
How to Declare an Imperative

Philip Wadler

Bell Laboratories� Lucent Technologies

How can we integrate interaction into a purely declarative language� This tutorial describes a
solution to this problem based on a monad� The solution has been implemented in the functional
language Haskell and the declarative language Escher� Comparisons are given to other approaches
to interaction based on synchronous streams� continuations� linear logic� and side e�ects�

Categories and Subject Descriptors� D���� �Programming Languages	� Language Constructs
and Features
Input�Output� F��� �Mathematical Logic and Formal Languages	� Mathe�
matical Logic
Lambda calculus and related systems

General Terms� Languages� Theory

Additional Key Words and Phrases� functional programming� monad� Haskell

�� INTRODUCTION

Four centuries ago� Descartes pondered the mind�body problem� how can incorpo�
real minds interact with physical bodies� He posited that the solution lay in the
pineal gland� here� perhaps� was the place where the senses of the body provoked
the images of the mind� and where the intentions of the mind initiated the actions
of the body� �For a modern take on these medieval musings� I recommend Dennett�s
Consciousness Explained 	
���
Today� computing scientists face their own version of the mind�body problem�

how can virtual software interact with the real world� In the beginning� we merely
wanted computers to extend our minds� to calculate trajectories� to sum nances�
and to recall addresses� But as time passed� we also wanted computers to extend
our bodies� to guide missiles� to link telephones� and to pro�er menus�
The classic models of computation are analogous to minds without bodies� For

Accepted to ACM Computing Surveys� to appear� This paper is based on an invited talk given
at ILPS ��� A shorter version appears in John Lloyd� editor� International Logic Programming
Symposium� MIT Press� December ���� This version di�ers in that Section � and some of Section
� is new� This work was supported by the UK EPSRC projects �Save space with linear types�
and �Declarative systems architecture� A quantitative approach� and by the EC ESPRIT working
groups �Semantique� and �Atlantique�� Address� Bell Laboratories� Lucent Technologies� ���
Mountain Avenue� Murray Hill� NJ ����������� email� wadler�research�bell�labs�com

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation� Copyrights for components of this work owned by others than ACM must
be honored� Abstracting with credit is permitted� To copy otherwise� to republish� to post on
servers� to redistribute to lists� or to use any component of this work in other works� requires prior
speci�c permission and�or a fee� Permissions may be requested from Publications Dept� ACM
Inc�� �� Broadway� New York� NY ���� USA� fax � ���� �������� or permissions�acm�org�



� � P� Wadler

Turing�s machine� a calculation begins with a problem on its tape� and ends with an
answer there� For Church�s calculus� reduction begins with a lambda term� and ends
with its normal form� For Floyd�s �owcharts and Hoare�s triples� a program begins
in a state satisfying a precondition� and ends in a state satisfying a postcondition�
How the initial tape or term or state is input� and how the nal one is output� are
questions neither asked nor answered� These theories conform to the practice of
batch computing�
Eventually� interactive models of computation emerged� analogous to minds in

bodies� For Petri�s nets� tokens enter and leave locations� For Kahn and Mac�
Queen�s streams� data circulates between coroutines� For Milner�s and Hoare�s
process calculi� messages are sent and received along channels� Inputs and outputs
require no special treatment� as they are represented simply as additional token
sources and sinks� additional streams� or additional channels� A single input at
initiation and a single output at termination is now superseded by multiple inputs
and outputs distributed in time and space� These theories conform to the practice
of interactive computing�
Interaction is the mind�body problem of computing� It poses a challenge to all

computer scientists� but the challenge it poses to those of us interested in declara�
tive languages is particularly acute� Although Turing machines and �owcharts are
classied as imperative� the classic models of computation are essentially declar�
ative� since a program behaves as a function from �or� if you prefer� a predicate
relating� inputs to outputs� But the interactive models of computation appear in�
herently imperative� since the whole point of augmenting minds with bodies is to
make it possible to do something�
This tutorial reviews a solution to the interaction problem that has become pop�

ular within the functional programming community� It is based on the notion of a
monad�
Monads arose in category theory 	���� Eugenio Moggi noted that monads could be

used to model a wide variety of language features� including non�termination� state�
exceptions� continuations� and interaction 	��� ���� Moggi�s technique of structuring
a denotational semantics adapts directly for use in structuring functional programs�
and my own contribution was to foster this adaptation 	�
� ��� ����
This paper provides an introduction to the use of monads to add interaction to a

pure functional language� as described in previous work by Simon Peyton Jones and
myself 	���� Similar models have been proposed by Cupitt 	�� and Gordon 	���� For
a history of approaches to input�output in functional programming� I recommend
Gordon�s thesis 	����
These ideas have been tested in the standard lazy functional language Haskell

	���� The ideas were originally incorporated in the Glasgow Haskell compiler� sub�
sequently added to the Chalmers and Yale Haskell compilers� and adopted for
inclusion in the revised Haskell standard 	�
�� This paper presents a somewhat
simplied version of the new Haskell standard� This style of interaction has been
tested extensively� including its use in programs tens of thousands of lines long� and
in a range of applications including graphical user interfaces� These ideas have also
been adopted by the declarative language Escher 	���� which combines functional
and logic programming�
Monads have also served as a basis for adding other features to a functional



How to Declare an Imperative � �

language� notably state and concurrency� Little will be said about these topics
here� except to give a few pointers to the relevant literature� In particular� although
interaction is often associated with concurrency and non�determinism� the model
pursued here will be deterministic and sequential�
The reader is assumed to have a passing familiarity with the basics of functional

programming in pure languages such as Haskell 	��� �
�� and impure languages such
as SML 	��� ���� For general background see Bird and Wadler 	�� and Paulson 	����
No knowledge of category theory is assumed�
A shorter version of this paper appeared previously 	���� Material in Sections �

and � is new�
The remainder of this paper is organised as follows� Section � introduces a

monad for interaction� Section � relates the monad approach to other approaches to
interaction� Section � describes related work� Section � sketches how monads might
be incorporated into a rst�order language for logic programming� and concludes�

�� A MONAD APPROACH TO INTERACTION

This section introduces� step by step� an abstract type to support interaction� called
a monad�

��� Commands

The type of simple commands is written IO ��� Ignore the trailing �� for now �
its purpose will become apparent later�
The mind�body distinction is essential to this enterprise� A term of type IO ��

denotes an action� but does not necessarily perform the action� it is of the realm
of the mind� rather than the realm of the body�
Here is a function to print a character�

putc �� Char �� IO ��

For instance� putc ��� denotes the command that� if it is ever performed� will
print an exclamation mark�
Here is a constant to do nothing�

done �� IO ��

The term done doesn�t actually do nothing� it just species the command that� if
it is ever performed� won�t do anything� Compare thinking about doing nothing to
actually doing nothing� they are distinct enterprises�
Here is a function to combine commands� it is roughly the analogue of semicolon

in conventional imperative languages�

���� �� IO �� �� IO �� �� IO ��

If m and n are commands� then m �� n denotes the command that� if it is ever

performed� rst does m and then does n� �In Haskell� m �� n is syntactic sugar for
���� m n��
Here is a function that takes a string and returns a command that prints the

string�

puts �� String �� IO ��



� � P� Wadler

puts 	
 � done

puts �c�s� � putc c �� puts s

If the string is empty� then the command does nothing� If the string has head c

and tail s� then the command rst prints character c and then prints string s� So
puts ��� is equivalent to

putc ��� �� �putc �� �� done�

and both of these denote a command that� if it is ever performed� prints an excla�
mation followed by a question�
�In Haskell� a string is just a list of characters� Hence ��� �� String is just

an abbreviation for 	������
 �� 	Char
� The latter in turn is an abbreviation
for ��������	
�� where � is pronounced �cons� and 	
 is pronounced �nil���
By now the reader will be desperate to know how is a command ever performed�

In other words� how does the mind connect to the body� In Haskell� this is accom�
plished with the distinguished top�level variable main� which is bound to a value
that species the command to be performed by the program� Thus executing the
program

main �� IO ��

main � puts ���

prints an indicator of perplexity� Thus main is the link from Haskell�s mind to
Haskell�s body � the analogue of Descartes�s pineal gland�
One may be disappointed that commands can only appear at the top�level of a

program� Surely such a narrow interface as main will prove a bottleneck� But� as
we will see� our type of commands is highly expressive� and can include arbitrary
blends of interaction and computation� Just as Descartes believed that a soul could
infuse an entire body through the pineal gland� so can a program interact with the
entire world via main�

��� Equational reasoning

Equational reasoning is a principle of such importance that it goes by many names�
�referential transparency�� �the rule of Leibniz�� or more plainly �substituting
equals for equals�� Our approach to commands preserves simple equational rea�
soning� which an approach based on side e�ects does not�
To see this� let�s compare the use of monads in Haskell with the use of side e�ects

in SML� For direct comparison� we assume a primitive putcML such that evaluating
the expression

putcML ��h�� putcML ��a��

putcML ��h�� putcML ��a�

prints �haha� as a side e�ect� �The character written �h� in Haskell is written ��h�

in the most recent revision of SML 	����� If we attempt to capture the commonality
in this program by writing

let val

x � �putcML ��h�� putcML ��a��

in x� x end



How to Declare an Imperative � �

then the laugh is on us� the program prints only a single �ha�� at the time variable
x is bound� In the presence of side e�ects� equational reasoning in its simplest form
becomes invalid�
One can use a more complex form of equational reasoning in SML� Writing

let fun

f �� � �putcML ��h�� putcML ��a��

in f ��� f �� end

denes a function f with dummy argument ��� and properly abstracts the interac�
tion� Thus in SML one must abstract values and interactions di�erently�
In Haskell� the expression

putc �h� �� putc �a� ��

putc �h� �� putc �a�

and the expression

let

x � �putc �h� �� putc �a��

in x �� x

are entirely equivalent� Thus in Haskell one may abstract values and interactions
in exactly the same way� Equational reasoning is kept simple by an appropriate
distinction between the roles of mind and body�

��� Commands that yield values

The above is adequate for output� but needs to be generalised for input� If a is
a type� then IO a is the type of commands that yield a value of type a� So far�
we have considered the special case IO ��� �In Haskell� �� is the trivial type that
contains just one proper value� which is also written ����
Here is a function to read a character�

getc �� IO Char

Performing the command getc when the input contains ABC yields the value �A�

and remaining input BC�
Generalising the command done� which does nothing and yields no value� is the

command return x� which does nothing and yields value x�

return �� a �� IO a

Performing the command return �� when the input contains ABC yields the value
�� and an unchanged input ABC� �Here a is a type variable� which thanks to the
wonders of polymorphism may be instantiated to any type� in this case Int��
Combining commands is a little tricky� One common approach is to dene an

operation which takes a pair of commands that yield values to a command which
yields a pair of values�

����� �� IO a �� IO b �� IO �a�b�

Performing the command getc ��� return �� when the input contains ABC yields
the value ��A����� and remaining input BC�



� � P� Wadler

Continuing this approach� one may also provide an operation which applies a
function to the result of a command�

����� �� IO a �� �a �� b� �� IO b

Performing the command getc ��� �c�� 	c�c
 when the input contains abc�
yields the value �AA� and remaining input BC� �In Haskell� �x�� e is the equiv�
alent of the lambda expression �x� e� so applying the function �c�� 	c�c
 to the
character �a� yields the string �aa���
Here is a function to read a given number of characters�

gets �� Int �� IO String

gets � � return 	


gets �i��� � �getc ��� gets i�

��� ��c�s��� c�s

Performing the command gets � when the input contains ABC yields the value �AB�
and remaining input C�
The set of combinators based on ��� and ���� which seems natural enough� leads

to a style in which even as simple a function as gets is not especially easy to read�
Fortunately� there is another set of combinators that� though it appears less natural�
leads to a style in which functions are easier to read�

��� An analogue of let

The new combinator is written ��� and pronounced �bind��

����� �� IO a �� �a �� IO b� �� IO b

If m �� IO a is a command yielding a value of type a� and k �� a �� IO b is a
function from a value of type a to a command yielding a value of type b� then
m ��� k �� IO b is the command that� if it is ever performed� behaves as follows�
rst perform command m yielding a value x of type a� then perform command k x

yielding a value y of type b� then yield the nal value y�
Although it may seem odd at rst sight� this combinator is reassuringly similar to

the familiar let expression� Those familiar with type inference rules will recognise
the rule for let�

� m �� a x �� a � n �� b

� let x�m in n �� b

This rule states that if term m has type a� and �assuming that variable x has
type a� term n has type b� then the term let x�m in n has type b� To compute
let x�m in n� rst compute m� then bind x to the value yielded� then compute n�
Typically� bind is combined with lambda expressions in a way that resembles let

expressions� Here is the corresponding type rule�

� m �� IO a x �� a � n �� IO b

� m ��� �x�� n �� IO b

If term m has type IO a and �assuming that variable x has type a� term n has type
IO b� then the term m ��� �x�� n has type IO b� To perform m ��� �x�� n� rst
perform m� then bind x to the value yielded� then perform n�
Note the similarity to the SML let expression�



How to Declare an Imperative � �

let val x � m in n end

To compute this� rst compute m �and perform its side e�ects�� then bind x to the
value yielded� then compute n �and perform its side e�ects�� The key di�erence is
that ��� preserves equational reasoning� while the SML let with side e�ects does
not�
Because of this similarity� one may wish to introduce a variant let expression

such as

let x �� m in n

�where the equal sign has been replaced by an arrow� as equivalent to m ��� �x�� n�
We�ll return to this in the conclusion�
The combinator ��� may be dened in terms of return and ����

����� �� IO a �� IO b �� IO �a�b�

m ��� n � m ��� �x��

n ��� �y��

return �x�y�

This has a straightforward reading� To perform m ��� n� rst perform m� bind its
value to x� then perform n� bind its value to y� and yield the value �x�y��
Consider performing getc ��� getc when the input contains ABC� Performing

the rst getc yields value �A�� which is bound to x� and remaining input BC�
Performing the second getc yields value �B�� which is bound to y� and remaining
input C� Performing return �x�y� yields the nal value ��A���B���
The combinator ��� is also easily dened�

����� �� IO a �� �a �� b� �� IO b

m ��� f � m ��� �x��

return �f x�

To perform m ��� f� rst perform m� then bind x to the value yielded� and nally
yield the value f x�
But we no longer require ��� and ���� because it is easier to dene a function

like gets directly in terms of ��� and return�

gets �� Int �� IO String

gets � � return 	


gets �i��� � getc ��� �c��

gets i ��� �s��

return �c�s�

Again� this has a straightforward reading� To get a string of length i��� rst get
a character� bind it to c� then get a string of length i� bind it to s� then yield the
string c�s�
The command done is a special case of return� and the combinator �� is a special

case of ����

done �� IO ��

done � return ��



� � P� Wadler

���� �� IO �� �� IO �� �� IO ��

m �� n � m ��� ����� n

�Recall that �� stands for both the trivial type and its one value��
Several researchers� including myself� have published combinators for parsing

based on operations analogous to ��� and ��� 	��� ��� ���� I now believe that ���
provides a far superior style� Others may have been clever enough to make the
switch from ��� and ��� to ��� on their own� but in my case I would attribute the
improvement directly to my contact with Moggi�s work� and indirectly to Kleisli�s
abstract formulation of a monad in category theory�
To summarise� here is an interface for the input�output monad�

data IO a

return �� a �� IO a

����� �� IO a �� �a �� IO b� �� IO b

putc �� Char �� IO ��

getc �� IO Char

The rst line states that IO a is an abstract data type� There are four operations
on this type� the two combining forms� return and ���� and the two primitives�
putc and getc� Everything else� such as done and ��� can be dened in terms of
these�
Operations of an abstract data type can often be characterised by the laws they

satisfy� and we now turn to that question�

��� Monad laws

The command done is a left and right unit for ��� and �� is associative�

done �� m � m

m �� done � m

m �� �n �� o� � �m �� n� �� o

In other words� done and ���� form a monoid�
Analogously� there is a sense in which return is a left and right unit for ���� and

��� is associative�

return v ��� �x�� m � m	x��v


m ��� �x�� return x � m

m ��� �x�� �n ��� �y�� o� �

�m ��� �x�� n� ��� �y�� o

In the rst line� variable x may appear free in term m and m	x��v
 stands for term
m with each free occurrence of variable x replaced by term v� In the third line�
variable x may appear free in term n but not in term o� and variable y may appear
free in term o�
Categorists are infamous for stealing terms from philosophy� starting with the

theft of category itself from Kant� The theft of monad from Leibniz to name the
above structure was aided and abetted by the pun on monoid� �For Leibniz� monads
were central to the mind�body problem� since each soul is a monad� as is God��
In general� a monoid is a type M together with operators of types



