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Abstract

We present a new model, based on monads, for performing input/output in a non-
strict, purely functional language. It is composable, extensible, efficient, requires no
extensions to the type system, and extends smoothly to incorporate mixed-language
working and in-place array updates.

1 Introduction

Input/output has always appeared to be one of the less satisfactory features of purely
functional languages: fitting action into the functional paradigm feels like fitting a square
block into a round hole. Closely related difficulties are associated with performing in-
place update operations on arrays, and calling arbitrary procedures written in some other
(possibly side-effecting) language.

Some mostly-functional languages, such as Lisp or SML, deal successfully with in-
put/output by using side effects. We focus on purely-functional solutions, which rule out
side effects, for two reasons. Firstly, the absence of side effects permits unrestricted use
of equational reasoning and program transformation. Secondly, we are interested in non-
strict languages, in which the order of evaluation (and hence the order of any side effects)
is deliberately unspecified; laziness and side effect are fundamentally inimical.

There is no shortage of proposals for input/output in lazy functional languages, some
of which we survey later, but no one solution has become accepted as the consensus. This
paper outlines a new approach based on monads (Moggi [1989]; Wadler [1992]; Wadler
[1990]), with a number of noteworthy features.

o [t is composable. Large programs which engage in 1/O are constructed by gluing
together smaller programs that do so (Section 2). Combined with higher-order func-
tions and lazy evaluation, this gives a highly expressive medium in which to express
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[/O-performing computations (Section 2.2) — quite the reverse of the sentiment with
which we began this section.

We compare the monadic approach to I/O with other standard approaches: dialogues
and continuations (Section 3), and effect systems and linear types (Section 7).

o [t is easily extensible. The key to our implementation is to extend Haskell with a
single form that allows one to call an any procedure written in the programming
language C (Kernighan & Ritchie [1978]), without losing referential transparency
(Section 2.3). Using it programmers can readily extend the power of the /0O system,
by writing Haskell functions which call operating system procedures.

o [tis efficient. Our Haskell compiler has C as its target code. Given a Haskell program
performing an I/O loop, the compiler can produce C code which is very similar to
that which one would write by hand (Section 4).

o [ts efficiency is achieved by applying simple program transformations. We use un-
boxed data types (Peyton Jones & Launchbury [1991]) to expose representation and
order-of-evaluation detail to code-improving transformations, rather than relying on
ad hoc optimisations in the code generator (Section 4.1).

o [t extends uniformly to provide interleaved 1/0 and reference types (Section 5).

o [t extends uniformly to support incremental arrays with in-place update (Section 6).
Our implementation is efficient enough that we can define monolithic Haskell array
operations in terms of incremental arrays. Hudak have proposed a similar method
based on continuations. Our method is more general than his in the following sense:
monads can implement continuations, but not the converse.

o [t is based (only) on the Hindley-Milner type system. Some other proposals require
linear types or existential types; ours does not.

We have implemented all that we describe in the context of a compiler for Haskell
(Hudak et al. [1992]), with the exception of the extension to arrays and reference types.
The entire 1/O system provided by our compiler is written in Haskell, using the non-
standard extensions we describe below. The language’s standard Dialogue interface for
[/O is supported by providing a function to convert a Dialogue into our I0 monad. The
system is freely available by FTP.

We do not claim any fundamental expressiveness or efficiency which is not obtainable
through existing systems, except where arrays are concerned. Nevertheless we feel that
the entire system works particularly smoothly as a whole, from the standpoint of both
programmer and implementor.



2 Overview

We need a way to reconcile being with doing: an expression in a functional language denotes
a value, while an 1/O command should perform an action. We integrate these worlds by
providing a type I0 a denoting actions that, when performed, may do some I/O and then
return a value of type a. The following provide simple Unix-flavoured 1/O operations.

getcIO0 :: IO Char
putcI0 :: Char -> I0 ()

Here getcIO is an action which, when performed, reads a character from the standard
input, and returns that character; and putcIO a is an action which, when performed,
writes the character a to the standard output. Actions which have nothing interesting to
return, such as putcIO, return the empty tuple (), whose type is also written ().

Notice the distinction between an action and its performance. Think of an action as
a “script”, which is performed by executing it. Actions themselves are first-class citizens.
How, then, are actions performed? In our system, the value of the entire program is a
single (perhaps large) action, called mainI0, and the program is executed by performing
this action. For example, the following is a legal Haskell program.

mainI0 :: I0 O
mainI0 = putcIO ’ !’

This is the point at which being is converted to doing: when executed, the putcIO action
will be performed, and write an exclamation mark to the standard output.

2.1 Composing I/O operations

The functions defined above allow one to define a single action, but how can actions be
combined? For example, how can we write a program to print two exclamation marks? To
do so, we introduce two “glue” combinators:

donelO :: I0 O
seql0 :: I0 a -> I0 b ->I0b

The compound actionm ‘seqI0‘ nis performed, by first performing m and then performing
n, returning whatever n returns as the result of the compound action. (Backquotes are
Haskell’s syntax for an infix operator.) The action doneIO does no I/O and returns the
unit value, (). To illustrate, here is an action putsIO, which puts a string to the standard
output:

putsI0 :: [Char] -> I0 ()

putsIO0 [] = donel0
putsI0 (a:as) = putcI0 a ‘seqlOf
putsIO as



We can now use putsIO to define a program which prints “hello” twice:

mainI0 = hello ‘seql0‘ hello
where
hello = putsIO "hello"

This example illustrates the distinction between an action and its performance: hello is
an action which happens to be performed twice. The program is precisely equivalent to
one in which putsI0 "hello" is substituted for either or both of the occurrences of hello
In short, programs remain referentially transparent.

