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A COBOL compiler design is presented which is compact 
enough to permit rapid, one-pass compilation of a large sub- 
set of COBOL on a moderately large computer. Versions of 
the same compiler for smaller machines require only two work- 
ing tapes plus a compiler tape. The methods given are largely 
applicable to the construction of ALGOL compilers. 

In troduc t ion  

This paper is written in rebuttal of' three propositions 
widely held among compiler writers, to wit: (1) syntax- 
directed compilers [1] suffer practical disadvantages over 
other types of compilers, chiefly in speed; (2) compilers 
should be written with compilers; (3) COBOL [21] compilers 
must be complicated. The form of tile retmttal is to de- 
scribe a lfigh-speed, one-pass, syntax-directed Cot~or, com- 
piler which can be built by two people with art assembler 
in less than a year. 

The compiler design presented here tlas the [ollowing 
properties. 

l. I t  processes full elective COBOL except for automatic 
segmentation and its byproducts, such as those properties 
of the ALTER, verb which are affected by segmentation. 
The verbs DEFINE, ENTER, USE a n d  INCLUDE are accessible 
to the design but were not included in tile prototype coded 
at the Case Computing Center. 

2. lit can he implemented as a true one-pass compiler 
(with load-time fixup of forward references to procedure 
names) on a machine with 10,000 to 16,000 words of high- 
speed storage. In this configuration it processes a source 
deck as fast as current one-pass algebraic compilers. 

3. I t  can be segmented into many possible configura- 
tions, depending on the source computer's storage size, 
such that (a) once a segment leaves high-speed storage it 
will not be recalled; (b) only two working tapes are l~- 
quired, and no tape sorting is needed. One such configura- 
tion requires five segments for a machine with 8000 six- 
bit characters of core storage. 

Of course any compiler can be made one-pass if the high- 
speed storage of the source computer is plentiful enough; 
therefore, what this exposition has to offer is a collection 
of space-saving techniques whose benefits are real enough 

* The work described here was performed at Case Institute of 
Technology in 1961 and was supported in part by Univac Di- 
vision of Sperry Rand Corporation. 
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to make this design (in which all tables are accessed while :i 
stored in memory) practical on couten-lporary computers. {{ 
None of these teet miques is limited in application to Cof~oL 
compilers. The following specific techniques are discussed: ; 
the coroutine method of separating programs, transition 
diagrams in syntactical analysis, data name qualification 
analysis, attd instrttetion generation for conditional state- ) 
ments } 

The algorithms described were verified on the 5000-word 
Burroughs 220 at the Case Institute of Technology Com- 
puting Center. A two-pass configuration was planned for 
lhat  machine, and first-pass code was checked out through :) 
the syntactical analysis. At the time the projeet was dis- 
continued a complete Co~t(u, syntax checker was operating 
at  140 fully~punehed source cards per minute. (The Case 
220 had a typical single-address instruetion time of 100 
microseconds.) Remarks presented later suggest that a 
complete one-pass version of the compiler, which would 
be feasible on a 10,000-word maehirm, would rut, at well 
over 100 source cards pet' minute. 

ii Corout ines  and  Separable  Programs  

That  property of the design which makes it amenable to 
many segment configurations is its separability. A program 
organization is separable it' it. is broken up into processing 
modules which communicate with each other according to 
the following restrictions: (1) the only communication 
between modules is in the form of discrete items of in- 
formation; (2) tile flow of each of these items is along 
fixed, one-way paths; (3) the entire program can be laid 
out so that tile input is at the left extrerne, tile output is at 
the right extreme, ande~'erywhere in between all informa- 
tion items flowing between modules have a component of 
motion to the right. 

Under these conditions each module may be inade into 
a co,online; that  is, it may be coded as an autonomous pro- 
gram which communicates with adjacent modules as if 
they were input or output subroutines. Thus, eoroutines 
are subroutines all at the same level, eaeh acting as if it 
were the master program when in fact there is no master 
program. * There is no bound placed by this definition on 
the number of inputs and outputs a eoroutine may have. 

The eoroutine notion can greatly simplify the concep- 
tion of a program when its modules do not eommunicate 
with each other synchronously. Consider, as an example, a 
program which reads cards and writes the string of char- 
acters it fin(Is, eohmm 1 of card 1 to eolumn 80 of card 1, 
then column 1 of card 2, and so on, with the following 
wrinkle: every time there are adjacent asterisks they will 
be paired off from the left and each "**" will be replaced 
by the single character " 1" ". This operation is done with 
the exponent*at*on operator of FOt~TRAX and CoBo*,. Tile 
flowehart of such a program, viewed as a subroutine pro- 

To the best of the author's knowledge the coroutine idea was 
concurrently developed by him and Joel Erdwinn, now of Com- 
puter Sciences Corporation. 
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biflwcates the subroutine and selects the part to be used 
al~ each call depending on the situation at the last, call. The 
Peasen fop the switch is that each call oj" the subroutine must 
,'esprit in o~tput qf exactly one charactec. A programmer well 
versed  at inventing counterexamples could dream up a 

re(tuirenmnt f o r a  subroutine which would necessitate an 
a bstwd aPrangement of switcltes in order to preserve the 
one-output-for-each-call  relationship required of the sub- 
Poutine. 

The coroutine approach to the same probleln accom- 
plishes the switching job implicitly by use of the subrou- 
tine calling sequence. When eoroutines A and B are con- 
|meted so that A sends items to B, B runs for a while 
~mtil it encounters a read command, which means it needs 
something froln A. Then control is transferred to  A until 
it wants to "write," whereupon control is returned to B 
at the point where "it Iqft q{]'. I"igure 2 shows the asterisk 
squasher when both it and the using program are eorou- 
tines. 