How to Declare an Imperative � 	

done �� M

���� �� M �� M �� M

satisfying the rst set of three laws above� The specic operators done and ����

discussed here form a monoid� but so do many others� For instance� take M to be
the integers� take done to be zero� and take �� to be addition�
Similarly� for functional programmers a monad is a type constructor M� together

with operators of types

return �� a �� M a

����� �� M a �� �a �� M b� �� M b

satisfying the second set of three laws above� Again� the specic operators return
and ����� described here form a monad� but many others do as well� �We will
discuss one other in Section �����
The three monad laws have analogues in let notation�

let x�v in m � m	x��v


let x�m in x � m

let y��let x�m in n� in o �

let x�m in �let y�n in o�

These law are not merely true� they are very true� They hold even in a language
such as SML� where the presence of side e�ects disables many forms of equational
reasoning� For the rst law to be true� v must be not an arbitrary term but a
value� that is� a variable or a lambda expression but not an application� A value
immediately evaluates to itself� hence its evaluation always terminates and can have
no side e�ects� Unlike SML� Haskell distinguishes ��� on commands from let on
values� While in SML one only has the above three laws for let� in Haskell one has
a much stronger law�

let x�m in n � n	x��m


Here one may replace a variable by any term� rather than replace a variable by a
value�
Using the monad laws� it is straightforward to prove some properties of programs�

Write �� for list concatenation� with the usual denition�

	
��s � s

�c�r���s � c��r��s�

Proposition� Two puts operations may be combined as follows�

puts r �� puts s � puts �r��s�

Proof� The proof is by induction on r�
Case 	
�

puts 	
 �� puts s

� � definition puts �

done �� puts s

� � left identity �� �

puts s




� � P� Wadler

� � definition �� �

puts �	
��s�

Case c�r�

puts �c�r� �� puts s

� � definition puts �

�putc c �� puts r� �� puts s

� � associativity �� �

putc c �� �puts r �� puts s�

� � inductive hypothesis �

putc c �� puts �r��s�

� � definition puts �

puts �c��r��s��

� � definition �� �

puts ��c�r���s�

�

Proposition� Two gets may be combined as follows�

gets i ��� �r��

gets j ��� �s��

return �r��s�

�

gets �i�j�

Proof� The proof is by induction on i�
Case ��

gets � ��� �r��

gets j ��� �s��

return �r��s�

� � definition gets �

return 	
 ��� �r��

gets j ��� �s��

return �r��s�

� � left unit ��� �

gets j ��� �s��

return �	
��s�

� � left unit �� �

gets j ��� �s��

return s

� � right unit ��� �

gets j

� � arithmetic �

gets ���j�

Case i���

gets �i��� ����r���

gets j ����s��



How to Declare an Imperative � 



return �r���s�

� � definition gets �

�getc ����c��

gets i ����r��

return �c�r�� ����r���

gets j ����s��

return �r���s�

� � associativity ��� �

getc ����c��

gets i ����r��

�return �c�r� ����r���

gets j ����s��

return �r���s��

� � left unit ��� �

getc ����c��

gets i ����r��

gets j ����s��

return ��c�r���s�

� � definition �� �

getc ����c��

gets i ����r��

gets j ����s��

return �c��r��s��

� � left unit ��� �

getc ����c��

gets i ����r��

gets j ����s��

�return �r��s� ����t��

return �c�t��

� � associativity ��� �

getc ����c��

�gets i ����r��

gets j ����s��

return �r��s�� ����t��

return �c�t�

� � inductive hypothesis �

getc ����c��

gets �i�j� ����t��

return �c�t�

� � definition gets �

gets ��i�j����

� � arithmetic �

gets ��i����j�

�

Each of these proofs is entirely straightforward� using a style common in func�
tional programming community 	��� Here only the three monad laws are required




� � P� Wadler

for the proof� and we need no laws to describe the behaviour of getc or putc�
While the three monad laws are solidly established and helpful� further work is

required on the best way to describe specic e�ects within a monad� For instance�
one might want to specify that if a stream of characters is written to a le then the
same stream will be read from the le� if no other program changes the le in the
interim�

��	 Monads and imperative programming

Here is a command which echoes one line of the input to the output� The newline
character ��n� terminates the input line� but is not copied to the output�

echo �� IO ��

echo � getc ��� �c��

if �c �� ��n�� then

done

else

putc c ��

echo

This looks remarkably like a program in an imperative language� such as C�

echo �� �

int c�

loop� c � getchar���

if �c �� ��n�� �

return

� else �

putchar�c��

goto loop�

�

�

Does the monadic style force one� in e�ect� to write a functional facsimile of an
imperative program�
In one sense� the answer is yes� and rightly so� Some interactions appear most

straightforward to express in an imperative style� and we should not hesitate to do
so� In another sense� the answer is certainly not� For those portions of a program
which are independent of interaction� all of the functional techniques that functional
programmers have come to know and love still apply�
The similarity of the two programs is not in vain� the former compiles into

something closely resembling the latter� This is accomplished by extensive use of
equational reasoning in the Glasgow Haskell compiler� Whereas some declarative
programmers only pay lip service to equational reasoning� users of functional lan�
guages exploit them every time they run a compiler� whether they notice it or
not�
Combinations of imperative and functional style are possible� Here is a function

that takes a list of commands that yield values to a command that yields a list of
values�

prod �� 	IO a
 �� IO 	a




How to Declare an Imperative � 
�

prod 	
 � return 	


prod �m�ms� � m ��� �x��

prod ms ��� �xs��

return �x�xs�

Using this one may rewrite puts and gets in a higher�order style�

puts s � prod �map putc s� ��� ����

return ��

gets i � prod �take i �repeat getc��

�This uses Haskell library functions� map f xs applies function f to each element
of list xs� and take i xs computes the rst i elements of list xs� and repeat x

computes a list consisting of x repeated indenitely��
The ability to write higher�order functions such as prod is a bit like the ability

to dene new� special�purpose constructs in an imperative language�

��
 Calling C directly

The mechanism described above extends to integrate Haskell directly with C� The
Glasgow Haskell compiler augments the language with a new form of expression

ccall proc e� ��� en

where proc is the name of a C procedure� and e� through en are Haskell expressions
of type Char� Int� or Float� the expression as a whole has type IO Char� IO Int�
or IO Float� The Haskell compiler checks that the number and type of arguments
conform to the types declared in C�
Here� slightly simplied� are denitions of getc and putc�

putc c � ccall putchar c

getc � ccall getchar

The ccall directly invokes the corresponding C library function� A practical conse�
quence of this approach is that most of our IO system is written directly in Haskell�
with a smattering of low�level calls to C where needed�
This mechanism amounts to allowing an arbitrary set of primitives� one for each C

library function that appears in ccall� to be added to the abstract type summarised
at the end of Section ����
At present� we only allow values of base type to be passed between Haskell and

C� It is possible� but not especially convenient� to write special�purpose routines
enabling more complex structures to pass across this narrow interface� Enabling
smooth sharing of more complex data remains a challenge for the future�

�� OTHER APPROACHES TO INTERACTION

This section relates the monad approach to input�output to four other widely used
approaches� synchronised streams� as used in earlier versions of Haskell� continua�
tions� as used in Hope� linear types� as used in Clean� and side e�ects� as used in
SML� In each case� the presentation will be streamlined to two basic operations� to
read and write a single character�
Recall that the monad approach to interaction is based on the type IO a and

four operations provided by the system�




� � P� Wadler

����� �� IO a �� �a �� IO b� �� IO b

return �� a �� IO a

putc �� Char �� IO ��

getc �� IO Char

In turn� the user must provide the value of a distinguished variable�

main �� IO ��

This value acts as a �pineal gland�� connecting thought to action�
For each of the four other approaches� the presentation follows a similar plan�

First� a set of appropriate types and operations is presented� and an appropriate
distinguished variable is described� Second� the program to echo a line of input is
rewritten in the new style� Third� tradeo�s between the two styles are assessed�
Fourth� it is shown how to dene the monad model in terms of the new model�
Fifth� if possible� it is shown how to dene the new model in terms of the monad
model�
This provides a rst step toward comparing and relating the di�erent approaches�

Similar programs of comparison� implementing various input�output models in
terms of others� have been carried out by Hudak and Sundaresh 	���� Gordon 	����
and Peyton Jones and Wadler 	����

��� Interaction by synchronised stream

Like many features of functional languages� the stream model of input�output arose
out of work in denotational semantics� The stream model appears in the seminal
work of Landin 	���� and the renement to synchronous streams is due to Stoye 	����
Early versions of Haskell used streams for input�output 	���� while later versions
use monads 	�
�� Since streams are often used as a semantics for input�output� the
denition of monads in terms of streams� presented below� may be regarded as a
semantics for the input�output monad�
Review of interaction by synchronised streams� In the stream model� at the top�

level a program is represented by a dialogue� a function that yields a stream of
requests and accepts a stream of responses� In a lazy language� a stream may be
represented by a list�

type Dialogue � 	Response
 �� 	Request


This approach to input�output depends on lazy evaluation� as each request must
be returned from the program before the corresponding response is generated�
A request is either of the form Getq� indicating a character should be read� or of

the form Putq c� indicating that character c should be written� Dually� a response
is either of the form Getp c� indicating that character c has been read� or of the
form Putp� indicating that a character has been written�

data Request � Getq � Putq Char

data Response � Getp Char � Putp

Here we abbreviate �request� to �req� and thence �q�� and �response� to �resp� and
thence �p��
The behaviour of the entire program is specied by a distinguished variable� here

called mainD�



How to Declare an Imperative � 
�

mainD �� Dialogue

Thus synchronous streams share with monads the notion of a single link� anal�
ogous to the pineal gland� between thinking and doing� Indeed� all the models
of interaction that we consider will have this property� with the exception of side
e�ects�
Here is the program which echoes a line of its input to its output� implemented

with synchronous streams�

echoD �� Dialogue

echoD p �

Getq �

case p of

Getp c � p� ��

if �c �� ��n�� then

	


else

Putq c �

case p� of

Putp � p�� �� echoD p��

The program rst issues the request Getq on its request stream� indicating a char�
acter should be read� causing the response Getp c to appear on its response stream�
indicating character c was read� If the character is end of line� it then terminates
the request stream� indicating the end of the program� Otherwise� it next issues
the request Putq c on its request stream� indicating character c should be written�
causing the response Putp to appear on its response stream� indicating the write
occurred� It then repeats the loop�
For instance� if the input begins with �AB�n� then the two characters preceding

the newline will be echoed to the output� as specied by the following requests and
responses�

echoD 	Getp �A�� Putp� Getp �B�� Putp� Getp ��n�


� 	Getq� Putq �A�� Getq� Putq �B�� Getq 


These streams represent the entire history of the process� with all indications of
causality erased�
Using the language of denotational semantics� one may express the history by a

sequence of approximations converging to a xed point� We write bottom to denote
a stream about which nothing is known�

echoD �bottom�

� Getq � bottom

echoD �Getp �A�� bottom�

� Getq � Putq �A�� bottom

echoD �Getp �A�� Putp � bottom�

� Getq � Putq �A�� Getq � bottom

echoD �Getp �A�� Putp � Getp �B�� bottom�

� Getq � Putq �A�� Getq � Putq �B�� bottom

echoD �Getp �A�� Putp � Getp �B�� Putp � Getp ��n�� bottom�




� � P� Wadler

� Getq � Putq �A�� Getq � Putq �B�� Getq � 	


echoD �Getp �A�� Putp � Getp �B�� Putp � Getp ��n�� 	
�

� Getq � Putq �A�� Getq � Putq �B�� Getq � 	


This view restores the causality� rst there are no responses and the request Getq
is issued� next the response Getp �A� appears and the request Putq �A� is issued�
and so on�
What is the trade o� between monads and streams� Synchronous streams require

that you mind your ps and qs� you must take care to ensure that a request is
always issued before the corresponding response is consumed� Monads hide this
level of detail� Further� monads are more modular than synchronous streams� With
monads� you may simply write echo �� echo to echo two lines from the input to
the output� To support similar modularity with the synchronous stream version of
echo is di�cult� at best�
For these reasons� monads are now generally considered preferable to synchronous

streams in practice� though the stream model remains a useful theoretical tool� In
particular� the denition of the monads in terms of streams� given below� can be
regarded as providing a denotational semantics for the monad model�
From streams to monads� We now consider how to dene monads in terms of

synchronous streams� The type IO a stands for a computation that generates a
part of the request stream� and consumes a corresponding part of the response
stream� as well as returning a value of type a�

type IO a � �	Response
�	Request
� ��

�a�	Response
�	Request
�

A typical use of computation m �� IO a has the form

�x�p��q� � m �p�q��

where p is the stream of responses passed to the computation� q is the stream of
requests returned by the computation� p� is the stream of responses to be consumed
after the computation� q� is the stream of requests to be generated after the com�
putation� and x is the value of type a returned by the computation� This depends
critically on lazy evaluation� because the stream q� of remaining requests passed
to the computation may depend on the value x returned by the computation�
Given this formulation� it is straightforward to dene monads in terms of streams�

����� �� IO a �� �a �� IO b� �� IO b

m ��� k � ��p�q����� let

�x�p��q� � m �p�q��

�y�p���q�� � k x �p��q���

in

�y�p���q�

return �� a �� IO a

return x � ��p�q��� �x�p�q�

putc �� Char �� IO ��

putc c � ��p�q���� let



How to Declare an Imperative � 
�

q � Putq c � q�

Putp � p� � p

in

����p��q�

getc �� IO Char

getc � ��p�q���� let

q � Getq � q�

Getp c � p� � p

in

�c�p��q�

Note that the let clause dening ��� is mutually recursive and uses laziness in an
essential way� the rst line binds p�� which depends on q�� while the second line
binds q�� which depends on p��
It is equally straightforward to relate the distinguished variables for streams and

monads�

mainD �� Dialogue

mainD � �p�� let

�x�p��q� � main �p�q��

q� � 	


in

q

Here the stream of requests q� to perform after main is empty� and hence so is the
stream of responses p�� And x must have value �� since main has type IO ���
�There is one subtlety here� One might naively expect that replacing �x�p��q�

by ����	
�q� would yield an equivalent denition� but it does not� The denition
as it stands returns q before the values assigned to x and p� are computed� which
is essential because the list of responses p depends on the list of requests q� The
altered form cannot return q until it checks that x is �� and p� is 	
� and this
introduces a deadlock��
Laws� It is a straightforward exercise to show that the three monad laws are

satised� For instance� we show

return x ��� k � k x

by the following calculation�

�return x ��� k� �p�q���

� � definition ��� �

let

�x��p��q� � return x �p�q��

�y�p���q�� � k x� �p��q���

in

�y�p���q�

� � definition return �

let




� � P� Wadler

�x��p��q� � �x�p�q��

�y�p���q�� � k x� �p��q���

in

�y�p���q�

� � simplify �

let

�y�p���q�� � k x �p�q���

in

�y�p���q��

� � simplify �

k x �p�q���

The other two laws are proved similarly�
From monads to streams� One may also ask whether the stream model can be

implemented in terms of the monad model� The answer is yes and no� One can
write such a function� but it turns out to be incredibly ine�cient� So monads are
easily dened in terms of synchronous streams� but not conversely� For details of
the conversion� see 	����

��� Interaction by continuations

The previous section showed that the naked style of synchronised streams is unap�
pealing� but can be improved by dressing it up in monads� Continuations may also
be used for this purpose� as was done in earlier versions of Haskell 	���� Further�
just as monads can be treated either as the old stream type in a new package or
as an abstract data type in its own right� so too can continuations� as was done in
Hope 	���� Here we give the formulation of continuations as an abstract type�
Historically� continuations are a direct predecessor of monads� Continuations�

like monads� arose in denotational semantics� originally as a way to model �ow of
control� The canonical formulation is due to Plotkin 	���� and an engaging history
has been penned by Reynolds 	����
Review of interaction by continuations� In the continuation model� each opera�

tion takes an additional argument� itself called the continuation� that denotes the
the entire remainder of the computation� At rst sight this appears to be a remark�
ably unmodular notion � every action incorporates all succeeding actions� But�
paradoxically� this style actually increases modularity�
In continuation style� the nal result of the program is given the type Answer�

In Hope Answer is an abstract type� while in earlier versions of Haskell Answer it
is taken as equivalent to the Dialogue type of the previous section�
There are two primitives� one to write a character to the output and one to read

a character from the input�

putcK �� Char �� Answer �� Answer

getcK �� �Char �� Answer� �� Answer

Excecuting putcK c k writes the character c to the output and then behaves as
the continuation k� while executing getc k reads a character from the input� say
c� and then behaves as the continuation k c� In the rst case the continuation
simply has type k �� Answer since writing a character yields no result� while in