In general, an action may also return a value. Again, there are two combinators. The
first is again trivial:

unitI0 :: a -> I0 a

If x is of type a, then unitI0 x denotes the action that, when performed, does nothing
save return x. The second combines two actions:

bindI0 :: I0 a -> (a -> I0 b) -> I0 b

Ifm :: I0 aand k :: a -> I0 b then m ‘bindI0‘ k denotes the action that, when
performed, behaves as follows: first perform action m, yielding a value x of type a, then
perform action k x, yielding a value y of type b, and then return value y. To illustrate, here
is an action that echoes the standard input to the standard output. (In Haskell, \x -> e
stands for a lambda abstraction; the body of the abstraction extends as far as possible.)

echo :: I0 O
echo = getcI0 ‘bindI0‘ \a ->
if (a == eof) then
donell
else
putcI0 a ‘seqlOf
echo

The combinators bindI0 and unitI0 are generalisations of seqI0 and doneIO. Here are
definitions for the latter in terms of the former:

donelO
m ‘seqI0‘ n

unitI0 ()
m ‘bindI0‘ \a -> n

The combinators have a useful algebra: doneIO and seqIO0 form a monoid, while bindI0

and unitI0 form a monad (Moggi [1989]; Wadler [1992]; Wadler [1990]).



2.2 Imperative programming

It will not have escaped the reader’s notice that programs written in the monadic style
look rather similar to imperative programs. For example, the echo program in C might
look something like this:

echo() {
loop: a = getchar(a);
if (a == eof)
return;
else { putchar(a);
goto loop; }

b

(Indeed, as we discuss later, our compiler translates the echo function into essentially this
C code.) Does the monadic style force one, in effect, to write a functional facsimile of an
imperative program, thereby losing any advantages of writing in a functional language?
We believe not.

Firstly, the style in which one writes the functional program’s internal computation
is unaffected. For instance, the argument to putsIO can be computed using the usual
list-processing operations provided by a functional language (list comprehensions, map,
append, and the like).

Secondly, the power of higher-order functions and non-strict semantics can be used
to make I/O programming easier, by defining new action-manipulating combinators. For
example, the definition of putsI0 given above uses explicit recursion. Here is an alternative
way to write putsI0 which does not do so:

putsI0 as = seqsI0 (map putcIO as)

The map applies putcIO to each character in the list as to produce a list of actions.
The combinator seqsI0 takes a list of actions and performs them in sequence; that is, it
encapsulates the recursion. It is easy to define seqsI0 thus:

seqsIO0 :: [I0 a] -> I0 Q)
seqsI0 [] donelO
seqsI0 (a:as) = a ‘seql0‘ seqslO as

or even, using the standard list-processing function foldr, thus:
seqsl0 = foldr seql0 donell

To take another example, here is a function which writes a given number of spaces to the
standard output:

spacelI0 :: Int -> I0 ()
spacel0 n
= seqsIO0 (take n (repeat (putcIO ’ ’)))



The functions take and repeat are standard list-processing functions (with nothing to do
with I/O) from Haskell’s standard prelude. The function repeat takes a value and returns
an infinite list each of whose elements is the given value. The function take takes a prefix
of given length from a list.

These necessarily small examples could easily be programmed with explicit recursion
without significant loss of clarity (or even a gain!). The point we are making is that it is
easy for the programmer to define new “glue” to combine actions in just the way which is
suitable for the program being written. It’s a bit like being able to define your own control
structures in an imperative language.

2.3 Calling C directly

Since the “primitive” functions putcI0, getcIO, and so on must ultimately be implemented
by a call to the underlying operating system, it is natural to provide the ability to call any
operating system function directly. To achieve this, we provide a new form of expression,
the ccall, whose general form is:

ccall proce; ... e,

Here, proc is the name of a C procedure, and ey, ..., €, are the parameters to be passed
to it. This expression is an action, with type I0 Int; when performed, it calls the named
procedure, and delivers its result as the value of the action. Here, for example, are the
definitions of getcIO and putcIO:

putclO a
getclO

ccall putchar a
ccall getchar

These ccalls directly invoke the system-provided functions; no further runtime support
is necessary. Using this single primitive allows us to implement our entire /O system in
Haskell.

We define ccall to be a language construct rather than simply a function because:

o The first “argument” must be the literal name of the C procedures to be called, and
not (say) an expression which evaluates to a string which is the name of the function.
Type information alone cannot express this.

o Different C procedures take different numbers of arguments, and some take a variable
number of arguments. (It would be possible to check the type-correctness of the C
call by reading the signature of the C procedure, but we do not at present do so.)

e Different C procedures take arguments of different types and sizes. (At present, we
only permit the arguments to be of base types, such as Char, Int, Float, Double
and so on, though we are working on extensions which allow structured arguments

to be built.)

Treating ccall as a construct allows these variations to be accomodated without difficulty.



3 Comparison with other I/0 styles

In this section we briefly compare our approach with two other popular ones, dialogues
and continuations.

3.1 Dialogues

The 1/0 system specified for the Haskell language (Hudak et al. [1992]) is based on di-
alogues, also called lazy streams (Dwelly [1989]; O’Donnell [1985]; Thompson [1989]). In
Haskell, the value of the program has type Dialogue, a synonym for a function between a
list of 1/O responses to a list of /O requests:

type Dialogue = [Response] -> [Request]
main :: Dialogue

Request and Response are algebraic data types which embody all the possible 1/0 oper-
ations and their results, respectively:

data Request = Putc Char | Getc
data Response = 0K | OKCh Char

(For the purposes of exposition we have grossly simplified these data types compared with
those in standard Haskell.) A system “wrapper program” repeatedly gets the next request
from the list of requests returned by main, interprets and performs it, and attaches the
response to the end of the response list to which main is applied.