I:igure 3 illustrates the essertce of separability. Instead 
of having modules A and B communicating as coroutines 
with a coroutine linkage between write st, atements  in A 
and read statemeut, s ill B such that control is passed back 
and forth once each time an item is trmtsferPed, it is possi- 
ble without changin.g an.ytMn(.l in A or B excet)l the read and 
wri& linkages to have A write all its items on a tape, to 
rewind the tape and then to have B read all the i tems fi'om 
the tape. In this sense, then, the pair of programs A and B 
{.an operate as a one-pass or a two-pass processor with 
only  trivial modification. 

As background, the eoroutine linkage on the Burroughs 
220 is described here. The 220 is a sequential, single-address 
machine with the sequence counter called the P-register; 
dm'ing the execution of an instruction it contains the loca- 
tion of the next instrttetion to be fetched. Unless the cur- 
rent instruction causes the machine to branch, the P- 
register will contain one plus the location of the current 
instruction. The I Y N C O N D I T I ( ) N A L  B R A N C H  instruc- 
tion B U N  A works by placing its address A. into 
the P-register. The S T ( ) R E  P instruction. S T P  B 
places the contents of P plus one into the address part of 
the contents of location B. The standard subroutine call is 

STP E X I T  
B U N  E N T R A N C E  

I 
I 

l 

[ -. 

k - - .  

Fro. 3. I l lustration of a property of separable programs.  
A. A and B, l inked as eoroutines,  communicate  direct ly.  
B. A writes  its entire output before B reads anything .  
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where EXIT contains a BUN instruction whose address 
will be altered by the STP instruction in the call. A pair of 
subroutines becomes a pair of eoroutines by adding to each 
an isolated BUN instruction which we can call its router, 
and by changing the addresses of tile STP, BUN calls as 
follows: when eoroutine A calls eoroutine B the call is 

STI'  AI~()UTER 
BUN BI/OUTER. 

Thus, the router is actually a generalization of the switch 
of Figure 1. Getting a system of eoroutines started is a 
matter  of properly initializing the routers. 

Figure 3 shows that  the coroutines of a separable pro- 
gram may be executed alternately or serially• When true 
parallel processors are available the fact that the coroutines 
of a separable program may be executed simultaneously be- 
comes even more significant. 

COBOL C o m p i l e r  O r g a n i z a t i o n  

Figure 4 presents the coroutine structm~ of the COBOL 
compiler designed at Case. Tile program is separable under 
the condition that the two pairs of modules which share 
tables are considered to be a single coroutine. 

Tile reader is asked to understand that  the present 
treatment is concerned more with exposition than com- 
pleteness. A more thorough treatment would not ignore 
coeY, pictures, and literals, for example. Let it sufIiee 
to say that these features ean be accommodated without 
any significant design changes over what is presented here. 

In Figure 4 solid arrows are communication paths be- 
tween eoroutines; dashed arrows show access to taMes. 
When the dashed arrow points to a table the latter is being 
built; when the dashed arrow points away the table is 
supplying values to tile using eomutine. The specific opera- 
lions performed by tile eoroutines will be discussed in the 
following four sections. 

Lexical  Ana lys i s  

Tile input, on line B of Figure 4, to the Diagrammer con- 
sists of (one-word) items denoting either names or COBOL 
basic symbols. Tile class of basic symbols, over 300 ele- 
ments in size, consists of all characters of the source alpha- 
bet (other than numerics, alphabetics, hyphen in names, 
and space) together with all the COBOL reserved words and 

/ • \ I 
/ / /  // ~\ \ I 

the paragraph symbol ~i. (This inter~al special symbol is 
inserted t)y the card scanner whosoever card column 8 is 
not blank. Such a device converf, s many format recogni- 
tion problems to syntax analysis problems.) The lexical 
analysis process embodied in the Basic Symbol Reducer 
and the Name Reducer converts the source program into 
a sequence of integer-coded one-word items in one-to-one 
correspondence (with the exception of ~i) with the words 
and special characters of the source program. 

The Basic Symbol Reducer attalyzes tile i npu t  string 
by what is essentially a character-pair analysis, but tile 

T A B L E  1 
Class Character 

0 012 . .  789 
1 A B C  . . .  X Y Z  
2 

3 b (space)  
4 = * /  
5 
6 
7 
8 ~I ( 
o ) 
x + 

0-9 
A-Z 

b 

5 
6 

" 7 
¶( S 
) 9 

+ X 

T A B L E  2 

Right Character R 

0-9 A-Z --  b = * /  , . " ¶( ) + 

0 I 2 3 4 5 6 7  8 9 x 

1 1 3 3 1 3 
1 1 3 3 1 3 
1 1 6 
2 2 5 5 2 4 5 2 

6 7 
6 
1 
5 5 5  

6 6 
6 6 6  
6 

0 1 
1 I 
2 i 
3 2 
4 

I 

6 

1 

F u n c t i o n s  : 
1. S ~ S L  

2. S ~- e m p t y  

3. F u n c t i o n  1, t h e n  w r i t e  S 

4. E n t e r  n o n - n u m e r i c  l i t e r a l  s c a n n e r  
5. Do  n e t h i n g  

6. W r i t e  L, t h e n  f u n c t i o n  2 

7. I f  L R  = " * * "  t h e n  R ~ " ~ "  else  e r ro r  
t ' ink:  e r ro r  

ti/~ a string accumulator 

t 

Fro.  4. C O B O L  C o m p i l e r  O r g a n i z a t i o n  

I 
PROORAM 
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set) need not be ci~ai'act< pair ~:~>.~trix (for the !B3[  "IIi" - ' 
4t-) X 49 b,tt ()~,lv i i  X !tt since there are only eleven 

r -1 
operatio~mliy di':" ¢ ~ . , . ct:m a,.~e~s. ~er~.~t. types  of • "~'-"~e, 1 nese types are 
listed ~t %, b), * tile ( ' ha rac te r  Class I a )~e. I :urthermore.  
o~iy three bits are required for each en t ry  of the Char- 
actt(~r Pair .. Jat~:~x. whic!~ occupies eleve~l words on the 2'20. 
"l'al)ie '2 shows the matr:ix wi th  tilt  set: of actions taken  for 
(,at!,, charactei" pail'. 