How to Declare an Imperative � 
	

the second case the continuation has type k �� Char �� Answer since reading a
character yield a result of type Char which is passed to the continuation�
Each primitive yields an Answer� and requires a continuation involving Answer as

its argument� To terminate this innite regress� there is a primitive corresponding
to no action at all�

doneK �� Answer

The behaviour of the entire program is specied by the distinguished variable mainK�

mainK �� Answer

This should be bound to the nal answer�
Here is the program which echoes a line of its input to its output� implemented

with continuations�

echoK �� Answer

echoK � getcK ��c��

if �c �� ��n�� then

doneK

else

putcK c �

echoK��

This is remarkably close to the monad style� except that all appearances of ��� and
�� have been elided� More precisely� they have been built�in to the corresponding
primitives� where before one wrote getc ��� k now one writes getcK k� and where
before one wrote putc c �� k now one writes putcK c k�
However� there is an essential di�erence between the monad and continuation

styles� As we saw before� with monads one may simply write

main �� IO ��

main � echo �� echo

to echo two lines� There is no equivalent form of composition that works for the echo
program above� But� unlike with synchronous streams� there is an easy x� Just
rewrite the echo program so that� like the primitives� it too accepts a continuation�

echoK� �� Answer �� Answer

echoK� k � getcK ��c��

if �c �� ��n�� then

k

else

putcK c �

echoK� k��

The new program accepts a continuation k� which appears where doneK appeared
formerly� Now one may simply write

mainK �� Answer

mainK � echoK� �echoK� doneK�

to echo two lines from the input to the output�



�� � P� Wadler

The moral� with streams� it is di�cult to write a version of echo that composes�
with continuations� it is easy to write a version of echo that composes� if you
remember to include a continuation argument� and with monads� it is impossible

to write a version of echo that does not compose�
What is the trade o� between monads and continuations� The program struc�

tures used are almost identical� so in that sense there is little to choose between
them� Monads have the adavantage of being slightly more abstract� in that code
remains uncluttered by mention of a continuation variable� Continuations have the
advantage of directly supporting error jumps and other changes in �ow of control�
However� error jumps can also be supported by monads� as in the current version
of Haskell 	�
�� and monads can support the full power of continuations by building
in a �call with current continuation� operation� as described in 	����
Nonetheless� monads and continuations support very similar program structures�

Perhaps the most remarkable comparison between monads and continuations is
that the former has so far outstripped the latter in terms of popularity� when the
underlying concepts are so similar�
From continuations to monads� We now consider how to dene monads in terms

of continuations� The type IO a stands for a function that accepts a continuation�
which accepts a value of type a and yields an answer� and itself yields an answer�

type IO a � �a �� Answer� �� Answer

A typical use of the computation m �� IO a has the form m k �� Answer� where
k �� a �� Answer is the continuation� Here m k denotes an action that rst be�
haves as specied by m� yielding the value x� and then behaves as specied by k x�
Given this formulation� it is straightforward to dene monads in terms of contin�

uations�

����� �� IO a �� �a �� IO b� �� IO b

m ��� k � �j�� m ��x�� k x ��y �� j y��

return �� a �� IO a

return x � �j�� j x

putc �� Char �� IO ��

putc c � �j�� putcK c �j ���

getc �� IO Char

getc � �j�� getcK j

In each case� the types work out� For instance� in the denition of ����� we have
m �� �a��Answer���Answer� k �� a���b��Answer���Answer�
j �� b��Answer� x �� a� and y �� b� Hence�
��x�� k x ��y �� j y�� �� a��Answer� as required� Observe that k and j both
behave somewhat like continuations� but at di�erent levels�
It is equally straightforward to relate the distinguished variables for continuations

and monads�

mainK �� Answer

mainK � main ������ doneK�



How to Declare an Imperative � �


Here main �� IO �� takes the continuation ������ doneK� �� ����Answer� which
accepts the trivial value and does nothing more�
Laws� Again� it is a straightforward exercise to show that the three monad laws

are satised� For instance� we show

return x ��� k � k x

by the following calculation�

�return x ��� k�

� � definition ��� �

�j�� return x ��x�� k x j�

� � definition return �

�j�� ��j�� j x� ��x�� k x j�

� � simplify �

�j�� ��x�� k x j� x

� � simplify �

�j�� k x j

� � simplify �

k x

The other two laws are proved similarly�
From monads to continuations� It is also easy to dene continuations in terms

of monads� so in this sense the models are equivalent� For details and further
discussion� see 	����

��� Interaction by linear logic

Here is a naive model of interaction� based on state� an interactive program is
represented by a function from the initial state to the world to the nal state of
the world� Each interaction is represented by a function that takes a current state
and a request� and returns the next state and a response�
The di�culty here is that the same current state may be passed to two di�erent

invocations of the interaction function� yielding two di�erent next states� In this
case� which of the two interactions has actually occurred�
One possible solution is to wait until the nal state is returned� as it may encode

the series of interactions that produced it� This solution was considered for an
early version of Haskell� but rejected� in part because it excludes the useful class of
interactive programs that run forever� never yielding a nal state�
A di�erent solution is to guarantee that the current state is never duplicated�

Hence� each state is passed to at most one function representing an interaction�
Since there is no confusion as to which interaction occurs� each interaction may be
performed as the program executes� Even a program that runs forever will produce
a well�dened sequence of interactions�
Linear logic� as proposed by Girard 	���� is a logic in which some propositions

may not be duplicated in a proof� Via the Curry�Howard isomorphism� a logic
corresponds to a programming language� with proofs corresponding to programs
and propositions corresponding to types 	���� Hence� linear logic gives rise to a
programming language with types that prohibit duplication� Tutorial explanations
of this correspondence have been written by Abramsky 	�� and Wadler 	���� Var�



�� � P� Wadler

ious systems� more or less practical� and based on linear logic to a greater or less
degree� have been proposed by Holmstrom 	���� Lafont 	���� Wadler 	���� Guzman
and Hudak 	���� and Barendsen and Smetsers 	��� The theoretical application to
interaction was stressed by Girard and further elaborated by Lafont� but the rst
suggestion of practical application to interaction appears to be in my own work�
The rst practical application of this idea is in the lazy functional language Clean

	��� based on the work of Barendsen and Smetsers 	��� The Clean system has been
used to program a number of impressive applications� with an interface that o�ers
�at a high level� the same power as the Macintosh graphics toolkit�
Review of interaction by linear logic� In the linear logic model� there is a distin�

guished type World� representing the entire state of the external world� Values of
this distinguished type must be treated linearly� that is� they may not be duplicated�
Each interactive operation accepts an argument this type� representing the state at
the beginning of the operation� and returns a result of this type� representing the
state at the end of the operation�
There are two primitives� one to write a character to the output and one to read

a character from the input�

putcL �� Char �� �World �� �World

getcL �� �World �� ��Char��World�

Following the notation used in Clean� we preface linear types with a star� Values
of type �World may not be duplicated� nor may the pair of type ��Char��World��
since duplicating the pair would duplicate its second component� But it is permitted
to extract and duplicate the rst component of this pair�
This is a greatly simplied version of the actual type system used in Clean� Fur�

ther complications arise because Clean requires that interactive functions should
be strict in the argument representing the world� and because it is sometimes nec�
essary to parameterise over whether a given type is linear or not� so that the same
function can operate� for instance� on both linear and non�linear pairs�
The behaviour of the entire program is specied by the distinguished variable

mainL�

mainL �� �World �� �World

This variable should be bound to a function from the state of the world at the
beginning of the programs to the state of the world at the end�
Here is the program which echoes a line of its input to its output� implemented

with linear state�

echoL �� �World �� �World

echoL w � let �c�w�� � getcL w in

if �c �� ��n�� then

w�

else

let w�� � putcL c w� in

echo w��

This program is similar in structure to the monad program� though decorated
throughout with variables denoting the current state of the world� w� w�� and w���



How to Declare an Imperative � ��

Accidentally switching� say� an occurence of w� with one of w��� might drastically
change the meaning of the program� Fortunately� many such errors will be caught
by the linear type system�
It remains relatively easy to compose programs� One may simply write

mainL �� �World �� �World

mainL w � echoL �echoL w�

to echo two lines�
What is the trade o� between monads and linear logic� Linear logic requires a

sophisticated type system� and forces the code to be cluttered by passing around
the current state� We show below how to dene monads in terms of linear state�
Some users of Clean have found it convenient to make just such denitions and
thereafter work in terms of monads� as this eliminates the clutter 	����
But while mentioning the state explicitly is something of a pain when there is

just one state� it may become a boon if one fragments the state into separate
components representing portions of the world that do not interact  for instance�
one to represent the state of the screen� and a di�erent one to represent the state
of the le store� Further practical experience is needed to determine where the
balance lies�
From linear state to monads� We now consider how to dene monads in terms

of linear state� The type IO a stands for a function that accepts the current state
of the world� and returns a value of type a and a new state�

type IO a � �World �� ��a� �World�

Given this formulation� it is straightforward to dene monads in terms of linear
state�

����� �� IO a �� �a �� IO b� �� IO b

m ��� f � �w�� let

�x�w�� � m w

�y�w��� � k x w�

in

�y�w���

return �� a �� IO a

return x � �w�� �x�w�

putc �� Char �� IO ��

putc c � �w�� ���� putcL c�

getc �� IO Char

getc � �w�� getcL w

It is equally straightforward to relate the distinguished variables for continuations
and monads�

mainL �� Answer

mainL � �w�� let ����w�� � main w in w�



�� � P� Wadler

Here main �� IO �� takes the initial world w and returns a pair consisting of the
trivial value �� and the nal world w��
Laws� Again� it is a straightforward exercise to show that the three monad laws

are satised� For instance� we show

return x ��� f � f x

by the following calculation�

�return x ��� f�

� � definition ��� �

�w�� let

�x��w�� � return x w

�y�w��� � f x� w�

in

�y�w���

� � definition return �

�w�� let

�x��w�� � �x�w�

�y�w��� � f x� w�

in

�y�w���

� � simplify �

�w�� let

�y�w��� � f x w

in

�y�w���

� � simplify �

�w�� f x w

� � simplify �

f x

The other two laws are proved similarly�
From monads to linear state� There is no obvious way to make the converse

denition� of linear state in terms of monads�

��� Interaction by side e�ect

Traditionally� in strict languages interaction occurs via side e�ects� This idea has
roots at least as far back as Lisp and Iswim� and is carried on in Scheme and SML�
For this section� we switch our presentation language from Haskell to SML� There

are some minor syntactic di�erences between Haskell and SML� some of which are
indicated in the following�

Haskell SML

�� �� �� �� � unit

��n� �� Char ���n� � char

��x��x� �� a��a �fn x��x� � �a �� �a

Type variables in Haskell are distinguished by beginning with a small letter and
type constructors precede their arguments� as in IO a� while type variables in SML



How to Declare an Imperative � ��

are distinguished by begining with a backquote and type constructors follow their
arguments� so the same type might be written �a io in SML� Types are indicated
with two colons in Haskell and with one in SML� In SML� type signatures are
preceded by the keyword val� and denitions are preceded by the keyword val or
fun� We maul SML slightly by placing type signatures next to the corresponding
denitions� in SML proper� denitions are grouped into modules and the signature
appears separately�
Review of side e�ects� Again we assume two primitives� one to write a character

to the output and one to read a character from the input� Their types are pleasingly
symmetric�

val putcML � char �� unit

val getcML � unit �� char

Each primitive must be a function� and the desired interaction occurs when the

function is applied� The type unit appears when a function is required to mediate
the time at which a side e�ect occurs� but no actual argument or result is necessary�
The phrase �when the function is applied� matches our previous phrase �when

the action is performed�� For instance� evaluating the lambda abstraction

�fn c �� putcML c� putcML c�

has no side e�ects� and returns a function� let�s call it f� of type char �� unit� It is
only when this function is applied that the side e�ects occur� so evaluating f ����

prints two exclamation marks� Thus� our previous distinction between thinking and
doing is here matched by a distinction between abstraction and application� The
main di�erence is main� with side e�ects� unlike any of the other models we have
studied� there is no need for a distinguished top�level variable�
Here is the program which echoes a line of its input to its output� implemented

with side e�ects�

val echoML � unit �� unit

fun echoML �� � let val c � getcML �� in

if c � ���n� then

��

else

�putcML c� echoML ���

end

Neither the argument nor result of this function contain any information� it is
executed solely for its side e�ects�
Two lines may be echoed by executing the following code�

echoML ��� echoML ��

There is a world of di�erence between the value echoML which has no side e�ects
when evaluated� and the computation echoML ��� which does�
For completists� here is how to dene putcML and getcML in terms of the primi�

tives provided in the Standard ML library�

fun putcML c �

TextIO�output��TextIO�stdOut�c��



�� � P� Wadler

fun getcML �� �

valOf�TextIO�input��TextIO�stdIn���

From side e�ects to monads� Even in a strict language with side e�ects� it is still
possible to encapsulate interaction within a monad� Thus� it is entirely possible to
intermix the side e�ect and monad approaches to interaction�
The type �a io is represented by a function expecting a dummy argument of

type unit and returning a value of type �a�

type �a io � unit �� �a

Here we exploit the fact that wrapping an expression inside a function allows us to
control the point at which any side e�ects of that expression will occur�
Given this formulation� it is straightforward to dene monads in terms of side

e�ects�

infix ���

val ��� � �a io � ��a �� �b io� �� �b io

fun m ��� k � fn �� �� let

val x � m ��

val y � k x ��

in

y

end

val return � �a �� �a io

fun return x � fn �� �� x

val putc � char �� unit io

fun putc c � fn �� �� putcML c

val getc � char io

val getc � fn �� �� getcML ��

The inx symbol ��� is curried in Haskell but takes a pair in SML� hence the rst
�� in its Haskell type becomes � in its SML type�
As in the Haskell formulation� �� and done may be dened as special case of ���

and return�

infix ��

val �� � unit io � unit io �� unit io

fun m �� n � m ��� �fn �� �� n�

val done � unit io

val done � return ��

SML only allows recursive denition of functions� In order to treat �a io as an
abstract type� we dene a xpoint operator� fix�

val fix � ��a io �� �a io� �� �a io

fun fix h � let fun f �� � h f �� in f end



How to Declare an Imperative � ��

The denition depends on the fact that �a io is the same as unit �� �a� but once
the function has been dened it may be used in a scope where �a io is taken as an
abstract type�
Finally� we need a function to take on the same role as the distinguished variable�

a pineal gland to convert thought into action� Its denition is simplicity itself�

val execute � unit io �� unit

fun execute m � m ��

As an example of the use of these functions� here is echo rewritten in SML�

val echo � unit io

val echo � fix �fn echo ��

getc ��� �fn c ��

if �c � ���n�� then

done

else

putc c ��

echo��

Apart from the explicit use of a xpoint operator and a few minor syntactic di�er�
ences� this is identical to the Haskell code�
Laws� Again� we ask whether the three monad laws follow from the denitions

of return and ��� given above�

return v ���fn x�� m � m	x��v


m ���fn x�� return x � m

�m ���fn x�� n� ���fn y�� o �

m ���fn x���n ���fn y�� o�

The second and third laws can indeed be shown valid� for any expressions m� n�
and o� But the rst law holds only if both v and m	x��v
 are values� The rst
restriction is not too surprising� since the law

�fn x �� m�v � m	x��v


also holds in SML only if v is a value� But the second restriction is surprising�
Strict langauges �like SML� do restrict reasoning in ways that lazy languages �like
Haskell� do not�
The usual call�by�value calculus �v of Plotkin 	��� is not strong enough to prove

these laws� One must use the stronger computational lambda calculus �c of Moggi
	���� which has been studied by Sabry and Wadler 	����

�� RELATED WORK

Monads have been used for a variety of purposes beyond those described here�
As noted� Eugenio Moggi introduced monads to computing science as a way

of structuring denotational semantics 	��� ���� Many di�erent language features�
including non�termination� state� exceptions� continuations� and interaction� can be
viewed as monads� Independently of Moggi� but at about the same time� Michael
Spivey noted that monads provided a useful way of structuring exception handling



�� � P� Wadler

in functional programs 	���� Inspired by Moggi and Spivey� I proposed monads as
a general technique for functional programming 	�
� ��� ����
As we have seen� monads are used to structure interaction in Haskell� and they

also provide interaction with C and mutable state in Glasgow�s local extension
of Haskell 	���� Monads are also used to structure interaction in the declarative
language Escher 	����
Monads are also used to structure the Glasgow Haskell compiler� which is itself

written in Haskell 	��� ���� Each phase of the compiler uses a monad for bookkeeping
information� For instance� the type checker uses a monad that combines state �to
maintain a current substitution�� a name supply �for fresh type variable names��
and exceptions �to report type errors�� If additional bookkeeping information is
required� it is easy to change the monad without requiring extensive modication
to the rest of the program� For instance� the type checker was easily altered to
maintain information about the current line number� which enabled better error
messages�
The use of monads for updateable state is described by Wadler 	�
�� and for

input�output is described by Peyton Jones and Wadler 	���� Monads for updateable
state have been further elaborated by Launchbury 	��� and Launchbury and Peyton
Jones 	���� and applied to to functional graph algorithms by King and Launchbury
	��� and Launchbury 	���� Monads for interaction have been extended to include
concurrency by Peyton Jones� Gordon� and Finne 	���� and applied to user interface
design by Peyton Jones and Finne 	����
The use of monads to structure interpreters and evaluators is described byWadler