Here, for example, is the echo program written using a Dialogue. (In Haskell xs!!n
extracts the n’th element from the list xs.)

echo :: Dialogue
echo resps = Getc :
if (a == eof)
then []
else Putc a :
echo (drop 2 resps)
where
OKCh a = resps!!1

The difficulties with this programming style are all too obvious, and have been well re-

hearsed elsewhere (Perry [1991]):

o [t is easy to extract the wrong element of the responses, a synchronisation error. This
may show up in a variety of ways. If the “2”7 in the above program was erroneously
written as “1” the program would fail with a pattern-mathing error in getCharI0; if
it were written “3” it would deadlock.



e The Response data type has to contain a constructor for every possible response
to every request. Even though Putc may only ever return a response 0KChar, the
pattern-matching performed by get has to take account of all these other responses.

e Even more seriously, the style is not composable: there is no direct way to take two
values of type Dialogue and combine them to make a larger value of type Dialogue

(try it!).

Dialogues and the I0 monad have equal expressive power, as Figure 1 demonstrates, by
using Dialogues to emulate the I0 monad, and vice versa. The function dToI0, which
emulates Dialogues in terms of IO is rather curious, because it involves applying the
single dialogue d to both bottom (L) and (later) to the “real” list of responses (Hudak
& Sundaresh [1989]; Peyton Jones [1988]). This causes both duplicated work and a space
leak, but no more efficient purely-functional emulation is known. The reverse function,
ioToD does not suffer from these problems, and this asymmetry is the main reason that
Dialogues are specified as primitive in Haskell. We return to this this matter in Section 5.3.

3.2 Continuations

The continuation-style I/O model (Gordon [1989]; Hudak & Sundaresh [1989]; Karlsson
[1982]; Perry [1991]) provides primitive I/O operations which take as one of their arguments
a continuation which says what to do after the I/O operation is performed:

main :: Result

putcC :: Char -> Result -> Result
getcC :: (Char -> Result) -> Result
doneC :: Result

Using these primitives, the echo program can be written as follows:

echo :: Result -> Result

echo ¢ = getcC (\a ->
if (a == eof) then
then ¢
else putcC a (echo c))

Since we might want to do some more [/O after the echoing is completed, we must provide
echo with a continuation, ¢, to express what to do when echo is finished. This “extra ar-
gument” is required for every [/O-performing function if it is to be composable, a pervasive
and tiresome feature.

The above presentation of continuation-style 1/O is a little different from those cited
above. In all those descriptions, Result is an algebraic data type, with a constructor for
each primitive 1/O operation. As with Dialogues, execution is driven by a “wrapper”
program, which evaluates main, performs the operation indicated by the constructor, and



‘Dialogueto 10

dToIO :: Dialogue -> I0 ()

dToIO d
= case (d bottom) of
(] -> donelD
(q:gs) -> doReq q ‘bindI0¢ \r ->
dToI0 (\rs -> tail (d (r:rs)))
bottom :: a

bottom = error \mbox{$\it Should\ never\ be\ evaluated$}

doReq :: Request -> I0 Response
doReq (GetChar f)
= getCharI0O f ‘bindI0‘ (\c ->
unitI0 (OKChar c))
doReq (PutChar f c)
= putCharIO f ¢ ‘seqI0‘ unitIO OK

‘IO‘U)Dialogue‘

type I0 a = [Response]
-> (a, [Request], [Response])

ioToD :: IO () -> Dialogue
ioToD action = \rs -> case (io rs) of
(_: gs, _) -> gs

unitI0 v = \rs -> (v, [J, rs)
bindI0 op fop
= \rs -> let (v1, gsi1, rsl) op rs
(v2, gs2, rs2) fop vl rsi
in (v2, gsl++gs2, rs2)

Figure 1: Converting between Dialogue and I0




‘(]ontinuaiions to I0

type Result = I0 ()

cToI0 :: Result -> I0 ()
cTolOr = r

putCharC :: File -> Char -> Result -> Result
putCharC f ¢ k = putCharI0 f ¢ ‘seql0‘ k

getCharC :: File -> Char
-> (Char -> Result) -> Result
getCharC f k = getCharI0 f ‘thenlI0‘ k

‘IC)to continuations

type I0 a = (a -> Result) -> Result

ioToC :: IO () -> Result
ioToC action = action (\ () -> nopC)

\k >k v
\k -> op (\a -> fop a k)

unitI0 v
bindI0 op fop

putCharIO f c
getCharlO £

\k -> putCharC f ¢ (k ())
\k -> getCharC £ (\c -> k ¢)

Figure 2: Converting between continuations and I0

applies the continuation inside the constructor to the result. This approach has the dis-
advantage that it requires existential types if polymorphic operations, such as those we
introduce later in Section 5.3, are to be supported.

An obvious improvement, which we have not seen previously suggested, is to implement
the primitive continuation operations (such as putcC, getcC and doneC) directly, making
the Result type an abstract data type with no operations defined on it other than the
primitives themselves. This solves the problem.

Continuations are easily emulated by the I0 monad, and vice versa, as Figure 2 shows.
The comparison between the monadic and continuation approach is further explored in
Section 6.
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4 TImplementing monadic I/0

So far we have shown that an entire [/O system can be expressed in terms of ccall,
bindIO0, and unitI0, and of course the I0 type itself. How are these combinators to be
implemented? One possibility is to build them in as primitives, but it turns out to be both
simpler and more efficient to implement all except ccall in Haskell.