The t leserved Word List and LName T~tble were built  
for the 220 accorc!i-::~g to a me thod  of F. A. Wil l iams [3]. 
W!te~,, ti,.e so~..:~'c.,., machine has  a~ adequate  m e m o r y  both 
tables ca~ t)e combined into one, initialized to the set of 
res(.rved word.~. ()n li~e A of I:'igure 4 all the reduction has 

• ") 1 taketi Mace except: that :;mines are in a fixecl o0-characte "- 
pl,,~s-idel~ti fication fornmt. 

list light of the organizat ion of the compiler into lexical 
mmlysis, synm(:tic atm!ysis and  synthesis  ( including data  
storage allocation: i~ the D a t a  Divis ion and code genera- 

• 1 ¢¢ tioa i~ t.ne Procedure Division),  with the three in series 
there is a clear-e:~ sr~rategy for gett ing both h igh  conl- 
pili~tz speed mad low space consurnpt ion from the one-pass 
vcrsio.,~ of the ciesio'n" make the lexical analysis  as :fast as 
possible even at the expense of some space, arm make  the 
rest as compact as possible even at the expetise of speed. 
Tl,is is explained by the s imple fact that  most of the  t ime 
is spent  i~ lexical analysis.  In  our experience with the pro- 
totype we found tha t  the input  speed difference between 
lexical analysis  alone and lexical plus syntact ical  analysis  

(IS {NOT] GREATER THAN 
IS ~ ~ ,  i.N( I ]  LESS THAN 

condition: IF formula, IS [NOT] EQUAl, TO }formula = 
EQUALS ! 

~EXCEEDS i 
FIr;. 5. Corn)L-like definition of condition 

c<,,.~d : C ion:  ( ) 

i F 

1 

~S :':OT 

F 
EXCEEDS GREATER 

i formula 

Fro. 6. Transition diagram definition of condilion 
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was about ten percent.  It  appears that  nothing short of 
pure sabotage can be done to the syntact ical  analysis  and 
synthesis portions to slow the whole compiler down to less 
than  75 percent of the speed of the lexical analysis routine 
alorle; hence our name  "Seventy-five Percent  Ru le"  for 
t l,.is strategy. 

S y n  tac t i c a l  A n a l y s i s  

An abbrevia ted  definition of condition is given for this 
exposition in Figure 5. Keep in mind  that  the syntact ical  
analyzer  (Diagrammer)  sees single symbols entering it for 
things we call n~', :ts, xOW, data-name, and so on. Call  these 
symbols  which are input to the d iagrammer  input symbols. 
Observe, then, tha t  any  sequence of input symbols prop- 
erly called a condition rnust correspond to one of five paths 
througti the condition definition, s tar t ing at the left IF and 
ending at  the right Jbrmula, each pa th  corresponding to a 
par t icular  choice of relation. If the Diagrammer  is thought  
of as having a window wlfich displays each inpttt symbol  as 
it conies fi'om the lexical analyzer,  the definition of a syn- 
tactic type like condition is a rule for predicting, for" each 
input  syinbol in the  window, what  the legal set of suc- 
cessors of that  symbol  is. A transition diagram is a formali- 
zation of this notion of what  a definition :is. Figure 6 shows 
tile diagram equivMent to the definition of Figure 5. 

A transit ion d iagram is a network of nodes arid directed 
pa ths  with two dist inguished types of nodes: an entrance 
node (usually drawn at  the top) has  at least one pa th  lead- 
ing from it, arid art exit node (labeled "X")  has at least 
one path leading to it and no paths  leading from it. Every  
transit ion diagram defines a syntact ic  type wMch is not an 
input  symbol, and eveLv such syntactic  type has one transi- 
tion diagram which• defines it. A transit ion d iagram has 
exactly one entrance node arm at least one exit node. 

Each path  is said to be blank (as, for example, one path 
leading from node 3 to 4 in Figure 6) or to have a symbol  
on it. The symbol is either an input  symbol, or" else it is a 
syntact ic  type defined by a transi t ion diagram. (We use 
capitalized words on the paths  for reserved words and 
lowercase •words for names and syntact ic  types.) No two 
paths  leading from a node m a y  be blank or m a y  have the 
same symbol  on them. No transi t ion diagram m a y  have a 
sequence of b lank paths  leading from the entrance to an 
exit node. The set of b lank pa ths  m a y  contain no loop. 

There will be one transit ion diagram labeled ( that  is, 
defining) COBOL program.. The Diagrammer  starts  at  its 
entrance node. The  object is to get to an exit node; to have 
done so implies tha t  a COBOL program has traveled past  
the window of the Diagrammer.  Similarly,  getting fi'om the 
entrance to an exit of any  transi t ion diagram means  that  
the corresponding syntact ic  type has been traversed. 

The rules of the Diagrammer  for leaving a node are as 
follows. 

STEP 1. Examine all paths leaving the node which have input 
symbols on them. If there is a match with the symbolin the 
window, read tim next input symbol into the window and tra- 
verse the path. Now go to Step 5. 
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STEP 2. If there was no match in St~ei~ I, t r y  each r e m a i n i n g  
nonblank path leaving the node. Each pat(~ wi!l correspond 
to some transition diagram. The path may be traversed if and 
only if it is possible to get from the entrance to an exit of ihat 
diagram. This is at tempted by pusi~ing down in a last-in-firsii- 
out stack called the ti'n.kagc stact;: the current node. n u m b e r  tt[~([ 
then going to Step 1 for the entrance node ,,f the p a r t i c u l a r  
transition diagram being tried. 

STEP 3. If there was no match in /4tep 2 and there is a blank 
path leading from the node, foil,w it and go to Step 5. 

