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Abstract

We present a new model� based on monads� for performing input�output in a non�

strict� purely functional language� It is composable� extensible� e�cient� requires no
extensions to the type system� and extends smoothly to incorporate mixed�language

working and in�place array updates�

� Introduction

Input�output has always appeared to be one of the less satisfactory features of purely
functional languages� �tting action into the functional paradigm feels like �tting a square
block into a round hole� Closely related di�culties are associated with performing in�
place update operations on arrays� and calling arbitrary procedures written in some other
	possibly side�e
ecting� language�

Some mostly�functional languages� such as Lisp or SML� deal successfully with in�
put�output by using side e
ects� We focus on purely�functional solutions� which rule out
side e
ects� for two reasons� Firstly� the absence of side e
ects permits unrestricted use
of equational reasoning and program transformation� Secondly� we are interested in non�
strict languages� in which the order of evaluation 	and hence the order of any side e
ects�
is deliberately unspeci�ed� laziness and side e
ect are fundamentally inimical�

There is no shortage of proposals for input�output in lazy functional languages� some
of which we survey later� but no one solution has become accepted as the consensus� This
paper outlines a new approach based on monads 	Moggi 
������ Wadler 
������ Wadler

������� with a number of noteworthy features�

� It is composable� Large programs which engage in I�O are constructed by gluing
together smaller programs that do so 	Section ��� Combined with higher�order func�
tions and lazy evaluation� this gives a highly expressive medium in which to express
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I�O�performing computations 	Section ���� � quite the reverse of the sentiment with
which we began this section�

We compare the monadic approach to I�O with other standard approaches� dialogues
and continuations 	Section ��� and e
ect systems and linear types 	Section ���

� It is easily extensible� The key to our implementation is to extend Haskell with a
single form that allows one to call an any procedure written in the programming
language C 	Kernighan � Ritchie 
������� without losing referential transparency
	Section ����� Using it programmers can readily extend the power of the I�O system�
by writing Haskell functions which call operating system procedures�

� It is e�cient� Our Haskell compiler has C as its target code� Given a Haskell program
performing an I�O loop� the compiler can produce C code which is very similar to
that which one would write by hand 	Section ���

� Its e�ciency is achieved by applying simple program transformations� We use un�
boxed data types 	Peyton Jones � Launchbury 
������ to expose representation and
order�of�evaluation detail to code�improving transformations� rather than relying on
ad hoc optimisations in the code generator 	Section �����

� It extends uniformly to provide interleaved I�O and reference types 	Section ���

� It extends uniformly to support incremental arrays with in�place update 	Section ���
Our implementation is e�cient enough that we can de�ne monolithic Haskell array
operations in terms of incremental arrays� Hudak have proposed a similar method
based on continuations� Our method is more general than his in the following sense�
monads can implement continuations� but not the converse�

� It is based �only� on the Hindley�Milner type system� Some other proposals require
linear types or existential types� ours does not�

We have implemented all that we describe in the context of a compiler for Haskell
	Hudak et al� 
������� with the exception of the extension to arrays and reference types�
The entire I�O system provided by our compiler is written in Haskell� using the non�
standard extensions we describe below� The language�s standard Dialogue interface for
I�O is supported by providing a function to convert a Dialogue into our IO monad� The
system is freely available by FTP�

We do not claim any fundamental expressiveness or e�ciency which is not obtainable
through existing systems� except where arrays are concerned� Nevertheless we feel that
the entire system works particularly smoothly as a whole� from the standpoint of both
programmer and implementor�
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� Overview

We need a way to reconcile being with doing� an expression in a functional language denotes
a value� while an I�O command should perform an action� We integrate these worlds by
providing a type IO a denoting actions that� when performed� may do some I�O and then
return a value of type a� The following provide simple Unix��avoured I�O operations�

getcIO �� IO Char

putcIO �� Char �� IO ��

Here getcIO is an action which� when performed� reads a character from the standard
input� and returns that character� and putcIO a is an action which� when performed�
writes the character a to the standard output� Actions which have nothing interesting to
return� such as putcIO� return the empty tuple ��� whose type is also written ���

Notice the distinction between an action and its performance� Think of an action as
a �script�� which is performed by executing it� Actions themselves are �rst�class citizens�
How� then� are actions performed� In our system� the value of the entire program is a
single 	perhaps large� action� called mainIO� and the program is executed by performing
this action� For example� the following is a legal Haskell program�

mainIO �� IO ��

mainIO � putcIO �	�

This is the point at which being is converted to doing� when executed� the putcIO action
will be performed� and write an exclamation mark to the standard output�

��� Composing I�O operations

The functions de�ned above allow one to de�ne a single action� but how can actions be
combined� For example� how can we write a program to print two exclamation marks� To
do so� we introduce two �glue� combinators�

doneIO �� IO ��

seqIO �� IO a �� IO b �� IO b

The compound action m 
seqIO
 n is performed� by �rst performing m and then performing
n� returning whatever n returns as the result of the compound action� 	Backquotes are
Haskell�s syntax for an in�x operator�� The action doneIO does no I�O and returns the
unit value� ��� To illustrate� here is an action putsIO� which puts a string to the standard
output�

putsIO �� �Char� �� IO ��

putsIO �� � doneIO

putsIO �a�as� � putcIO a 
seqIO


putsIO as
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We can now use putsIO to de�ne a program which prints �hello� twice�

mainIO � hello 
seqIO
 hello

where

hello � putsIO 
hello


This example illustrates the distinction between an action and its performance� hello is
an action which happens to be performed twice� The program is precisely equivalent to
one in which putsIO 
hello
 is substituted for either or both of the occurrences of hello�
In short� programs remain referentially transparent�

In general� an action may also return a value� Again� there are two combinators� The
�rst is again trivial�

unitIO �� a �� IO a

If x is of type a� then unitIO x denotes the action that� when performed� does nothing
save return x� The second combines two actions�

bindIO �� IO a �� �a �� IO b� �� IO b

If m �� IO a and k �� a �� IO b then m 
bindIO
 k denotes the action that� when
performed� behaves as follows� �rst perform action m� yielding a value x of type a� then
perform action k x� yielding a value y of type b� and then return value y� To illustrate� here
is an action that echoes the standard input to the standard output� 	In Haskell� �x �� e

stands for a lambda abstraction� the body of the abstraction extends as far as possible��

echo �� IO ��

echo � getcIO 
bindIO
 �a ��

if �a �� eof� then

doneIO

else

putcIO a 
seqIO


echo

The combinators bindIO and unitIO are generalisations of seqIO and doneIO� Here are
de�nitions for the latter in terms of the former�

doneIO � unitIO ��

m 
seqIO
 n � m 
bindIO
 �a �� n

The combinators have a useful algebra� doneIO and seqIO form a monoid� while bindIO

and unitIO form a monad 	Moggi 
������ Wadler 
������ Wadler 
�������
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��� Imperative programming

It will not have escaped the reader�s notice that programs written in the monadic style
look rather similar to imperative programs� For example� the echo program in C might
look something like this�

echo�� �

loop� a � getchar�a��

if �a �� eof�

return�

else � putchar�a��

goto loop� �

�

	Indeed� as we discuss later� our compiler translates the echo function into essentially this
C code�� Does the monadic style force one� in e
ect� to write a functional facsimile of an
imperative program� thereby losing any advantages of writing in a functional language�
We believe not�

Firstly� the style in which one writes the functional program�s internal computation
is una
ected� For instance� the argument to putsIO can be computed using the usual
list�processing operations provided by a functional language 	list comprehensions� map�
append� and the like��

Secondly� the power of higher�order functions and non�strict semantics can be used
to make I�O programming easier� by de�ning new action�manipulating combinators� For
example� the de�nition of putsIO given above uses explicit recursion� Here is an alternative
way to write putsIO which does not do so�

putsIO as � seqsIO �map putcIO as�

The map applies putcIO to each character in the list as to produce a list of actions�
The combinator seqsIO takes a list of actions and performs them in sequence� that is� it
encapsulates the recursion� It is easy to de�ne seqsIO thus�

seqsIO �� �IO a� �� IO ��

seqsIO �� � doneIO

seqsIO �a�as� � a 
seqIO
 seqsIO as

or even� using the standard list�processing function foldr� thus�

seqsIO � foldr seqIO doneIO

To take another example� here is a function which writes a given number of spaces to the
standard output�

spaceIO �� Int �� IO ��

spaceIO n

� seqsIO �take n �repeat �putcIO � ����

�



The functions take and repeat are standard list�processing functions 	with nothing to do
with I�O� from Haskell�s standard prelude� The function repeat takes a value and returns
an in�nite list each of whose elements is the given value� The function take takes a pre�x
of given length from a list�

These necessarily small examples could easily be programmed with explicit recursion
without signi�cant loss of clarity 	or even a gain �� The point we are making is that it is
easy for the programmer to de�ne new �glue� to combine actions in just the way which is
suitable for the program being written� It�s a bit like being able to de�ne your own control
structures in an imperative language�

��� Calling C directly

Since the �primitive� functions putcIO� getcIO� and so on must ultimately be implemented
by a call to the underlying operating system� it is natural to provide the ability to call any
operating system function directly� To achieve this� we provide a new form of expression�
the ccall� whose general form is�

ccall proc e� � � � en

Here� proc is the name of a C procedure� and e�� � � � � en are the parameters to be passed
to it� This expression is an action� with type IO Int� when performed� it calls the named
procedure� and delivers its result as the value of the action� Here� for example� are the
de�nitions of getcIO and putcIO�

putcIO a � ccall putchar a

getcIO � ccall getchar

These ccalls directly invoke the system�provided functions� no further runtime support
is necessary� Using this single primitive allows us to implement our entire I�O system in
Haskell�

We de�ne ccall to be a language construct rather than simply a function because�

� The �rst �argument� must be the literal name of the C procedures to be called� and
not 	say� an expression which evaluates to a string which is the name of the function�
Type information alone cannot express this�

� Di
erent C procedures take di
erent numbers of arguments� and some take a variable
number of arguments� 	It would be possible to check the type�correctness of the C
call by reading the signature of the C procedure� but we do not at present do so��

� Di
erent C procedures take arguments of di
erent types and sizes� 	At present� we
only permit the arguments to be of base types� such as Char� Int� Float� Double
and so on� though we are working on extensions which allow structured arguments
to be built��

Treating ccall as a construct allows these variations to be accomodated without di�culty�
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� Comparison with other I�O styles

In this section we brie�y compare our approach with two other popular ones� dialogues
and continuations�

��� Dialogues

The I�O system speci�ed for the Haskell language 	Hudak et al� 
������ is based on di�
alogues� also called lazy streams 	Dwelly 
������ O�Donnell 
������ Thompson 
������� In
Haskell� the value of the program has type Dialogue� a synonym for a function between a
list of I�O responses to a list of I�O requests�

type Dialogue � �Response� �� �Request�

main �� Dialogue

Request and Response are algebraic data types which embody all the possible I�O oper�
ations and their results� respectively�

data Request � Putc Char � Getc

data Response � OK � OKCh Char

	For the purposes of exposition we have grossly simpli�ed these data types compared with
those in standard Haskell�� A system �wrapper program� repeatedly gets the next request
from the list of requests returned by main� interprets and performs it� and attaches the
response to the end of the response list to which main is applied�

Here� for example� is the echo program written using a Dialogue� 	In Haskell xs		n
extracts the n�th element from the list xs��

echo �� Dialogue

echo resps � Getc �

if �a �� eof�

then ��

else Putc a �

echo �drop � resps�

where

OKCh a � resps		�

The di�culties with this programming style are all too obvious� and have been well re�
hearsed elsewhere 	Perry 
�������

� It is easy to extract the wrong element of the responses� a synchronisation error� This
may show up in a variety of ways� If the ��� in the above program was erroneously
written as ��� the program would fail with a pattern�mathing error in getCharIO� if
it were written ��� it would deadlock�
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� The Response data type has to contain a constructor for every possible response
to every request� Even though Putc may only ever return a response OKChar� the
pattern�matching performed by get has to take account of all these other responses�

� Even more seriously� the style is not composable� there is no direct way to take two
values of type Dialogue and combine them to make a larger value of type Dialogue
	try it ��

Dialogues and the IO monad have equal expressive power� as Figure � demonstrates� by
using Dialogues to emulate the IO monad� and vice versa� The function dToIO� which
emulates Dialogues in terms of IO is rather curious� because it involves applying the
single dialogue d to both bottom 	�� and 	later� to the �real� list of responses 	Hudak
� Sundaresh 
������ Peyton Jones 
������� This causes both duplicated work and a space
leak� but no more e�cient purely�functional emulation is known� The reverse function�
ioToD does not su
er from these problems� and this asymmetry is the main reason that
Dialogues are speci�ed as primitive in Haskell� We return to this this matter in Section ����

��� Continuations

The continuation�style I�O model 	Gordon 
������ Hudak � Sundaresh 
������ Karlsson

������ Perry 
������ provides primitive I�O operations which take as one of their arguments
a continuation which says what to do after the I�O operation is performed�

main �� Result

putcC �� Char �� Result �� Result

getcC �� �Char �� Result� �� Result

doneC �� Result

Using these primitives� the echo program can be written as follows�

echo �� Result �� Result

echo c � getcC ��a ��

if �a �� eof� then

then c

else putcC a �echo c��

Since we might want to do some more I�O after the echoing is completed� we must provide
echo with a continuation� c� to express what to do when echo is �nished� This �extra ar�
gument� is required for every I�O�performing function if it is to be composable� a pervasive
and tiresome feature�

The above presentation of continuation�style I�O is a little di
erent from those cited
above� In all those descriptions� Result is an algebraic data type� with a constructor for
each primitive I�O operation� As with Dialogues� execution is driven by a �wrapper�
program� which evaluates main� performs the operation indicated by the constructor� and
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Dialogue to IO

dToIO �� Dialogue �� IO ��

dToIO d

� case �d bottom� of

�� �� doneIO

�q�qs� �� doReq q 
bindIO
 �r ��

dToIO ��rs �� tail �d �r�rs���

bottom �� a

bottom � error �mbox���it Should� never� be� evaluated��

doReq �� Request �� IO Response

doReq �GetChar f�

� getCharIO f 
bindIO
 ��c ��

unitIO �OKChar c��

doReq �PutChar f c�

� putCharIO f c 
seqIO
 unitIO OK

IO to Dialogue

type IO a � �Response�

�� �a� �Request�� �Response��

ioToD �� IO �� �� Dialogue

ioToD action � �rs �� case �io rs� of

��� qs� �� �� qs

unitIO v � �rs �� �v� ��� rs�

bindIO op fop

� �rs �� let �v�� qs�� rs�� � op rs

�v�� qs�� rs�� � fop v� rs�

in �v�� qs���qs�� rs��

Figure �� Converting between Dialogue and IO
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Continuations to IO

type Result � IO ��

cToIO �� Result �� IO ��

cToIO r � r

putCharC �� File �� Char �� Result �� Result

putCharC f c k � putCharIO f c 
seqIO
 k

getCharC �� File �� Char

�� �Char �� Result� �� Result

getCharC f k � getCharIO f 
thenIO
 k

IO to continuations

type IO a � �a �� Result� �� Result

ioToC �� IO �� �� Result

ioToC action � action �� �� �� nopC�

unitIO v � �k �� k v

bindIO op fop � �k �� op ��a �� fop a k�

putCharIO f c � �k �� putCharC f c �k ���

getCharIO f � �k �� getCharC f ��c �� k c�

Figure �� Converting between continuations and IO

applies the continuation inside the constructor to the result� This approach has the dis�
advantage that it requires existential types if polymorphic operations� such as those we
introduce later in Section ���� are to be supported�

An obvious improvement� which we have not seen previously suggested� is to implement
the primitive continuation operations 	such as putcC� getcC and doneC� directly� making
the Result type an abstract data type with no operations de�ned on it other than the
primitives themselves� This solves the problem�

Continuations are easily emulated by the IO monad� and vice versa� as Figure � shows�
The comparison between the monadic and continuation approach is further explored in
Section ��
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� Implementing monadic I�O

So far we have shown that an entire I�O system can be expressed in terms of ccall�
bindIO� and unitIO� and of course the IO type itself� How are these combinators to be
implemented� One possibility is to build them in as primitives� but it turns out to be both
simpler and more e�cient to implement all except ccall in Haskell�

The idea is that an action of type IO a is implemented as a function� which takes as
its input a value representing the entire current state of the world� and returns a pair�
consisting of 	a value representing� the new state of the world� and the result of type a�

type IO a � World �� IORes a

data IORes a � MkIORes a World

The type declaration introduces a type synomym for IO� and the auxiliary algebraic
datatype IORes simply pairs the result with the new world� Recall that the value of
the entire program is of type IO ��� The type World is abstract� with only one operation
de�ned on it� namely ccall� Conceptually� the program is executed by applying main to a
value of type World representing current state of the world� extracting the resulting World

value from the MkIORes constructor� and applying any changes embodied therein to the
real world�

If implemented literally� such a system would be unworkably expensive� The key to
making it cheap is to ensure that the world state is used in a single�threaded way� so that
I�O operations can be applied immediately to the real world� One way to ensure this would
be to do a global analysis of the program� A much simpler way is to make IO into an
abstract data type which encapsulates the data types IO and IORes� and the combinators
bindIO and unitIO� Here are suitable de�nitions for the latter�

unitIO a w � MkIORes a w

bindIO m k w � case �m w� of

MkIORes a w� �� k a w�

Notice that bindIO and unitIO carefully avoid duplicating the world� Provided that the
primitive ccall actions are combined only with these combinators� we can guarantee that
the ccalls will be linked in a single� linear chain� connected by data dependencies in which
each ccall consumes the world state produced by the previous one� In turn this means
that the ccall operations can update the real world �in place��

��� Implementing ccall

So much for the combinators� All that remains is the implementation of ccall� The only
complication here is that we must arrange to evaluate the arguments to the ccall before
passing them to C�

This is very similar to the argument evaluation required for built�in functions such as
addition� for which we have earlier developed the idea of unboxed data types 	Peyton Jones
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� Launchbury 
������� These allow representation and order�of�evaluation information to
be exposed to code�improving transformations� For example� consider the expression x�x

where x is of type Int� The improvement we want to express is that x need only be
evaluated once�

The key idea is to de�ne the type Int 	which is usually primitive� as a structured
algebraic data type with a single constructor� MkInt� like this�

data Int � MkInt Int�

A value of type Int is represented by a pointer to a heap�allocated object� which may either
be an unevaluated suspension� or a MkInt constructor containing the machine bit�pattern
for the integer� This bit�pattern is of type Int��

Now that Int is given structure� we can make explicit the evaluation performed by
�� by giving the following de�nition� which expresses � in terms of the primitive machine
operation ���

a � b � case a of

MkInt a� ��

case b of

MkInt b� ��

MkInt �a� �� b��

Inlining this de�nition of � in the expression x�x� and performing simple� routine simpli��
cations� gives the following� in which x is evaluated only once�

case x of

MkInt x� �� MkInt �x� �� x��

	Unboxed types and ccall are not part of standard Haskell� They are mainly used in�
ternally in our compiler� though we do also make them available to programmers as a
non�standard extension��

We apply exactly the same ideas to ccall� In particular� instead of implementing
ccall directly� we unfold every use of ccall to make the argument evaluation explicit
before using the truly primitive operation ccall�� For example� the uses of ccall in the
de�nitions of putcIO and getcIO given above 	Section ����� are unfolded thus�

putcIO a � �w ��

case a of

MkChar a� ��

case �ccall� putchar a� w� of

MkIORes� n� w� �� MkIORes �� w�

getcIO � �w ��

case �ccall� getchar w� of

MkIORes� n� w� ��

MkIORes �MkChar n�� w�
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Like Int� the type Char is implemented as an algebraic data type thus�

data Char � MkChar Int�

The outer case expression of putcIO� therefore� evaluates a and extracts the bit�pattern
a�� which is passed to ccall�� The inner case expression evaluates the expression
�ccall� putchar a� w�� which returns a pair� constructed by MkIORes�� consisting of
the value n� returned by the C procedure putchar 	which is ignored�� and a new world w�

	which is returned��
In the case of getcIO� the 	primitive� unboxed� value n� returned by getchar is not

ignored as it is in putcIO� rather it is wrapped in a MkChar constructor� and returned as
part of the result�

The di
erences between ccall and ccall� are as follows� Firstly� ccall� takes only
unboxed arguments� ready to call C directly�

Secondly� it returns a pair built with MkIORes�� containing an unboxed integer result
direct from the C call� The IORes� type is very similar to IORes�

data IORes� � MkIORes� Int� World

	IORes and IORes� are distinct types� because while our extended type system recognises
unboxed types� it does not permit polymorphic type constructors� such as IORes� to be
instantiated at an unboxed type� such as Int���

Thirdly� the ccall� primitive is recognised by the code generator and expanded to an
actual call to C� Speci�cally� the expression�

case �ccall� proc a� b� c� w� of

MkIORes� n� w� �� ���

generates the C statement

n� � proc�a��b��c���

���

This simple translation is all that the code generator is required to do� The rest is done by
generic program transformations� that is� transformations which are not speci�c to I�O or
even to unboxing 	Peyton Jones � Launchbury 
�������

��� Where has the world gone�

But what has become of the world values in the �nal C code� The world value manipulated
by the program represents the current state of the real world� but since the real world is
updated �in place� the world value carries no useful information� Hence we simply arrange
that no code is ever generated to move values of type World� This is easy to do� as type
information is preserved throughout the compiler� In particular� the world is never loaded
into a register� stored in a data structure� or passed to C procedure calls�

Is it possible� then� to dispense with the world in the functional part of the implemen�
tation as well� For example� can we de�ne the IORes type and bindIO combinators like
this�
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data IORes a � MkIORes a

bindIO m k w � case �m w� of

MkIORes a �� k a w

No� we cannot To see this� suppose that bindIO was applied to a function k which
discarded its argument� Then� if bindIO was unfolded� and the expression �k r w� was
simpli�ed� there would be no remaining data dependency to force the call of k to occur after
that of m� A compiler would be free to call them in either order� which destroys the I�O
sequencing�

To reiterate� the world is there to form a linear chain of data dependencies between suc�
cessive ccalls� It is quite safe to expose the representation of the IO type to code�improving
transformations� because the chain of data dependencies will prevent any transformations
which reorder the ccalls� Once the code generator is reached� though� the work of the
world values is done� so it is safe to generate no code for them�

��� echo revisited

The implementation we have outlined is certainly simple� but is it e�cient� Perhaps sur�
prisingly� the answer is an emphatic yes� The reason for this is that because the combinators
are written in Haskell� the compiler can unfold them at all their call sites� that is� perform
procedure inlining�

Very little special�purpose code is required in the compiler to achieve this e
ect �
essentially all that is required is that the Haskell de�nitions of bindIO� unitIO� putcIO
and so on� be unfolded by the compiler� In contrast� if bindIO were primitive� then every
call to bindIO will require the construction of two heap�allocated closures for its two
arguments� Even if bindIO itself took no time at all� this would be a heavy cost�

To illustrate the e
ectiveness of the approach we have outlined� we return to the echo

program of Section ���� If we take the code there� unfold the calls of seqIO� doneIO� eof�
putcIO and getcIO� and do some simpli�cation� we get the following�

echo � �w ��

case �ccall� getchar w� of

MkIORes� a� w� ��

case �a� ��� eof�� of

T� �� MkIORes �� w�

F� �� case �ccall� putchar a� w�� of

MkIORes� n� w� �� echo w�

When this is compiled using the simple code�generator described� the following C is pro�
duced�

echo�� �

int a�

a � getchar���

��



if �a �� eof� �

retVal � unitTuple�

RETURN�

� else �

putchar�a��

JUMP� echo ��

� �

	JUMP and RETURN are artefacts of our use of C as a target �machine code� 	Peyton Jones

������� They expand only to a machine instruction or two�� This is very close to the C one
would write by hand We know of no other implementation of I�O with better e�ciency�

��� A continuation�passing implementation

Like most abstract data types� there is more than one way to implement IO� In particular�
it is possible to implement the IO abstract type using a continuation�passing style� The
type IO a is represented by a function which takes a continuation expecting a value of type
a� and returns a value of the opaque type Result�

type IO a � �a �� Result� �� Result

It is easy to implement bindIO and unitIO�

bindIO m k cont � m ��a �� k a cont�

unitIO r cont � cont r

What is there to choose between these this representation of the IO type and the one we
described initially 	Section ��� The major tradeo
 seems to be this� with the continuation�
passing representation� every use of bindIO 	even if unfolded� requires the construction of
one heap�allocated continuation� In contrast� the implementation we described earlier
keeps the continuation implicitly on the stack� which is slightly cheaper in our system�

There is a cost to pay for the earlier representation� namely that a heavily left�
skewed composition of bindIOs can cause the stack to grow rather large� In contrast�
the continuation�passing implementation may use a lot of heap for such a composition� but
its stack usage is constant�

The main point is that the implementor is free to choose the representation for IO based
only on considerations of e�ciency and resource usage� the choice makes no di
erence to
the interface seen by the programmer�

� Extensions to the IO monad

	�� Delayed I�O

So far all I�O operations have been strictly sequenced along a single �trunk�� Some�
times� though� such strict sequencing is unwanted� For example� almost all lazy functional�
language I�O systems provide a readFile primitive� which returns the entire contents of
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a speci�ed �le as a list of characters� It is often vital that this primitive should have lazy
semantics� that is� the �le is opened� but only actually read when the resulting list is evalu�
ated� The relative ordering of other I�O operations and the reading of the �le is immaterial
	provided the �le is not simultaneously written�� This lazy read is usually implemented by
some ad hoc �magic� in the runtime system� but within the monadic framework it is easy
to generalise the idea�

What is required is a new combinator for the IO monad� delayIO� which forks o
 a
new branch from the main �trunk��

delayIO �� IO a �� IO a

When performed� �delayIO action� immediately returns a suspension which when it is
subsequently forced will perform the I�O speci�ed by action� The relative interleaving
of the I�O operations on the �trunk� and the �branch� is therefore dependent on the
evaluation order of the program�

The delayIO combinator is dangerous 	albeit useful�� because the correctness of the
program now requires that arbitrary interleaving of I�O operations on the �trunk� and
�branch� cannot a
ect the result� This condition cannot be guaranteed by the compiler	 it
is a proof obligation for the programmer� In practice� we expect that delayIO will be used
mainly by system programmers�

With the aid of delayIO 	and a few new primitives such as fOpenIO�� it is easy to write
a lazy readFile�

readFile �� �Char� �� IO �Char�

readFile s � fOpenIO s 
bindIO
 �f ��

delayIO �lazyRd f�

lazyRd �� File �� IO �Char�

lazyRd f

� readChar f 
bindIO
 �a ��

if �a �� eof� then

fCloseIO f 
seqIO


unitIO ��

else

delayIO �lazyRd f� 
bindIO
 �as ��

unitIO �a�as�

The delayIO combinator provides essentially the power of Gordon�s suspend operator
	Gordon 
�������

Implementation� A nice feature of the implementation technique outlined in Section �
is that delayIO is very easy to de�ne�

delayIO m � �w �� MkIORes res w

where

res � case �m w� of

MkIORes r w� �� r

��



In contrast to bindIO� notice how delayIO duplicates the world w� and then discards the
�nal world w� of the delayed branch� it is this which allows the unsynchronised interleaving
of I�O operations on the �branch� with those on the �trunk��

	�� Asynchronous I�O

An even more dangerous but still useful combinator is performIO� whose type is as follows�

performIO �� IO a �� a

It allows potentially side�e
ecting operations to take place which are not attached to the
main �trunk� at all The proof obligation here is that any such side e
ects do not a
ect
the behaviour of the rest of the program� An obvious application is when one wishes to
call a C procedure which really is a pure function� procedures from a numerical analysis
library are one example�

Implementation� The implementation is quite simple�

performIO m � case �m newWorld� of

MkIORes r w� �� r

Here� newWorld is a value of type World conjured up out of thin air� and discarded when
the action m has been performed�

	�� Assignment and reference variables

Earlier� in Section ���� we discussed the apparently insoluble ine�ciency of dToIO� the
function which emulates Dialogues using the IO monad� We can solve this problem by
providing an extra general�purpose mechanism� that of assignable reference types and op�
erations over them 	Ireland 
�������

newVar �� a �� IO �Ref a�

assignVar �� Ref a �� a �� IO ��

deRefVar �� Ref a �� IO a

The call newVar x allocates a fresh variable containing the value x� the call assignVar v x

assigns value x to variable v� and the call deRefVar v fetches the value in variable v� By
making these side�e
ecting operations part of the IO monad� we make sure that their order
of evaluation� and hence semantics� is readily explicable�

With the aid of these primitives it is possible to write an e�cent emulation of Dialogues
using IO 	Figure ��� The idea is to mimic a system which directly implements Dialogues�
which follows the processing of each request with a destructive update to add a new re�
sponse to the end of the list of responses� Notice the uses of delayIO� which re�ects the
fact that there is no guarantee that dialogue will not evaluate a response before it has
emitted a request� If this occurs� the un�assigned variable is evaluated� which elicits a
suitable error message�
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dToIO �� Dialogue �� IO ��

dToIO dialogue

� newVar �error �mbox���it Synch��� 
bindIO
 �rsV ��

delayIO �deRefVar rsV� 
bindIO
 �rs ��

run �dialogue rs� rsV

run �� �Request� �� Ref �Response� �� IO ��

run �� v � doneIO

run �req�reqs� v

� doReq req 
bindIO
 �r ��

newVar �error �mbox���it Synch��� 
bindIO
 �rsV ��

delayIO �deRefVar rsV� 
bindIO
 �rs ��

assignVar v �r�rs� 
seqIO


run reqs rsV

Figure �� E�cient conversion from Dialogue to IO

References in languages such as ML require a weakened form of polymorphism in order
to maintain type safety 	Tofte 
������� For instance� in ML a fresh reference to an empty list
has type ��a list ref� where the type variable ��a is weak� and so may be instantiated
only once� In contrast� here a fresh reference to an empty list has type IO �Ref a�� and
the type variable a is normal� But no lack of safety arises� because an expression of this
type allocates a new reference each time it is evaluated� The only way to change a value of
type IO �Ref a� to one of type Ref a is via bindIO� but now the variable of type Ref a is
not let�bound� and so can only be instantiated once anyway� Hence the extra complication
of weak type variables� required in languages with side e
ects� seems unnecessary here�
	We�re indebted to Martin Odersky for this observation��

� Arrays

The approach we take to I�O smoothly extends to arrays with in�place update� Hudak
has recently proposed a similar method based on continuations� For I�O� the monad
and continuation approaches are interde�nable� For arrays� it turns out that monads can
implement continuations� but not the converse�

Let Arr be the type of arrays taking indexes of type Ind and yielding values of type
Val� There are three operations on this type�

new �� Val �� Arr

lookup �� Ind �� Arr �� Val

update �� Ind �� Val �� Arr �� Arr

The call new v returns an array with all entries set to v� the call lookup i x returns the
value at index i in array x� and the call update i v x returns an array where index i has
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value v and the remainder is identical to x� The behaviour of these operations is speci�ed
by the usual laws�

lookup i �new v� � v

lookup i �update i v x� � v

lookup i �update j v x� � lookup i x

where i �! j in the last equation� In practice� these operations would be more complex� one
needs a way to specify the array bounds� for instance� But the above su�ces to explicate
the main points�

The e�cient way to implement the update operation is to overwrite the speci�ed entry
of the array� but in a pure functional language this is only safe if there are no other
pointers to the array extant when the update operation is performed� An array satisfying
this property is called single threaded� following Schmidt 	Schmidt 
�������

As an example� consider the following problem� An occurrence is either a de
nition
pairing an index with a value� or a use of an index�

data Occ � Def Ind Val � Use Ind

For illustration take Ind � Int and Val � Char� Given a list os of occurrences� the call
uses os returns for each use the most recently de�ned value 	or ��� if there is no previous
de�nition�� If

os � �Def � �a�� Def � �b�� Use ��

Def � �c�� Use �� Use ��

then

uses os � ��a�� �b�� �c���

Here is the code�

uses �� �Occ� �� �Val�

uses os � loop os �new ����

loop �� �Occ� �� Arr �� �Val�

loop �� x � ��

loop �Def i v � os� x � loop os �update i v x�

loop �Use i � os� x � lookup i x � loop os x

The update in this program can be performed by overwriting� but some care is required
with the order of evaluation� In the last line� the lookup must occur before the recursive
call which may update the array� Some work has been done on analysing when update can
be performed in�place� but it is rather tricky 	Bloss 
������ Hudak 
�������
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�� Monadic arrays