The idea is that an action of type I0 a is implemented as a function, which takes as
its input a value representing the entire current state of the world, and returns a pair,
consisting of (a value representing) the new state of the world, and the result of type a:

type 10 a = World -> IORes a
data IORes a MkIORes a World

The type declaration introduces a type synomym for I0, and the auxiliary algebraic
datatype IORes simply pairs the result with the new world. Recall that the value of
the entire program is of type I0 (). The type World is abstract, with only one operation
defined on it, namely ccall. Conceptually, the program is executed by applying main to a
value of type World representing current state of the world, extracting the resulting World
value from the MkIORes constructor, and applying any changes embodied therein to the
real world.

If implemented literally, such a system would be unworkably expensive. The key to
making it cheap is to ensure that the world state is used in a single-threaded way, so that
1/0 operations can be applied immediately to the real world. One way to ensure this would
be to do a global analysis of the program. A much simpler way is to make IO into an
abstract data type which encapsulates the data types I0 and IORes, and the combinators
bindI0 and unitI0. Here are suitable definitions for the latter:

MkIORes a w
case (m w) of
MkIORes a w’ -> k a w’

unitlI0 a w
bindI0m k w

Notice that bindI0 and unitI0 carefully avoid duplicating the world. Provided that the
primitive ccall actions are combined only with these combinators, we can guarantee that
the ccalls will be linked in a single, linear chain, connected by data dependencies in which
each ccall consumes the world state produced by the previous one. In turn this means
that the ccall operations can update the real world “in place”.

4.1 Implementing ccall

So much for the combinators. All that remains is the implementation of ccall. The only
complication here is that we must arrange to evaluate the arguments to the ccall before
passing them to C.

This is very similar to the argument evaluation required for built-in functions such as
addition, for which we have earlier developed the idea of unboxed data types (Peyton Jones
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& Launchbury [1991]). These allow representation and order-of-evaluation information to
be exposed to code-improving transformations. For example, consider the expression x+x
where x is of type Int. The improvement we want to express is that x need only be
evaluated once.

The key idea is to define the type Int (which is usually primitive) as a structured
algebraic data type with a single constructor, MkInt, like this:

data Int = MkInt Int#

A value of type Int is represented by a pointer to a heap-allocated object, which may either
be an unevaluated suspension, or a MkInt constructor containing the machine bit-pattern
for the integer. This bit-pattern is of type Int#.

Now that Int is given structure, we can make explicit the evaluation performed by
+, by giving the following definition, which expresses + in terms of the primitive machine
operation +#:

a + b = case a of
MkInt a# ->
case b of
MkInt b# ->
MkInt (a#t +# b#)

Inlining this definition of + in the expression x+x, and performing simple, routine simplifi-
cations, gives the following, in which x is evaluated only once:

case x of
MkInt x# -> MkInt (x# +# x#)

(Unboxed types and ccall are not part of standard Haskell. They are mainly used in-
ternally in our compiler, though we do also make them available to programmers as a
non-standard extension.)

We apply exactly the same ideas to ccall. In particular, instead of implementing
ccall directly, we unfold every use of ccall to make the argument evaluation explicit
before using the truly primitive operation ccall#. For example, the uses of ccall in the
definitions of putcIO and getcIO given above (Section 2.3), are unfolded thus:

putcI0 a = \w ->
case a of
MkChar a# ->
case (ccall# putchar a# w) of
MkIORes# n# w’ -> MkIORes () w’

getcIO = \w ->
case (ccall# getchar w) of
MkIORes# n# w’ ->
MkIORes (MkChar n#) w’

12



Like Int, the type Char is implemented as an algebraic data type thus:
data Char = MkChar Int#

The outer case expression of putcIO, therefore, evaluates a and extracts the bit-pattern
a#t, which 1s passed to ccall#. The inner case expression evaluates the expression
(ccall# putchar a# w), which returns a pair, constructed by MkIORes#, consisting of
the value n# returned by the C procedure putchar (which is ignored), and a new world w’
(which is returned).

In the case of getcIO, the (primitive, unboxed) value n# returned by getchar is not
ignored as it is in putcIO; rather it is wrapped in a MkChar constructor, and returned as
part of the result.

The differences between ccall and ccall# are as follows. Firstly, ccall# takes only
unboxed arguments, ready to call C directly.

Secondly, it returns a pair built with MkIORes#, containing an unboxed integer result
direct from the C call. The I0ORes# type is very similar to I0Res:

data IORes# = MkIORes# Int# World

(IORes and IORes# are distinct types, because while our extended type system recognises
unboxed types, it does not permit polymorphic type constructors, such as I0ORes, to be
instantiated at an unboxed type, such as Int#.)

Thirdly, the ccall# primitive is recognised by the code generator and expanded to an
actual call to C. Specifically, the expression:

case (ccall# proc a# b# c# w) of
MkIORes# n# w’ -> ...

generates the C statement

n# = proc(a#,b#,ct#);

This simple translation is all that the code generator is required to do. The rest is done by
generic program transformations; that is, transformations which are not specific to 1/O or
even to unboxing (Peyton Jones & Launchbury [1991]).

4.2 Where has the world gone?

But what has become of the world values in the final C code? The world value manipulated
by the program represents the current state of the real world, but since the real world is
updated “in place” the world value carries no useful information. Hence we simply arrange
that no code is ever generated to move values of type World. This is easy to do, as type
information is preserved throughout the compiler. In particular, the world is never loaded
into a register, stored in a data structure, or passed to C procedure calls.