STEP 4. If Step 3 was unsatisfied the l)iagrammer is at a dead end. 
If the linkage stack is n o n e m p t y  this condition is a failure it) 
traverse, in Step 2, a, p a r t i c u l a r  pa l l t  eo r re spond i : tg  to lira 
transition diagram in which the dead end occurs. !%p tap tim 
linkage stack, reposition the window to tiJe symbol present 
when the diagra.m was enlered, and try a~.timr path in Step 2. 
If the linkage stack is empty a syntaelieal error exists in the 
input string. 

STEp 5. There are two ea.ses. 
a. The path just traversed does not end at, ,'tn exit node. (:;(, to 

Step 1 for this new node. 
b. Otherwise, pop up the l i nkage  s lack ,  r e t u r n  t() the node 

whose number was at the top of the stack, and traverse the 
path corresl)on(ling to the diagram just exited. Now go baek 
to Step 5. 

The above  p r o c e d u r e  const i tutes  the eu t i re ty  of tha t  
pa r t  of the D i a g r a m m e r  wMch cheeks syntax.  

Recall  the eondi t ion  t h a t  no two paths leading from the 
same node m a y  h a v e  the  same symbol on thein. The follow- 
ing quest ion a r i ses :  W h a t  if two paths leading froln the 
same node h a v e  syn tac t i c  types on them, a~d the two 
t ransi t ion d i a g r a m s  de/thing these types have paths lead- 
ing f rom the  e n t r a n c e  nodes which have the same symbol 
on them? I f  th is  happens ,  then with certain pat hologicM 
languages t he  i n t e rp r e t a t i on  0f a give~ input string might  
depend on the  o r d e r  in which the paths  leadi~g from a 
node are tr ied.  I n d e e d ,  the same problem ea,~ occur if this 
nonuniqueness  exis t s  at, a deeper level than  the first. Be- 
cause it is des i rab le  not  to have to worry about  this prob- 
lem, let us cons ider  it now in more detail. 

Two condi t ions  on  a system of transit ion diagrams are 
presented a n d  the i r  effeets on regularizing languages are 
diseussed. The  f i rs t  condit ion,  called the "No-Loop  Condi- 
t ion ,"  says t h a t  no t ransi t ion d iagram will make  a refer- 
enee to itself (i.e. i t  will not have a pa th  with the syntact ic  
t ype  which it defines)  wi thou t  having first read an input  
symbol  a f te r  it. w a s  entered.  For, if after  enter ing a transi- 
t ion d iagram def in ing syntac t ic  type  t no input  symbol has 
been read w h e n  a n  a t t e m p t  is made  to t raverse a pa th  with 
t on it, a per iodic  (infinite loop) condition exists. And only 
then  does an inf ini te  loop exist, since if the input  string is 
finite a loop w h i c h  reads- input  symbols will terminate .  

The  second eondi t ion ,  called the " N o - B a c k u p  Condi- 

t ion ,"  defines a w a y  a n y  need to specify an order in which 

the  nonb l ank  p a t h s  leading from a node should be tried. 

E v e r y  p a t h  has  assoc ia ted  with :it a set of input  symbols, 

called its set, of in i t iM input  symbols ,  defined as follows. 

W h e n  the p a t h  h a s  a syntac t ic  type  on it an  input  symbol 

is an  initial i n p u t  symbol  if and only if when it is in the 

input  window a n d  the  t ransi t ion d iagram defining the syn- 
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tactic t.3"po on the path. in. questioi~. ;is e~ter(,(!, t}~at ~.:~J>(~i 
wil l  be read before either a dead e[~d. occurs or ~. }~c, ,i; . . . .  . . . . . . .  

is exited. The class of initial ; . . . . .  ,npu~ symbols  oi: a })ia,.~h i:~atL 
is en-tpty, and the class of in:triM input  symbol)el> of ~., ~,,,¢. 
witl~ an h-lput symbol  oil it: is the  one-el(,:i-~(u~i- <:l:~ss ,,~)~ 
taining tha t  symbol. The No-Backup  C,.)~tcii:_o,~ s:::r.< ~i~t 
the No4 ,oop  Condition holds and  t h a t  fo~ ,-v<,.v ~o~i~ " 
the sys tem of t ransi t ion diagrams the sc, t.~ of i>i~i,,i 5,,.-, ~ 

symbols of all the pa ths  leading from that• ~ode a~(> dis- 
joint, t:or, if the classes of ilfitiM h ipu t  symbols  for g, li t},.~:, 
l,ont)lank pa ths  leading froln a node are  dis ioi~at, t};(,~ t},<:~ 
classes of input  strings which enalfie th(~ r(~sl)ectivc >ati~:- 
to be t raversed will be disjoint, and  tt~erefor(, t:i~(, (~r{icq ' 
which these pa ths  are tried will be i rreleva~t .  The, N4:0-- 
Backup Condit ion is clearly strot:~ger t tm~ it has t:~ !,,-, ill 
order to obtMn independence of order" of ' a ", ,, 
condit ion confers another property on a. syste>.~ of tra~si. 
t ion diagrams which is to be sought: such a sysu,~ c~i: dia- 
grams wil l  never req~fire [rocking up the input st ri~>,; ::t,~'i~:~ 
scanning. Al l  n o n , e r r o r  dead ends encouutered withi~ a~,::y 
transit ion diagram wil l  be encountered before m~y i;,:LI>~t 
symbol is read; thus the response to a dead end i~ St(.-:) 4 
(whe~ the linkage s tack is nonempty )  is simply to per  up 
the stack and t ry  another  pa th  in S tep  ') without  rel),~i- 
tioning the window. In fact  the tes ts  of Steps I aw(i '2 :~aa 
be freely intermixed. 

The No-Backup  Condition makes  err()r limitation, ~<'<~ 
specific because an error dead end can be immediately dis:- 
covered wi thout  first en~ptving the  l inkage stack ~)v t }~  
fact tha t  a t  least one svrnbol has been read since o~t-,';,~,,- 
the transition d iagram harboring the  dead  end. 

h i  a sense, the No-Backup  Condi t ion  is a device i,:,r 
[egislati~g out of existetme the a m b i g u i t y  problem i i, i,:, 
languages defined by t ransi t ion d iagrams.  The crl,(%.i 
point here is tha t  the syn tax  of COBOL-61 arm ALCO~,-i;{) 
nlay be defined by t ransi t ion d i ag rams  which satisfy the 
No-Backup  Condition. A one-pass compiler  for eitl~(:.r ,'~f 
these languages which is constr tmted accordi~g to ,,i~:(~ 
S ~_eventy-five Percen t  Rule and wMeh uses iN<)-l:~ackup 
tt 'ansition diagrams will be compete t ive  in both compilh~g 
speed and  memory  spaee with a compi ler  of any  other co, t- 
t empora ry  design. 

The catch in all this is tha t  a set  of N o - B a c k u p  d iagrams  
for a givert language is const ructed b y  a process which :is 
neither s t rMghtforward nor easy to describe. The Co~oL 
condit ion,  for example, m a y  begin w i t h  a left parenthes is  
which can surround an entire condi t ion or just  th(' k 'ft  
f o r m u l a  of a relational test.  To expose the subtleties of t he  
construct ion of No-Backup  d iagrams,  we change ti~(:' c~ '~-- 
nition of condition, in I:igure 5 to re ta in  only the essentials. 
Fur ther ,  we define f o rmu la .  These are both done in l.igu*'o 
7. Examples  of conditions are (A = B) ,  A = B, ((A + B) -= 
C), (A + B) = C, and  so on2 An equiva len t  s e t o f N ~  
Loop t ransi t ion d iagrams are given in I,'igure 8. 

2The presence of the IF, strictly speaking art error in ii,.e 
COBOL manual as well as Figure 5, has been eliminated in Figure 
7. 
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I? ( 

i i 
l- 

This is i~o~ a set of No-Backup defitiitions, however, be-  

cause  e~eou],vevitig a,x initial left parenthesis gives no in- 
dieatio~ vche~};e~' i~ surrotmds the e~tive e(mdition or just 
the left  :fovv~.uia. Cow,skier (A + t/') = (~. T h e  sequence of 
tm~,_~itio~s wil] he as follows. 

1 - .  2 !'ead .: 
1 enter .co,uli!;(,;~ 
(i ent el' ,/o ;;;~ ;~ bt 
9 en{er ~ertn 

!2 - N re:M A 
9 - t 0  pre;;mc.;/ traversed 

10 ...... X -b is n o t  * 
i; -+ 7 germ. traversed 
7 -~" 8 read + 

0 e n t e r  te rm 

i 2  - X read B 
,q --~ ] 0  p;'imar!/ t r a v e r s e d  

10 -- ,  X ) is n o t  * 
S ~. 7 re;,; traversed 
7 - ~  X } is not + 
I ...... ~ form;d( ,  t r a v e r s e d  

(~ condit ion "~ 
c(,ndi~i()n, i ' o r m u l ~ . l  = f ( n ' n u l J t a ~  

: term 
f o r ! l l l l | a  : 

~ formula + term 
( • 

t e r m  j prmmry 
t e r m  * primary ( 
( d { t t ~ l -  r l a l l l e  : 

I)rimarY :(  f(,rmula ) f 

U'[(;. 7. Another definition of cotMiho, ,  

i ! ' 

{ 4 

k_ 

) 

: c £ m :  

7 :  :::a Q.  

( 

) 

) 

I 
~: a ~ a - z3 ~ 3>2 rTml i a 

Q ' 

FtG. 8. N o - L o o p  definitions equivalent  to Fig. 7 
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=\t this point the .Diagrammer reaches t~ dead end. The 
eomii t ion can on ly  be seamled d i rec t ly  if the  inpu t  is 

btteked tlp and  the iivst= transition is made 1 ~ 4, not  1 --, '2. 

'The diff iculty is t h a t  t b r m u l a  can also begin wi th  " ( " ;  

to scan wi thou t  | )aekup means  t h a t  to go down a p a t h  wi th  

a ~'(" oll it shouM not  involve a e o m m i t t m e n t  t h a t  t iw 
s t r ing  being scanned  is a condi t ion  and  not  a formula ,  or 

vice versa. T h u s  a solut ion is to in t roduce  a m u l t i p l e - e x i t  

t r ans i t i on  d i a g r a m  so t h a t  all s y n t a c t i c  types  beginning  
w i t h  the same input  cha rac te r  are defined by  t h a t  d iagram" 

the different synt=aetie types  resul t  in different  exits,  la- 

beled X [  or X2. !"i~ure 9 (lefines c o m t i t i o n  this  way.  

T'nero is l i t t le else to the I ) i ag rammer  except  the genera-  

t ion of l 'ol ish.  Th i s  is accompl i shed  by l i t t le subrout ines  

cal led actiot~,s whiett are ac t i va t ed  when cer ta in  pa ths  are 

t raversed .  Figure l() gives the ac t ions  re(luired to create 
t ra i l ing-opera tor  l 'o!ish from formulas.  I{emember t h a t  an 

ac t ion  on a pa th  wi th  a syn t ac t i c  type  is executed a:fte;' the 
correspond|rig: t r ans i t ion  d i a g r a m  is exited. The  act ions  

for t r ans la t io~  of AL(;O[, into the in te rmedia te  language  

sugges ted  t)y Grau  [5] would be as simple as F'igure i0 
~ 1  I O ' f f  , R I s 4  

Il l  a compute r  represen ta t ion  each pa th  is represente(l  

by  an  i tem occupy ing  one word or less, if possiMe. All 

....... I 

5 / 
I 2 

. . . . . . . .  

'd 

.. ~at s it : 

(~:rrm.:  i.,7 ) 

, . ~  E X I T  E: c o n d i t i O r r r ~ , a t t t  ] n 

@ 
FIG. 9. N o - B a c k u p  diagram to replace tile condition diagram of 

Fig. 8. 
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paths from a given node are grouped together and a node 
number, instead of being all element of a sequential set of 
integers, is the address of the first path word of that  node. 
A given path  word contains a final node m t m l ) e r ,  a n  action 
number, a bit to distinguish betwemt input syntbols and 
syntactic types,  an input symbol or syntactic type nmn- 
ber (in the la t ter  ease, the number of the entrance node), 
and a bit to distinguish the last path from a node. (If this 
path is blank its word can be eliminated simply by be- 
ginning the node to which it would connect in its place.) 
Exit nodes are represented by  special one-wm'd items. 
Clearly, if the syntax is to be coded in the programming 
language using the advantages of symbolic addressing 
(and this is most desirable), t, hen an unusual programming 
system is required for building a transition-diagram com- 
piler. Macros may  be useable in tMs connection but would 
be cumbersome if they  are processed slowly. The Case 
assembler was given a definable operation with specifiable 
operand fields to implement symbolic coding of the syntax. 

The No-Backup Condition removes ambiguity in the 
task of syntax recognition. There is no reassurance that  the 
introduction of nmltiple-exit diagrams confers the same 
blessings on the translation, task. What if, for example, the 
actions associated with the several syntactic types ot7 a 
multiple-exit diagram were very different? There would 
still be an ambigui ty  in the generation of Polish. The an- 
swer to this question is that  in the general ease the prob- 
lem is real; with A~x;oL and Co~mi, :it. does not exist. 

D a t a  S t r u c t u r e  A n a l y s i s  a 

Consider the processing of I )a ta  Division item descrip- 
tions by the Da ta  I)escriptio~ lh'ocessor. Each clause gen- 
erates an operator  in the l 'olish string which is passed along 
line C of Figure 4, accompanied perhaps by a numerical 
parameter  like size. These clause operators are used to 
build description vectors which are then completed and 
checked according to a method given in another article 
[6]. The final item description vector m~d other non- 
Boolean-valued declared parameters such as size mad point 
location are then given on path  E to the Data  Proper ty  
Recorder which allocates storage for the object-program 
item and sequentially adds an entry  to the Data  Definition 
Table. At this time the index into the Data  Definition 
Table of the en t ry  just  added is sent on line G to the Data  
Structure Recorder which controls its insertion into the 

Tree Table. 
The Da ta  Structure Recorder handles qualification of 

data  names by means of the Tree Table. We now consider 
the techniques used therein, because they  are crucial to 
the one-pass handling of qualified names. First, observe 
tha t  the purpose of the Tree and Data  Definition tables is 
to supply enough information along with each data name 
in the Procedure Division Polish to enable the Generator 

a Added in proof.  The au tho r  has learned tha t  Harold  W. Law- 
son, Jr. of IBM Poughkeepsie  del ivered at the 1962 ACM Confer- 
ence a paper  conta in ing  most of the mater ia l  in this section: The  
Use of Chain List  Matr ices  for the Analysis of COBOL D a t a  

Structures .  
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to generate complete code. The Poiisi~. wri.tte~, d~-i~,-*~, 
Procedure Divisio~ follows path F to tl;e Da:-:a S~>ir:~m-:. 
I n te rp re te r  where suf f ic ient ly  qual i f ied name5 v..:l~ie}:, a~.-e 
ac tua l l y  sequences of integer i~dices in to t}~c. ~ a::~(, ia}>i(-~ 
p ick  tip ~ew single in teger  vaha.,s w}-iic},_ am ()i~,-~~ ,,~..(, 
with declared object-program data items, ~ot wit} ~)~(,. 
word names, as i~l the Williams algorithm I:~;]. "!'k~is fiual 
integer value for each item is actually the iudex w}~ic!~. 
came down path (7 when the Data i)efi~itio~ Tai)le e~trv 
for that  item was created. That  is, this >.ew represe~tatio,, 
of the data item name can be loaded i;~to an :imtex r~ister  
to access directly from the Data I)etinitio~ Tabl(:: ait the 
important  information about the item. The procedural 
l 'olish moves along path H to the Data  Property lute> 
preter, where this access operation is perfortned at~d ~}~e 
new name of each data  ken,, is replaced by the set of i)rop(,~ ~ 

A C T I O N S :  

I. WroTE "+"  

2 .  W R I T E  u ,I 

3.  WRrrE THE DA-rA-NAME 

i :  

:. 
I 
! :: 

-7?: % 
i ~ 2  i -~ 

:? 

): 

7 

g :  ~ i : 
\ 

~2 

:: i)i 

? 

i 

} 

L~ 
:L 

p r i :  , w  i 
I I 

L____J 

FiG. 10. Actions whose numbers are in square boxes ge[mratc 
t ra i l ing-operator  t 'olish. 

4 

I ,  i " ~ . ~  "-.  - 5 / \  , - -'~" 

K i 

P O I N T E R  T R E E  

FIG 11. S t ruc ture  of da ta  and data-names in example 
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,i(~s of ~i~is i~<~3. The procedural Polish :ilen eltters the 
C.e!~ora:ior a io~/  pa th  K. The Generator  can create com- 
piete dai:a-i~a~(ili~a code t)eeause accompa!wing each 
ope,~,-,, in the Polislx is a complete d,:'scriptiot~ of *~,i~:' 

co rr(.spo~dil ~g o};j eet-program item. 
Co:isider tile [oitowiilg hypothet ica l  da ta  st~rueture: 

V I) A 
01 I3 

O3 J 
03 K 

04 C 
04 J 

03 I) 
01 C 

02 J 
02 1) 

Assume further that  tile il~ternal represe~m~tions given by 
i i~e Williams Name t~educer are as follows: 

A" 31 
B: 32 
(~: 33 
1) : 34 
J: 40 
K : 41. 

The structural  relationships are shown by the solid lines 
of I:igure 31 I. This structure can be represented by tile 

following tree t a b l e  

Loc Name Up 

OOl A 31 000 
002 B 32 001 
003 J 40 002 
004 K -tl 002 
005 C 33 0O4: 
006 J 40 (104 
OO7 D 34 (X)2 
008 C 33 001 
0o9 J 40 008 
010 I) 3t: 008 

i,()(3 is not in the table, but  gives tile relative location of 
each word of the table. The N A M E  field contains the in- 
ternal representat ion of the data  name and the UP field 
gives the LOC address of the immediate  parent  in the da ta  

structure. 
Notice tha t  level numbers do not  enter the table;  they  

are used only to provide structural  information.  Spe- 
cifically, if two adjacent  i tem descriptions in the D a t a  
Division have equal level rmmbers, they  ihave the same 
parent,  namely the most recent i tem with a lower level 
number;  if the second i tem description has a Mgher level 
number  it is a descendant  of the first; if the second i tem 
description has a lower level number  then there is a pre- 
ceding item description with the same level number  as the 
second, such tha t  all intervening level numbers  are higher; 
these two have the same parent .  The uP en t ry  is 
constructed from the level nmnber  with the aid of a p u s h -  

d o w n  list. The details of this construct ion will be given 

later. 
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The  l ) a t a  Structure In terpre ter  will accept sequences 
of name representat ions as the representations of quali- 
fied names, for example, i . . . . . . . .  ~,)o, 41. o I, 0) for "C [N K IN A . 
This  will b(? called a qualification sequence. I t  is assumed 
that  no name has () as an internal representation. 

( ; iven the correct entrance point into the table (I,()C - 

0053, it is a simple mat ter  to establish tha t  (oo,i .... 4l,",)1, 0) 
is in the table; just  start  at the entrance point and nmtch 
the names in the qualification sequence against tile names 
in tlle N A M E  column, usiag th(' [ t '  column to specify 
the next word to check. Thus, 3:-; matches against word 
005, 4l matches against  word 004, 3l does not. match  
agai~lst 002 but it does against 0()1. The matching process 
is successful unless a table word with tile UP ent ry  = 
000 is encountered before the (iualifieatioll sequence is 
exhausted. The process is equivale,l t  to crawling up the 
da ta  structure tree matching; elements of the (iualifieati<m 
sequence with names at nod(,s of the tree. 

Ent rance  call be made into the table by a list of pointers. 
This  list contains lit location k the address of the first 
we rd o t' the tree tat>le co n tail ~ ing a~ ~ o(:eu rrence o f ttm hal ne 
representat ion whose value is k. 

Loc .Pointe r 

3 1. oo l 
32 OO2 
33 0(}5 
34 (~}7 

4(} (]0}{ 
41 (104 

Hence, entrance into the tree table is gained by looking at  
word k of tile pointer  table, where k is the first element of 
the qualification sequence. 

Now it remains only to take care of multiple occurrences 
of names. Consider "J IN  C" :  (40, 33, 0). This would be 
found t)y jumping up the tree tat)le frotn 009 to 008, except 
t ha t  there is no entrmme to word 009. This ent ry  is accom- 
plished by linking up all equal names with a N E X T  
cohmm in the tree table corresponding to the dashed lines 
of I:'igtlre Ill. '}'he final form of tile Tree Table follows. 

Loe Name Up Next Link  

001 31 000 0(X~ 
(X)2 32 001 000 
003 40 002 006 
004 41 0(}2 000 
005 33 004 iX)8 
00(i 40 004 009 
(X)7 34 002 ()10 
008 33 001 000 
009 40 008 000 
010 3-t 008 ooo 

The  L I N K  column points to tile e n t w  in the Da t a  Defini- 
t ion Table corresponding to the da ta  item represented by 
each word in the Tree Table; this is the index which is pro- 
vided by the D a t a  Proper ty  Recorder along pa th  G and 
which is tile unique internal  representat ion of declared 
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object-program data  itellls. It should now be clear that  
pa th  D =carries ordered pairs (level number,  name) for 
constructing the Tree Table  entries, l ' a t h  D could be 
el iminated by sending the ordered pairs through the Data  
Proper ty  Recorder. 

Figure 12 describes the program I.Ised by the I )a ta  Struc- 
ture. Recorder for building the Tree Table  from these 
ordered pairs. If the level 1"I) is g'iv(:~t the value 01 then 
one must  be added to all level numbers  before ~I~¢'.y (,~t~,r 
this program. Figure 13 shows the program used by the 
I )a ta  Structure In terpre ter  for matcl~ing (lualification se- 
quences. Notice tha t  existence and mdqueness checks are 

made. 
A useful characterist ic  of the Tree Table  method  for 

representing data  s t ructures  is the ease with which the 
immediate  descendants  of an i tem can be t'omM in 
the table. Thus,  the  C O R I L E S P ( ) N D I N ( ;  modifier :is 
easily accomodated. 