	��� ���� Steele 	��� and Liang� Hudak� and Jones 	���� Additional structuring
techniques based on monads are described by Meijer and Jeuring 	�
��
There are standard call�by�value and call�by�name translations of lambda calcu�

lus into continuation passing style 	���� Monads provide a generalisation of these
translations� The relation of monads to continuation passing style have been de�
scribed by Moggi 	��� ���� Wadler 	�
� ��� ���� Hatcli� and Danvy 	�
�� Filinski
	���� and Sabry and Wadler 	���� Filinski also describes an ingenious way to embed
arbitrary monads in a call�by�value language with state and continuations� such as
SML!NJ 	����
Researchers have proposed various special type systems and syntaxes to support

monads� Jones devised an overloaded type system suitable for use with monads 	���
���� and has implemented this system in Gofer 	���� Wadler proposed a notation for
monads based on an analogy with list comprehensions 	�
�� and Jones proposed a
do notation that bears a remarkable resemblance to C 	���� both of these notations
are implemented in Gofer� and have been incorporated in Haskell ��� 	�
��
In addition to the three general�purpose monad laws� one requires specic laws

to reason about specic e�ects� Laws to reason about monads that manipulate
state are given by Wadler 	�
�� Odersky� Rabin and Hudak 	���� Launchbury 	����
and Sabry and Launchbury 	���� A formal link between monads and linear state
is drawn by Chen and Hudak 	��� Hughes 	��� uses monads to illustrate a clever
technique for deriving an e�cient representation of a data type from an algebraic
specication�
Each monad incorporates a di�erent e�ect� such as input�output� state� or excep�

tions� So it is important to consider ways in which monads can be combined� This



How to Declare an Imperative � �	

is discussed by Barr and Wells 	��� Moggi 	��� ���� King and Wadler 	�
�� Jones and
Duponcheel 	���� Liang� Hudak� and Jones 	���� and Jones 	����

�� CONCLUSIONS

Interaction is becoming increasingly important� and declarative languages must
develop suitable methods of incorporating interaction� Monads provide one such
approach� and are becoming widely adopted within parts of the declarative pro�
gramming community�

It is a sign of the increasing maturity of computing science that it is no longer
acceptable for a programming language to work in isolation� Programmers no
longer work from scratch� but assemble systems by combining existing components�
Reuse is essential� A language must provide connections to databases� networks�
and graphics� We are forced to nd ways to start standing on our colleagues�s
shoulders� and to stop standing on their toes�

Thus it is becoming increasingly important for di�erent languages� and di�erent
language paradigms� to communicate� The meagre facility to integrate Haskell with
C described here is a start in this direction� Research trends within the community
point to further integration� hot topics include how to pass more complex data
structures between C and Haskell� how to integrate storage management� how to
add concurrency� and better support for graphic user interfaces� Monads have a
useful role to play in these developments�

Having praised monads to the hilt� let me level one criticism� Monads tend to be
an all�or�nothing proposition� If you discover that you need interaction deep within
your program� you must rewrite that segment to use a monad� If you discover
that you need two sorts of interaction� you tend to make a single monad support
both sorts� It seems to me that instead we should be able to move smoothly from
no monads �no interactions� to one monad �a single form of interaction� to many
monads �several independent forms of interactions�� How to achieve this remains a
challenge for the future�

��� First�order versus higher�order

In my rst paper on monads I wrote� �the higher�order nature of the solution means
it cannot be applied in rst�order languages such as Prolog� 	�
�� Certainly� the
monad combinator ��� is higher�order� However� I have come to believe that my
assertion is misleading�

From the beginning� Moggi took pains to stress that monads could be applied
to a rst�order language� independent of the machinery required for a higher�order
language 	���� What was clear to Moggi from the start has become clear to me at
last� Just as the higher�order ��x�� n� m mimics the rst�order let x�m in n� so
the higher�order m ��� �x�� n mimics a monadic let construct that is essentially
rst�order� We�ve already suggested that it be written let x �� m in n�

Thus� there is no problem in adding monads to a rst�order typed language�
Just add a type constructor IO� and add language constructs for return v and
let x �� m in n �where v� m� n are terms� and x is a variable�� The type rules



�� � P� Wadler

follow directly�

� v �� a

� return v �� IO a

� m �� IO a x �� a � n �� IO b

� let x �� m in n �� IO b

A �pineal gland� is required� as with main in Haskell� some value of IO type must
be designated to represent the e�ect of the program� All this works as well in an
untyped language� save that static checks at compile�time may need to be replaced
by dynamic checks at run�time�
Nonetheless� higher�order languages have an advantage over rst�order languages�

In a higher�order language� one can encode a new binding construct simply by
adding a new constant� This observation goes back to Church 	��� who modelled uni�
versal quantication �x�A by adding a constant " and writing " ��x�A�� Similarly�
I modelled let x �� m in n by adding a constant ��� and writing m ��� �x�� n�
In a rst�order language� such encodings are not available� the only way to add a
new binding construct to the language is to add a new binding construct to the
language�
Eminent declarative programmers� such as Warren 	��� and Goguen 	���� have

claimed that higher�order languages o�er no essential advantages over rst�order
languages� The preceding paragraph shows why I reject this claim�
The higher�order nature of Haskell made it easy to experiment with monads� But

now that higher�order functional programmers have done the experiment� rst�order
logic programmers may wish to consider extending their languages with monads�
Working out the details makes a fascinating challenge�

��� Backtracking

If one considers adding monads for input�output to a logic programming language�
there is one nal hitch� How should interaction interact with backtracking� The
mind can easily reverse a thought� but the body has more di�culty undoing an
action�
In functional languages� backtracking is often modelled by considering a list �or

set� of possible solutions� and if the language is lazy� the operational behaviour is
much the same as with backtracking 	���� This use of lists �or sets� was one of
the motivating examples for monads 	��� ��� �
�� And just as parsing is of special
interest to logic programmers as an application of backtracking� so too is parsing
of special interest to functional programmers as an application of lists and monads
	��� ��� ��� �
� ����
Monads o�er insights into interaction� Do they also o�er insights into backtrack�

ing� Or into the relation between the two�

Acknowledgements

I thank John Lloyd and the program committee of ILPS�
� for the opportunity
to present this material� and I thank Andrew Black� Franklin Chen� John Lloyd�
Harald Sondergaard� and the referees for comments on this paper�

REFERENCES

�	 S� Abramsky� Computational interpretations of linear logic� Theoretical Computer Science�
������ ����



How to Declare an Imperative � �


��	 Peter Achten and Rinus Plasmeijer� The ins and outs of Clean I�O� Journal of Functional

Programming� �������� January ����

��	 E� Barendsen and S� Smetsers� Conventional and uniqueness typing in graph rewrite systems
�extended abstract�� Proceeding of the ��th conference on the Foundations of Software
Technology and Theoretical Computer Science� Bombay� India� ����

��	 M� Barr and C� Wells� Toposes� Triples� and Theories� Springer Verlag� ����

��	 R� Bird and P� Wadler� Introduction to Functional Programming� Prentice Hall� ����

��	 A� Church� A formulation of the simple theory of types� Journal of Symbolic Logic� ��������
����

��	 J� Cupitt� A brief walk through KAOS� Technical Report ��� Computing Laboratory� Uni�
versity of Kent at Canterbury� ����

��	 C��P� Chen and P� Hudak� Rolling your own mutable ADT 
 a connection between linear
types and monads� In ��th Symposium on Principles of Programming Languages� Paris�
France� ACM� January ����

��	 D� Dennett� Consciousness Explained� Little� Brown� and Company� ���

��	 A� Filinski� Representing monads� In ��st Symposium on Principles of Programming Lan�
guages� Portland� Oregon� ACM� January ����

�	 J� Fokker� Functional parsers� In J� Jeuring and E� Meijer� editors� Advanced Functional
Programming� LNCS ���� Springer Verlag� ����

��	 J��Y� Girard� Linear logic� Theoretical Computer Science� ������� ����

��	 J� Goguen� Higher�order functions considered unnecessary for higher�order programming� In
D� Turner� editor� Research Topics in Functional Programming� Addison Wesley� ����

��	 A� Gordon� Functional programming and input�output� Distinguished dissertations in com�
puter science� Cambridge University Press� ����

��	 Juan Guzman and Paul Hudak� Single�threaded polymorphic lambda calculus� ��th IEEE
Symposium on Logic in Computer Science� Philadelphia� June ����

��	 S� Holmstr�om� A linear functional language� Proceedings of the workshop on Implementation
of Lazy Functional Languages� Prgramming Methodology Group report ��� Chalmers
University of Technology� September ����

��	 W� A� Howard� The formulae�as�types notion of construction� In J� P� Seldin and J� R� Hindley�
editors� To H� B� Curry	 Essays on Combinatory Logic� Lambda Calculus� and Formal�
ism� Academic Press� ���� �The original version was circulated privately in �����

��	 J� Hughes� The design of a pretty�printing library� In J� Jeuring and E� Meijer� editors�
Advanced Functional Programming� LNCS ���� Springer Verlag� ����

��	 J� Hatcli� and O� Danvy� A generic account of continuation�passing styles� In ��st Symposium
on Principles of Programming Languages� Portland� Oregon� ACM� January ����

���	 C� Hall� K� Hammond� W� Partain� S� L� Peyton Jones� and P� Wadler� The Glasgow Haskell
compiler� a retrospective� In Proceedings of the �

� Glasgow Workshop on Functional
Programming� Ayr� Scotland� Springer Verlag Workshops in Computing Series� ������
July ����

��	 P� Hudak� S� Peyton Jones and P� Wadler� editors� Report on the programming language
Haskell� a non�strict purely�functional programming language� Version ��� Sigplan No�
tices ������ May ����

���	 P� Hudak and R� S� Sundaresh� On the expressiveness of purely functional I�O systems�
Technical report YALEU�DCS�RR����� Yale University Department of Computer Sci�
ence� March ����

���	 M� P� Jones� A system of constructor classes� overloading and implicit higher�order polymor�
phism� In Conference on Functional Programming Languages and Computer Architec�
ture� Copenhagen� Denmark� ACM� June ����

���	 M� P� Jones� Gofer ���� implementation� ���� Available by ftp from
ftp�cs�nott�ac�uk�nott�fp�languages�gofer�

���	 M� P� Jones� Functional programming with overloading and higher�order polymorphism� In J�
Jeuring and E� Meijer� editors� Advanced Functional Programming� LNCS ���� Springer
Verlag� ����



�� � P� Wadler

���	 S� B� Jones� Experiences with Clean I�O� Proceedings of the Glasgow Workshop on Functional

Programming� Ullapool� Scotland� Electronic Workshops in Computing� Springer�Verlag�
July ����

���	 M� P� Jones and L� Duponcheel� Composing monads� Research report YALE�DCS�RR�����
Yale University� New Haven� Connecticut� December ����

���	 D� King and J� Launchbury� Structuring depth��rst search algorithms in Haskell� In ��nd
Symposium on Principles of Programming Languages� San Francisco� California� ACM�
January ����

���	 D� King and P� Wadler� Combining monads� In Glasgow Workshop on Functional Program�
ming� Ayr� Scotland� Workshops in Computing Series� Springer Verlag� July ����

���	 Y� Lafont� The linear abstract machine� Theoretical Computer Science� ��������� ����

��	 P� J� Landin� A correspondence between ALGOL �� and Church�s lambda notation� Parts I
and II� Communications of the ACM� ������������������ February and March ����

���	 J� Launchbury� Lazy imperative programming� In Workshop on State in Programming Lan�
guages� Copenhagen� Denmark� ACM� ����

���	 J� Launchbury� Graph algorithms with a functional �avour� In J� Jeuring and E� Meijer�
editors� Advanced Functional Programming� LNCS ���� Springer Verlag� ����

���	 J� Launchbury and S� L� Peyton Jones� Lazy functional state threads� In Conference on
Programming Language Design and Implementation� Orlando� Florida� ACM� ����

���	 J� Launchbury and A� Sabry� Monadic State� Axiomatization and Type Safety �ICFP ����
In �nd International Conference on Functional Programming� Amsterdam� ACM� July
����

���	 S� Liang� P� Hudak� and M� P� Jones� Monad transformers and modular interpreters� In ��nd
Symposium on Principles of Programming Languages� San Francisco� California� ACM�
January ����

���	 J� W� Lloyd� Declarative programming in Escher� Technical report CSTR������� Department
of Computer Science� University of Bristol� June ����

���	 S� Mac Lane� Categories for the Working Mathematician� Springer�Verlag� ���

���	 E� Meijer and J� Jeuring� Merging monads and folds for functional programming� In J� Jeuring
and E� Meijer� editors� Advanced Functional Programming� LNCS ���� Springer Verlag�
����

���	 R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� MIT Press� ����

��	 R� Milner� M� Tofte� R� Harper� and D� MacQueen� The De�nition of Standard ML �Revised�
MIT Press� ����

���	 E� Moggi� Computational lambda�calculus and monads� In Symposium on Logic in Computer
Science� Asilomar� California� IEEE� June ����

���	 E� Moggi� Notions of computation and monads� Information and Computation� ����� ���

���	 M� Odersky� D� Rabin� and P� Hudak� Call�by�name� assignment� and the lambda calculus� In
��th Symposium on Principles of Programming Languages� Charleston� South Carolina�
ACM� January ����

���	 L� C� Paulson� ML for the Working Programmer� Cambridge University Press� ���

���	 N� Perry� I�O and Inter�language Calling for Functional Languages� Proceedings ��th Interna�
tional Conference of the Chilean Computer Society and ��th Latin American Conference
on Informatics� Chile� ���� Also available as
ftp���smis�asterix�pub�ResearchPapers�FL�IO�IL�Chile�Jul�	�ps�Z�

���	 S� L� Peyton Jones and S� Finne� Composing Haggis� Manuscript� ����

���	 S� L� Peyton Jones� A� Gordon� and S� Finne� Concurrent Haskell� In ��rd Symposium on
Principles of Programming Languages� St Petersburg� Florida� ACM� January ����

���	 John Peterson� and Kevin Hammond� editors� Report on the programming language Haskell�

a non�strict purely�functional programming language� Version ��� Technical report� Yale
University� May ����

���	 S� L� Peyton Jones and P� Wadler� Imperative functional programming� In ��th Symposium
on Principles of Programming Languages� Charleston� South Carolina� ACM� January
����



How to Declare an Imperative � ��

��	 G� Plotkin� Call�by�name� call�by�value� and the ��calculus� Theoretical Computer Science�

������� ����

���	 J� C� Reynolds� The Discoveries of Continuations� Lisp and Symbolic Computation�
��������������� ����

���	 D� A� Schmidt� Detecting global variables in denotational speci�cations� ACM Trans� on
Programming Languages and Systems� ��������� ����

���	 A� Sabry and P� Wadler� A re�ection on call�by�value� In �st International Conference on
Functional Programming� ACM Press� Philadelphia� May ����

���	 M� Spivey� A functional theory of exceptions� Science of Computer Programming� �������
��� June ����

���	 G� L� Steele� Jr�� Building interpreters by composing monads� In ��st Symposium on Princi�
ples of Programming Languages� Portland� Oregon� ACM� January ����

���	 W� Stoye� Message�based functional operating systems� Science of Computer Programming�
���������� ����

���	 P� Wadler� How to replace failure by a list of successes� Conference on Functional Program�
ming Languages and Computer Architecture� Nancy� France� LNCS ��� Springer�Verlag�
September ����

���	 P� Wadler� Comprehending monads� In Conference on Lisp and Functional Programming�
Nice� France� ACM� June ����

���	 P� Wadler� Linear types can change the world In M� Broy and C� Jones� editors� Programming
Concepts and Methods� North Holland� Sea of Galilee� Israel� April ����

��	 P� Wadler� The essence of functional programming �invited talk�� In �
th Symposium on
Principles of Programming Languages� Albuquerque� New Mexico� ACM� January ����

���	 P� Wadler� Monads for functional programming� In M� Broy� editor� Program Design Calculi�
NATO ASI Series� Springer Verlag� ���� Also in J� Jeuring and E� Meijer� editors�
Advanced Functional Programming� LNCS ���� Springer Verlag� ����

���	 P� Wadler� A taste of linear logic �invited talk�� In Mathematical Foundations of Computing
Science� Gdansk� Poland� LNCS �� Springer Verlag� August ����

���	 P� Wadler� Monads and composable continuations� Lisp and Symbolic Computation� �������
��� January ����

���	 P� Wadler� How to declare an imperative� In John Lloyd� editor� International Logic Pro�
gramming Symposium� MIT Press� December ����

���	 D� H� D� Warren� Higher�order extensions to Prolog 
 are they needed� In D� Michie� et
al�� editors� Machine Intelligence ��� Ellis Horwood� ���


