AGG(3)”.
Page 144 Fixed typos in 'C' format description.
Page 149 GED changed to GET in last paragraph.

NOTES-1

http://www.archive.org/
http://www.archive.org/details/pliprogrammingla00abra

About the Author

Paul W. Abrahams, Sc.D., CCP, is the author of numerous computer books and articles. A
consulting computer scientist and past president of the Association for Computing Machinery, he
specializes in programming languages, design and implementation of software systems, and technical
writing. He received his bachelor's degree in mathematics from the Massachusetts Institute of
Technology in 1956 and his doctorate in mathematics there in 1963, studying artificial intelligence
under Marvin Minsky and John McCarthy and writing his dissertation on "Machine Verification of
Mathematical Proof". He is one of the designers of the first LISP system and also the designer of the
CIMS PL/I system, which he developed while a professor at New York University. He also
participated in the design of the Software Engineering Design Language (SEDL), developed at the IBM
T.J. Watson Laboratories. In 1995 he was honored as a Fellow of the ACM.

. adapted from InformIT
http://www.informit.com/authors/bio.aspx?a=33D9A1DB-DAE1-4EC3-BAE5-406F84184012

NOTES-2

http://www.informit.com/authors/bio.aspx?a=33D9A1DB-DAE1-4EC3-BAE5-406F84184012

	INTRODUCTION
	Syntactic Conventions

	DATA TYPES
	Arithmetic Types
	String Types
	Pictured Types
	Pointers, Areas and Offsets
	Files
	Labels
	Entries
	Formats
	Arrays
	Structures

	DECLARATIONS
	Manifest, Explicit, Contextual, and Implicit Declarations
	Declarations of Statement-Names
	Attribute Consistency and Completeness
	Standard and User Defined Defaults
	The LIKE-Attribute

	EXPRESSIONS, TYPE CONVERSION, AND ASSIGNMENT
	Prefix and Infix Expressions
	Builtin Functions
	Type Conversion
	Promotion
	The Assignment-Statement

	STORAGE TYPES
	Static Storage
	Automatic Storage
	Controlled Storage
	Based Storage
	The Refer-Option
	Left-to-Right Correspondence
	Allocation in Areas
	Parameter Storage
	Defined Storage
	Alignment
	Initialization

	PROCEDURES, SCOPES, AND ENVIRONMENTS
	The RETURN-Statement
	Arguments and Parameters
	Options
	Recursion
	The GENERIC-Attribute
	Blocks and Scopes
	Internal and External Scope
	Entry Values and Environments

	ON-UNITS AND ON-STATEMENTS
	The ON-Statement, REVERT-Statement, and SIGNAL-Statement
	Enablement and Disablement
	Builtin Functions for ON-Conditions
	Categorization of the ON-Conditions

	OTHER STATEMENTS AFFECTING FLOW OF CONTROL
	Conditional Statements
	The DO-Statement
	The GOTO-statement
	The STOP-Statement and the Null-Statement

	FILES AND RECORD INPUT-OUTPUT
	File Attributes
	File Opening and Attribute Determination
	File Closing
	Operations on Record Files

	STREAM INPUT-OUTPUT
	Data Lists
	List-Directed Input-Output
	Data-Directed Input-Output
	Edit-Directed Input-Output

	BIBLIOGRAPHY
	EDITORIAL NOTES

	Acknowledgement
	Errata
	About the Author