Is it possible, then, to dispense with the world in the functional part of the implemen-

tation as well? For example, can we define the I0Res type and bindI0 combinators like
this?

13



data IORes a
bindI0m k w

MkIORes a
case (m w) of
MkIORes a -> k a w

No, we cannot! To see this, suppose that bindI0 was applied to a function k which
discarded its argument. Then, if bindI0 was unfolded, and the expression (k r w) was
simplified, there would be no remaining data dependency to force the call of k to occur after
that of m. A compiler would be free to call them in either order, which destroys the 1/0
sequencing.

To reiterate, the world is there to form a linear chain of data dependencies between suc-
cessive ccalls. It is quite safe to expose the representation of the I0 type to code-improving
transformations, because the chain of data dependencies will prevent any transformations
which reorder the ccalls. Once the code generator is reached, though, the work of the
world values is done, so it is safe to generate no code for them.

4.3 echo revisited

The implementation we have outlined is certainly simple, but is it efficient? Perhaps sur-
prisingly, the answer is an emphatic yes. The reason for this is that because the combinators
are written in Haskell, the compiler can unfold them at all their call sites; that is, perform
procedure inlining.

Very little special-purpose code is required in the compiler to achieve this effect —
essentially all that is required is that the Haskell definitions of bindI0, unitI0, putcIO
and so on, be unfolded by the compiler. In contrast, if bindI0 were primitive, then every
call to bindI0 will require the construction of two heap-allocated closures for its two
arguments. Even if bindI0 itself took no time at all, this would be a heavy cost.

To illustrate the effectiveness of the approach we have outlined, we return to the echo
program of Section 2.1. If we take the code there, unfold the calls of seqI0, donel0, eof,
putcIO and getcIO, and do some simplification, we get the following:

echo = \w >
case (ccall# getchar w) of
MkIORes# a# wl ->
case (a# ==# eof#) of
T# -> MkIORes () w1l
F# -> case (ccall# putchar a# wl) of
MkIORes# n# w2 -> echo w2

When this is compiled using the simple code-generator described, the following C is pro-

duced:
echo() {

int a;
a = getchar();

14



if (a == eof) {
retVal = unitTuple;
RETURN;
} else {
putchar(a);
JUMP( echo );
T}

(JUMP and RETURN are artefacts of our use of C as a target “machine code” (Peyton Jones
[1992]). They expand only to a machine instruction or two.) This is very close to the C one
would write by hand! We know of no other implementation of 1/O with better efficiency.

4.4 A continuation-passing implementation

Like most abstract data types, there is more than one way to implement I0. In particular,
it is possible to implement the I0 abstract type using a continuation-passing style. The
type I0 ais represented by a function which takes a continuation expecting a value of type
a, and returns a value of the opaque type Result.

type I0 a = (a -> Result) -> Result
It is easy to implement bindI0 and unitIO:

bindI0 m k cont = m (\a -> k a cont)
unitI0 r cont = cont r

What is there to choose between these this representation of the I0 type and the one we
described initially (Section 4)7 The major tradeoff seems to be this: with the continuation-
passing representation, every use of bindIQ (even if unfolded) requires the construction of
one heap-allocated continuation. In contrast, the implementation we described earlier
keeps the continuation implicitly on the stack, which is slightly cheaper in our system.

There is a cost to pay for the earlier representation, namely that a heavily left-
skewed composition of bindIOs can cause the stack to grow rather large. In contrast,
the continuation-passing implementation may use a lot of heap for such a composition, but
its stack usage is constant.

The main point is that the implementor is free to choose the representation for I0 based
only on considerations of efficiency and resource usage; the choice makes no difference to
the interface seen by the programmer.

5 Extensions to the I0 monad

5.1 Delayed I/0O

So far all 1/O operations have been strictly sequenced along a single “trunk”. Some-
times, though, such strict sequencing is unwanted. For example, almost all lazy functional-
language 1/0O systems provide a readFile primitive, which returns the entire contents of
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a specified file as a list of characters. It is often vital that this primitive should have lazy
semantics; that is, the file is opened, but only actually read when the resulting list is evalu-
ated. The relative ordering of other I/O operations and the reading of the file is immaterial
(provided the file is not simultaneously written). This lazy read is usually implemented by
some ad hoc “magic” in the runtime system, but within the monadic framework it is easy
to generalise the idea.

What is required is a new combinator for the I0 monad, delayI0, which forks off a
new branch from the main “trunk”:

delayIO :: I0 a -> I0 a

When performed, (delayI0 action) immediately returns a suspension which when it s
subsequently forced will perform the 1/0 specified by action. The relative interleaving
of the 1/O operations on the “trunk” and the “branch” is therefore dependent on the
evaluation order of the program.

The delayIO combinator is dangerous (albeit useful), because the correctness of the
program now requires that arbitrary interleaving of I/O operations on the “trunk” and
“branch” cannot affect the result. This condition cannot be guaranteed by the compiler; it
is a proof obligation for the programmer. In practice, we expect that delayI0 will be used
mainly by system programmers

With the aid of delayIO (and a few new primitives such as f0penIO), it is easy to write
a lazy readFile:

readFile :: [Char] -> IO [Charl]
readFile s = fOpenlIO s ‘bindI0‘ \f ->
delayIO (lazyRd f)

lazyRd :: File -> I0 [Char]
lazyRd £
= readChar £ ‘bindI0¢ \a ->
if (a == eof) then
fCloseIO f ‘seqlOf
unitI0 []
else
delayIO (lazyRd f) ‘bindI0¢ \as ->
unitI0 (a:as)

The delayIO combinator provides essentially the power of Gordon’s suspend operator
(Gordon [1989]).

Implementation. A nice feature of the implementation technique outlined in Section 4
is that delayIO is very easy to define:

delayI0O m = \w -> MkIORes res w
where
res = case (m w) of
MkIORes r w’ -> r
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In contrast to bindI0, notice how delayIO duplicates the world w, and then discards the
final world w’ of the delayed branch; it is this which allows the unsynchronised interleaving
of I/O operations on the “branch” with those on the “trunk”.

5.2 Asynchronous I/0

An even more dangerous but still useful combinator is performI0, whose type is as follows:
performIO :: I0 a -> a

It allows potentially side-effecting operations to take place which are not attached to the
main “trunk” at alll The proof obligation here is that any such side effects do not affect
the behaviour of the rest of the program. An obvious application is when one wishes to
call a C procedure which really is a pure function; procedures from a numerical analysis
library are one example.

Implementation. The implementation is quite simple:

performI0 m = case (m newWorld) of
MkIORes r w’ -> r

Here, newWorld is a value of type World conjured up out of thin air, and discarded when
the action m has been performed.

5.3 Assignment and reference variables

Earlier, in Section 3.1, we discussed the apparently insoluble inefficiency of dToIO, the
function which emulates Dialogues using the I0 monad. We can solve this problem by
providing an extra general-purpose mechanism, that of assignable reference types and op-
erations over them (Ireland [1989]):

newVar :: a -> I0 (Ref a)
assignVar :: Ref a -> a -> I0 ()
deRefVar :: Ref a -> I0 a

The call newVar x allocates a fresh variable containing the value x; the call assignVar v x
assigns value x to variable v; and the call deRefVar v fetches the value in variable v. By
making these side-effecting operations part of the I0 monad, we make sure that their order
of evaluation, and hence semantics, is readily explicable.

With the aid of these primitives it is possible to write an efficent emulation of Dialogues
using I0 (Figure 3). The idea is to mimic a system which directly implements Dialogues,
which follows the processing of each request with a destructive update to add a new re-
sponse to the end of the list of responses. Notice the uses of delayI0, which reflects the
fact that there is no guarantee that dialogue will not evaluate a response before it has
emitted a request. If this occurs, the un-assigned variable is evaluated, which elicits a
suitable error message.
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dToIO :: Dialogue -> I0 ()

dToIO dialogue

= newVar (error \mbox{$\it Synch$}) ‘bindI0‘ \rsV ->
delayIO (deRefVar rsV) ‘bindI0° \rs ->
run (dialogue rs) rsV

run :: [Request] -> Ref [Response] -> I0 ()

run [] v = donell
run (req:reqs) v
= doReq req ‘bindI0‘ \r ->

newVar (error \mbox{$\it Synch$}) ‘bindI0‘ \rsV ->
delayIO (deRefVar rsV) ‘bindI0° \rs ->

assignVar v (r:rs) ‘seql0f

run reqs rsV

Figure 3: Efficient conversion from Dialogue to I0

References in languages such as ML require a weakened form of polymorphism in order
to maintain type safety (Tofte [1990]). For instance, in ML a fresh reference to an empty list
has type ’_a list ref, where the type variable ’_a is weak, and so may be instantiated
only once. In contrast, here a fresh reference to an empty list has type I0 (Ref a), and
the type variable a is normal. But no lack of safety arises, because an expression of this
type allocates a new reference each time it is evaluated. The only way to change a value of
type I0 (Ref a) to one of type Ref a is via bindI0, but now the variable of type Ref a is
not let-bound, and so can only be instantiated once anyway. Hence the extra complication
of weak type variables, required in languages with side effects, seems unnecessary here.
(We're indebted to Martin Odersky for this observation.)

6 Arrays

The approach we take to [/O smoothly extends to arrays with in-place update. Hudak
has recently proposed a similar method based on continuations. For 1/0, the monad
and continuation approaches are interdefinable. For arrays, it turns out that monads can
implement continuations, but not the converse.

Let Arr be the type of arrays taking indexes of type Ind and yielding values of type
Val. There are three operations on this type.

new :: Val -> Arr
lookup :: Ind -> Arr -> Val
update :: Ind -> Val -> Arr -> Arr

The call new v returns an array with all entries set to v; the call lookup i x returns the
value at index i in array x; and the call update i v x returns an array where index i has
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value v and the remainder is identical to x. The behaviour of these operations is specified
by the usual laws.

lookup i (new v) = v
lookup i (update i v x)

v

lookup i (update j v x) = lookup i x

where i £ j in the last equation. In practice, these operations would be more complex; one
needs a way to specify the array bounds, for instance. But the above suffices to explicate
the main points.

The efficient way to implement the update operation is to overwrite the specified entry
of the array, but in a pure functional language this is only safe if there are no other
pointers to the array extant when the update operation is performed. An array satisfying
this property is called single threaded, following Schmidt (Schmidt [1985]).

As an example, consider the following problem. An occurrence is either a definition
pairing an index with a value, or a use of an index.

data 0Occ = Def Ind Val | Use Ind

For illustration take Ind = Int and Val = Char. Given a list os of occurrences, the call
uses os returns for each use the most recently defined value (or ’-" if there is no previous

definition). If

os = [Def 1 ’a’, Def 2 ’b’, Use 1,
Def 1 ’c’, Use 2, Use 1]

then
uses os = [’a’, ’b’, ’c’].
Here is the code.

uses :: [0cc] -> [Val]
uses os = loop os (new ’-’)

loop :: [Occ] -> Arr -> [Vall
loop [] x = [
loop (Def i v : os) x loop os (update i v x)

loop (Use i : os) x = lookup i x : loop os x

The update in this program can be performed by overwriting, but some care is required
with the order of evaluation. In the last line, the lookup must occur before the recursive
call which may update the array. Some work has been done on analysing when update can

be performed in-place, but it is rather tricky (Bloss [1989]; Hudak [1986]).
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6.1 Monadic arrays

We believe that single threading is too important to leave to the vagaries of an analyser.
Instead, we use monads to guarantee single threading, in much the same way as was done
with I/O. Analogous to the type I0 a (the monad of /O actions), we provide an abstract
type A a (the monad of array transformers).

newl 2 Val -> A a -> a

lookupA :: Ind -> A Val

updateA :: Ind -> Val -> A ()

unith i a -> A a

bindA ::Aha->(a->ADbD) >Ab

For purposes of specification, we can define these in terms of the proceeding operations as
follows.

type A a = Arr -> (a, Arr)

newA v m = fst (m (new v))

lookupA i = \x -> (lookup i x, x)

updateA i v = \x -> ((), update i v x)

unith a =\x > (a,x)

m ‘bindA‘ k = \x -> let (a,y) =mx in k ay

A little thought shows that these operations are indeed single threaded. The only operation
that could duplicate the array is lookupA, but this may be implemented as follows: first
fetch the entry at the given index in the array, and then return the pair consisting of this
value and the pointer to the array. To enforce the necessary sequencing, we augment the
above specification with the requirement that lookupA and updateA are strict in the index
and array arguments (but need not be strict in the value).

The above is given for purposes of specification only — the actual implementation is
along the lines of Section 4.

For convenience, define seqA in terms of bindA in the usual way.

m ‘seqA‘n = m ‘bindA‘ \a -> n
Here is the ‘definition-use’ problem, recoded in monadic style.

uses :: [0cc] -> [Val]
uses os = newhA ’-’ (loopA os)

loopA :: [Occ] -> A [Val]

loopA [] = unitA []

loopA (Def i v : os) = updateA i v ‘seqAf
loopA os

lookupA i ‘bindA‘ \v ->

loopA (Use i : os)
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loopA os ‘bindA‘ \vs ->
unith (v:vs)

This is somewhat lengthier than the previous example, but it is guaranteed safe to imple-
ment update by overwriting.

6.2 Continuation arrays

An alternative method of guaranteeing single threading for arrays has been proposed by
Hudak [1992]. Like the previous work of Swarup, Reddy & Ireland [1991], it is based on
continuations, but unlike that work it requires no change to the type system.

As with the array monad, one defines an abstract type supporting various operations.
The type is C z, and the operations are as follows.

newC :: Val -> C z -> z

lookupC :: Ind -> (Val -> C z) -> C z
updateC :: Ind -> Val -> C z -> C z
unitC itz ->C 2z

Here a continuation, of type C z, represents the remaining series of actions to be performed
on the array, eventually returning (via unitC) a value of type z.

For purposes of specification, we can define these in terms of the array operations as
follows.

type Cz = Arr -> z

newC v ¢ c (new v)

lookupC i d \x -> d (lookup i x) x
updateC i v ¢ = \x -> ¢ (update i v x)
unitC z =\x -> z

Again, these operations are single threaded if lookupC and updateC are strict in the index
and array arguments.
For convenience, define

m$c = mc

This lets us omit some parentheses, sincem (\x -> n) becomesm $ \x -> n.
Here is the ‘definition-use’ problem, recoded in continuation style.

uses :: [0cc] -> [Val]
uses os = newC ’-’ (loopC os unitC)

loopC :: [Occ] -> ([Val] -> C z) -> C z
loopC [] c=c [l
loopC (Def i v : os) ¢ updateC i v $
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loopC os c

loopC (Use i : os) ¢ = lookupC i $ \v ->
loopC os ¢ \vs ->
c (v:vs)

This is remarkably similar to the monadic style, where $ takes the place of bindA and seqA,
and the current continuation c takes the place of unitA. (If ¢ plays the role of unitA, why
do we need unitC? Because it acts as the ‘top level’ continuation.)

However, there are two things to note about the continuation style. First, the types
are rather more complex — compare the types of loopA and loopC. Second, the monadic
style abstracts away from the notion of continuation — so there are no occurrences of ¢
cluttering the defintion of loopA.

6.3 Monads vs. continuations

We can formally compare the power of the two approaches by attempting to implement
each in terms of the other. Despite their similarities, the two approaches are not equivalent.
Monads are powerful enough to implement continuations, but not (quite) vice versa.

To implement continuations in terms of monads is simplicity itself.

type Cz = A=z
newC v c = newA v c
lookupC i d = lookupA i ‘bindA‘ d

updateC i v ¢ = updateA i v ‘seqA‘ ¢
unitC = unitA

It is an easy exercise in equational reasoning to to prove that this implementation is correct
in terms of the specifications in Sections 6.1 and 6.2.

The reverse implementation is not possible. The trouble is the annoying extra type
variable, z, appearing in the types of lookupC and updateC. This forces the introduction
of a spurious type variable into any attempt to define monads in terms of continuations.
Instead of a type A a, the best one can do is to define a type B a z. Here are the types of
the new operations.

newB :: Val -> B aa -> a

lookupB :: Ind -> B Val z

updateB :: Ind -> Val -> B () z

unitB i a->Baz

bindB :: Baz->(a->Bbz) ->Bbz

And here are the implementations in terms of continuations.

type Baz = (a->Cz) ->Cz
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newB v m = newC v (m unitQC)

lookupB i = \d -> lookupC i d
updateB i v = \d -> updateC i v (d ())
unitB a = \d >d a

m ‘bindB‘k = \d ->m (\a -> k a d)

Again, it is easy to prove this implementation satisfies the given specifications.

So monads are more powerful than continuations, but only because of the types! It is
not clear whether this is simply an artifact of the Hindley-Milner type system, or whether
the types are revealing a difference of fundamental importance. (Our own intuition is the
latter — but it’s only an intuition.)

6.4 Conclusion

The 1/O approach outlined earlier manipulates a global state, namely the entire state of
the machine accessible via a C program. What has been shown in this section is that this
approach extends smoothly to manipulating local state, such as a single array. Further,
although the monad and continuation approaches are interconvertible for 1/0, they are not
for arrays: monads are powerful enough to define continuations, but not the reverse.

For actual use with Haskell, we require a slightly more sophisticated set of operations.
The type A must take extra parameters corresponding to the index and value types, the
operation newA should take the array bounds, and so on. By using a variant of newA
that creates an uninitialised array, and returns the array after all updates are finished,
it is possible to implement Haskell primitives for creating arrays in terms of the simpler
monad operations. Thus the same strategy that works for implementing 1/0 should work
for implementing arrays: use a small set of primitives based on monads, and depend on
program transformation to make this adequately efficient.

One question that remains is how well this approach extends to situations where one
wishes to manipulate more than one state at a time, as when combining 1/O with array
operations, or operating on two arrays. In this respect effect systems or linear types may
be superior; see below.

7 Related work

7.1 Effect systems

Gifford and Lucassen introduced ‘effect systems’ which use types to record the side-effects
performed by a program, and to determine which components of a program can run in
parallel without interference (Gifford & Lucassen [1986]). The original notion of effect
was fairly crude, there being only four possible effects: pure (no effect), allocate (may
allocate storage), function (may read storage), procedure (may write storage). New systems
are more refined, allowing effects to be expressed separately for different regions of store

(Jouvelot & Gifford [1991]).
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A theoretical precursor of the effects work is that of Reynolds, which also used types
to record where effects could occur and where parallelism was allowed (Reynolds [1981];
Reynolds [1989]).

Our work is similar to the above in its commitment to use types to indicate effects.
But effect systems are designed for impure, strict functional languaes, where the order of
sequencing is implicit. Our work is designed for pure, lazy functional languages, and the
purpose of the ‘bind’ operation is to make sequencing explicit where it is required.

With effect systems, one may use the usual laws of equational reasoning on any program
segment without a ‘write’ side effect. Our work differs in that the laws of equational rea-
soning apply even where side effects are allowed. This is essential, because the optimisation
phase of our compiler is based on equational reasoning.

On the other hand, effect systems make it very easy to combine programs with different
effects. In our approach, each different effect would correspond to a different monad type
(one for 10, one for each array manipulated, and so on), and it is not so clear how one
goes about combining effects.

7.2 Linear types

The implementation of the I0 monad given in Section 4 is safe because (and only because)
the code that manipulates the world never duplicates or destroys it. We guarantee safety
by making the I0 type abstract, so that user has no direct access to the world.

An alternative is to allow the user access to the world, but introduce a type system
that guarantees that the world can never be duplicated or destroyed. A number of type
systems have been proposed along such lines. Some have been based on Girard’s linear
logic (Girard [1987]), and this remains an area of active exploration (Abramsky [1990];
Guzman & Hudak [1990]; Wadler [1990]). Another is the type system proposed by the
Nijmegen Clean group, which is more ad-hoc but has been tested in practical applications
similar to our own (Achten, Groningen & Plasmeijer [1992]).

For example, here is the echo program again, written in the style suggested by the
Clean I/0 system:

echo :: File -> File -> World -> World
echo fi fo w = if a == eof
then wil
else echo (putChar fo a wil)
where
(wl,a) = getChar fi w

Compared to the monad approach, this suffers from a number of drawbacks: programs
become more cluttered; the linear type system has to be explained to the programmer and
implemented in the compiler; and code-improving transformations need to be re-examined
to ensure they preserve linearity. The latter problem may be important; Wakeling found
that some standard transformations could not be performed in the presence of linearity

(Wakeling [1990]).
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The big advantage of a linear type system is that it enables us to write programs
which manipulate more than one piece of updatable state at a time. The monadic and
continuation-passing presentations of arrays given above pass the array around implicitly,
and hence can only easily handle one at a time. This is an important area for future work.

On the practical side, the Clean work is impressive. They have written a library of high-
level routines to call the Macintosh window system, and demonstrated that it is possible
to build pure functional programs with sophisticated user interfaces. The same approach
should work for monads, and another area for future work is to confirm that this is the
case.

8 Conclusions and further work

We have been pleasantly surprised by both the expressiveness and the efficiency of the
approach we have described. For example, we have found that while it is possible to write
composable [/O programs in other styles, it is almost impossible not to do so in using the
monadic approach.

Plenty remains to be done. We are working on our implementation of arrays; this in
turn feeds into the ability to pass structured values in ccalls; we have not yet implemented
assignable reference types.

More importantly, the model we have desribed concerns only the 1/O infrastructure.
Much more work needs to be done to design libraries of functions, built on top of this in-
frastructure, which present a higher-level interface to the programmer (Achten, Groningen

& Plasmeijer [1992]; Hammond, Wadler & Brady [1991]).
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