We believe that single threading is too important to leave to the vagaries of an analyser�
Instead� we use monads to guarantee single threading� in much the same way as was done
with I�O� Analogous to the type IO a 	the monad of I�O actions�� we provide an abstract
type A a 	the monad of array transformers��

newA �� Val �� A a �� a

lookupA �� Ind �� A Val

updateA �� Ind �� Val �� A ��

unitA �� a �� A a

bindA �� A a �� �a �� A b� �� A b

For purposes of speci�cation� we can de�ne these in terms of the proceeding operations as
follows�

type A a � Arr �� �a� Arr�

newA v m � fst �m �new v��

lookupA i � �x �� �lookup i x� x�

updateA i v � �x �� ���� update i v x�

unitA a � �x �� �a�x�

m 
bindA
 k � �x �� let �a�y� � m x in k a y

A little thought shows that these operations are indeed single threaded� The only operation
that could duplicate the array is lookupA� but this may be implemented as follows� �rst
fetch the entry at the given index in the array� and then return the pair consisting of this
value and the pointer to the array� To enforce the necessary sequencing� we augment the
above speci�cation with the requirement that lookupA and updateA are strict in the index
and array arguments 	but need not be strict in the value��

The above is given for purposes of speci�cation only " the actual implementation is
along the lines of Section ��

For convenience� de�ne seqA in terms of bindA in the usual way�

m 
seqA
 n � m 
bindA
 �a �� n

Here is the #de�nition�use� problem� recoded in monadic style�

uses �� �Occ� �� �Val�

uses os � newA ��� �loopA os�

loopA �� �Occ� �� A �Val�

loopA �� � unitA ��

loopA �Def i v � os� � updateA i v 
seqA


loopA os

loopA �Use i � os� � lookupA i 
bindA
 �v ��

��



loopA os 
bindA
 �vs ��

unitA �v�vs�

This is somewhat lengthier than the previous example� but it is guaranteed safe to imple�
ment update by overwriting�


�� Continuation arrays

An alternative method of guaranteeing single threading for arrays has been proposed by
Hudak 
������ Like the previous work of Swarup� Reddy � Ireland 
������ it is based on
continuations� but unlike that work it requires no change to the type system�

As with the array monad� one de�nes an abstract type supporting various operations�
The type is C z� and the operations are as follows�

newC �� Val �� C z �� z

lookupC �� Ind �� �Val �� C z� �� C z

updateC �� Ind �� Val �� C z �� C z

unitC �� z �� C z

Here a continuation� of type C z� represents the remaining series of actions to be performed
on the array� eventually returning 	via unitC� a value of type z�

For purposes of speci�cation� we can de�ne these in terms of the array operations as
follows�

type C z � Arr �� z

newC v c � c �new v�

lookupC i d � �x �� d �lookup i x� x

updateC i v c � �x �� c �update i v x�

unitC z � �x �� z

Again� these operations are single threaded if lookupC and updateC are strict in the index
and array arguments�

For convenience� de�ne

m � c � m c

This lets us omit some parentheses� since m ��x �� n� becomes m � �x �� n�
Here is the #de�nition�use� problem� recoded in continuation style�

uses �� �Occ� �� �Val�

uses os � newC ��� �loopC os unitC�

loopC �� �Occ� �� ��Val� �� C z� �� C z

loopC �� c � c ��

loopC �Def i v � os� c � updateC i v �

��



loopC os c

loopC �Use i � os� c � lookupC i � �v ��

loopC os � �vs ��

c �v�vs�

This is remarkably similar to the monadic style� where � takes the place of bindA and seqA�
and the current continuation c takes the place of unitA� 	If c plays the role of unitA� why
do we need unitC� Because it acts as the #top level� continuation��

However� there are two things to note about the continuation style� First� the types
are rather more complex " compare the types of loopA and loopC� Second� the monadic
style abstracts away from the notion of continuation " so there are no occurrences of c
cluttering the de�ntion of loopA�


�� Monads vs� continuations

We can formally compare the power of the two approaches by attempting to implement
each in terms of the other� Despite their similarities� the two approaches are not equivalent�
Monads are powerful enough to implement continuations� but not 	quite� vice versa�

To implement continuations in terms of monads is simplicity itself�

type C z � A z

newC v c � newA v c

lookupC i d � lookupA i 
bindA
 d

updateC i v c � updateA i v 
seqA
 c

unitC � unitA

It is an easy exercise in equational reasoning to to prove that this implementation is correct
in terms of the speci�cations in Sections ��� and ����

The reverse implementation is not possible� The trouble is the annoying extra type
variable� z� appearing in the types of lookupC and updateC� This forces the introduction
of a spurious type variable into any attempt to de�ne monads in terms of continuations�
Instead of a type A a� the best one can do is to de�ne a type B a z� Here are the types of
the new operations�

newB �� Val �� B a a �� a

lookupB �� Ind �� B Val z

updateB �� Ind �� Val �� B �� z

unitB �� a �� B a z

bindB �� B a z �� �a �� B b z� �� B b z

And here are the implementations in terms of continuations�

type B a z � �a �� C z� �� C z
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newB v m � newC v �m unitC�

lookupB i � �d �� lookupC i d

updateB i v � �d �� updateC i v �d ���

unitB a � �d �� d a

m 
bindB
 k � �d �� m ��a �� k a d�

Again� it is easy to prove this implementation satis�es the given speci�cations�
So monads are more powerful than continuations� but only because of the types It is

not clear whether this is simply an artifact of the Hindley�Milner type system� or whether
the types are revealing a di
erence of fundamental importance� 	Our own intuition is the
latter " but it�s only an intuition��


�� Conclusion

The I�O approach outlined earlier manipulates a global state� namely the entire state of
the machine accessible via a C program� What has been shown in this section is that this
approach extends smoothly to manipulating local state� such as a single array� Further�
although the monad and continuation approaches are interconvertible for I�O� they are not
for arrays� monads are powerful enough to de�ne continuations� but not the reverse�

For actual use with Haskell� we require a slightly more sophisticated set of operations�
The type A must take extra parameters corresponding to the index and value types� the
operation newA should take the array bounds� and so on� By using a variant of newA

that creates an uninitialised array� and returns the array after all updates are �nished�
it is possible to implement Haskell primitives for creating arrays in terms of the simpler
monad operations� Thus the same strategy that works for implementing I�O should work
for implementing arrays� use a small set of primitives based on monads� and depend on
program transformation to make this adequately e�cient�

One question that remains is how well this approach extends to situations where one
wishes to manipulate more than one state at a time� as when combining I�O with array
operations� or operating on two arrays� In this respect e
ect systems or linear types may
be superior� see below�

� Related work

��� E�ect systems

Gi
ord and Lucassen introduced #e
ect systems� which use types to record the side�e
ects
performed by a program� and to determine which components of a program can run in
parallel without interference 	Gi
ord � Lucassen 
������� The original notion of e
ect
was fairly crude� there being only four possible e
ects� pure 	no e
ect�� allocate 	may
allocate storage�� function 	may read storage�� procedure 	may write storage�� New systems
are more re�ned� allowing e
ects to be expressed separately for di
erent regions of store
	Jouvelot � Gi
ord 
�������
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A theoretical precursor of the e
ects work is that of Reynolds� which also used types
to record where e
ects could occur and where parallelism was allowed 	Reynolds 
������
Reynolds 
�������

Our work is similar to the above in its commitment to use types to indicate e
ects�
But e
ect systems are designed for impure� strict functional languaes� where the order of
sequencing is implicit� Our work is designed for pure� lazy functional languages� and the
purpose of the #bind� operation is to make sequencing explicit where it is required�

With e
ect systems� one may use the usual laws of equational reasoning on any program
segment without a #write� side e
ect� Our work di
ers in that the laws of equational rea�
soning apply even where side e�ects are allowed� This is essential� because the optimisation
phase of our compiler is based on equational reasoning�

On the other hand� e
ect systems make it very easy to combine programs with di
erent
e
ects� In our approach� each di
erent e
ect would correspond to a di
erent monad type
	one for IO� one for each array manipulated� and so on�� and it is not so clear how one
goes about combining e
ects�

��� Linear types

The implementation of the IO monad given in Section � is safe because 	and only because�
the code that manipulates the world never duplicates or destroys it� We guarantee safety
by making the IO type abstract� so that user has no direct access to the world�

An alternative is to allow the user access to the world� but introduce a type system
that guarantees that the world can never be duplicated or destroyed� A number of type
systems have been proposed along such lines� Some have been based on Girard�s linear
logic 	Girard 
������� and this remains an area of active exploration 	Abramsky 
������
Guzman � Hudak 
������ Wadler 
������� Another is the type system proposed by the
Nijmegen Clean group� which is more ad�hoc but has been tested in practical applications
similar to our own 	Achten� Groningen � Plasmeijer 
�������

For example� here is the echo program again� written in the style suggested by the
Clean I�O system�

echo �� File �� File �� World �� World

echo fi fo w � if a �� eof

then w�

else echo �putChar fo a w��

where

�w��a� � getChar fi w

Compared to the monad approach� this su
ers from a number of drawbacks� programs
become more cluttered� the linear type system has to be explained to the programmer and
implemented in the compiler� and code�improving transformations need to be re�examined
to ensure they preserve linearity� The latter problem may be important� Wakeling found
that some standard transformations could not be performed in the presence of linearity
	Wakeling 
�������
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The big advantage of a linear type system is that it enables us to write programs
which manipulate more than one piece of updatable state at a time� The monadic and
continuation�passing presentations of arrays given above pass the array around implicitly�
and hence can only easily handle one at a time� This is an important area for future work�

On the practical side� the Clean work is impressive� They have written a library of high�
level routines to call the Macintosh window system� and demonstrated that it is possible
to build pure functional programs with sophisticated user interfaces� The same approach
should work for monads� and another area for future work is to con�rm that this is the
case�

	 Conclusions and further work

We have been pleasantly surprised by both the expressiveness and the e�ciency of the
approach we have described� For example� we have found that while it is possible to write
composable I�O programs in other styles� it is almost impossible not to do so in using the
monadic approach�

Plenty remains to be done� We are working on our implementation of arrays� this in
turn feeds into the ability to pass structured values in ccalls� we have not yet implemented
assignable reference types�

More importantly� the model we have desribed concerns only the I�O infrastructure�
Much more work needs to be done to design libraries of functions� built on top of this in�
frastructure� which present a higher�level interface to the programmer 	Achten� Groningen
� Plasmeijer 
������ Hammond� Wadler � Brady 
�������
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Vliet� eds�� North Holland� ���"����

J Reynolds 
������ �Syntactic control of interference� part II�� in International Colloquium
on Automata� Languages� and Programming�

DA Schmidt 
Apr ������ �Detecting global variables in denotational speci�cations��
TOPLAS �� ���"����

V Swarup� US Reddy � E Ireland 
Sept ������ �Assignments for applicative languages�� in
Functional Programming Languages and Computer Architecture� Boston� Hughes�
ed�� LNCS ���� Springer Verlag� ���"����

SJ Thompson 
������ �Interactive functional programs � a method and a formal semantics��
in Declarative Programming� DA Turner� ed�� Addison Wesley�

M Tofte 
Nov ������ �Type inference for polymorphic references�� Information and Com	
putation ���

PL Wadler 
������ �Linear types can change the world �� in Programming concepts and
methods� M Broy � C Jones� eds�� North Holland�

PL Wadler 
Jan ������ �The essence of functional programming�� in Proc Principles of
Programming Languages� ACM�

PL Wadler 
June ������ �Comprehending monads�� in Proc ACM Conference on Lisp and
Functional Programming� Nice� ACM�

D Wakeling 
Nov ������ �Linearity and laziness�� PhD thesis� Department of Computer
Science� University of York�
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