In most realizations of the  design presm,ted here the 
Da ta  Definition Table  will be the largest of all. In source 
machines  wi th  smull memories  the I)ata  Proper ty  Inter- 
preter, which is a t r ivial  program, can be made a separate 
memory  load, sharing storage only with the Data  l)efini- 
tion "['able. Happi ly ,  this table can be writ ten directly (),~ 

@ 

L i 

I ~ ~oc I 

@ 
I 

i 

. . . . . . . . .  .<p.. , 
......... 1 =i r 7 - 7  . . . . . .  1 

L._ [ __J { L . . . l  - - J  [ 

i 
I 
I 

1 
I 

L * - L O C  
- - T - - -  

iLOCPARENTIk ~ 

! 
® 

C_. =...L.. : 

/-i, 
I NEXT 7 : : P )  

= _  . ~  _ 

F- . . . . . .  ~ - - - I  
, ERROR I 
I st~:,l~u,. , 

t © 

Fro.  12. The  Tree  a n d  P o i n t e r  table  bui lder .  I npu t  is ( L E V E L ,  
D A T A ) .  LOC gives loca t ion  of new T r e e  Table  word.  The  coun te r s  
i, L E V P A R E N T  (1) and  the  a r r a y s  P ( ) I N T E R ,  N E X T ,  and  U P  
are  in i t ia l ized to zero.  The  e r ro r  violates  rule at= b o t t o m  of 

page V[-19 of COBOL manua l .  
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tape by the Da t a  }'rope~'ty [{ecorder; rto ac('es.< t:(~ i~ " ::~. 
(iuire(i except by el,f, '" : Propert:y I~t(,,'o -t,-r 

-"~S (l;gf ~ . _. _,~,e~ent as tl,:e .<v~tactic stiuei-=uv('.< :)i _),.L(;O;. a:.,~,{ 
COBOL lli&3" a p p e a r  t o  be, osf.eiiv!t.til3 {ll(: Sa, iiK ~ 0Oi;'-:!)iiO~, > 

m a y  be ,,tse(.1 for l~)ot}~ source ia~auaaes. Q1taliticatio~ ii~ 
, - I-~I,.(A- (.>OBO[~ has its a~.mio~y ~: AL(;()L a:-~ iClow> ii (,\(,ry • . . . . . .  

is gi \e~ an i~ter:mllv-~e~>'mted ~mm~, tl-:e:~ the ideuti.fi~,rs 
local to that  }).OeK are q~m!ifi:',l hv tile block tmme. 21"1~(= 
Tree Table  th;~s p:'ovidos a :method for disti~g~uis}li~ 
muit iple  uses o[ the sa;ne ide~,tifier. 

Code  G e n e r a t i o n  

Because tile l)olisI~ int(n'n~ediate la~guage is s imply ~ 
min imal  representat ion of the i:fformati(m i~ the sour,u. 
lang~mge, tile fOl'l~l Of th(, it~t:erme(iiate ]at~uage is m o t ( ,  

natura l ly  related to ~l~(- source language thm~ to the objecv 
language. Tiffs ~at~rah~,ss is evMe~.t ill the s impl ich5 , ,f  
a t tachi~g action,s to transiti()i~ diagram paths ouce tlw, 
embod imen t  of tt:e source la~guage definitio~ in tra~si- 
tion diagrams has b(:e~i decided. 

Whether  a similar  ~mtm'ah~ess exists for the translati()~ 
from intermediate  language to object code is heavi ly  de- 
pe~Me~,t o~ tl~e nature of the object machine. A measure ,  i: 
such ,mt~u'alness migl~t t,(, given as follows. If the se(:tue~w:' 
of operators (as (listinguisl~ed from opel'ands) in the i~t:('r-- 

L,.o.o. 
L . . . . . . . . . . . . . . . .  == 

. . . . . . . .  y . . . . . . . . . . . .  ; 

1 / ~ .  UNUSED ! 

~,J~J)):  o J ~  . . . . . . . . .  ERROR 

i t ~ r E R (  
Q~o~,___.A)L_o 

4 ~ ~ 

v 

NEXT{M) 

i i 
• - - - - [ - - - -  

i J q.-- 1 
L----r .____.a 

G 

= 
i J.P J + l  

i= 

~ T c . ~ - e - e - f i  QUAL. s~o ; 

, @ 
iSmTOH ON 

r - -  

. . . . . .  ] 
~ ! - - - - J  

Q 
Fro. 13. Qual i f ica t ion  sequence  ana lyzer .  Sequence  is in QSE(-~ 

(1 :...). LOC of found  Tree  Table  word is in F I N D .  
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me(iiat~ st~'i~ stro~g!y determines the sequence of opera- 
tots (a~ dist i~mished from addresses or names) in the ob- 
ject • ~t:ri"~".- •.~, t}~t :is, if the form of the object code is pret ty  
welt ili,,l(:pendent of the content ~;!! the Data  I)efinition 
Table, the!i the generatiot~ is natural. [Tnnatural genera- 
tio~ is characterized by large amounts  of testing of infor- 
mation ill the ,at  a Definition Table before the form of the 
response to a~ operator" in the intermediate code can be 
determit~ed. Dt~pending on the source language, this meas- 
ure of :~mturalness is one component of the characterization 
of a~ object com;{)titer as beil~g "commercial" or "scien- 
tific." 

I:or example, tl~e translation of an ALGOL intermediate 
la,~,,.,,~o.~, like that  of Grau [5] to Burroughs BS000 code is 
aatural to the point of being trivial by comparison with 
other machines. Tim translation of Co:uoL intermediate 
language to the code of a word-oriented machine like the 
Burroughs 2'20 is painfully unnaturM" the response to the 
,\[()VE-operator in the Case prototype compiler occupied 
27 pages of flowchart,. 

The extensioi~ to code generation of techniques like those 
discussed above in connection with syntactical analysis 
and Polish generation has been considered [7] fox' nattn'al 
generation processes. The construction of general methods 
for code generation which are as neat  as those which exist 
for som'ce-to-interrnediate translation is an important  un- 
solved problem. 

The experience of this author in construction of COBOL 
generators is limited to the 220. The following observations 
may apply to other word-oriented computers. Much 
trouble in generating addresses, shift counts and partial 
field specifications can be saved if care is taken in choosing 
the representation of fields in the Data  Definition Table. 
The 220 hardware representation of the ten nonsign digits 
within a word, counting from the left, is 1, 2, 3,- - -, 8, 9, 0. 
This was rejected in favor of the 7070 representation" 0, 
1, 2 , - - . ,  7, 8, 9. Using the latter representation all digits 
of a 10,000-word memory are addressed inonotonely by 
a five-digit number. A field A is represented by three num- 
bers: :Va is the four-digit memory address of the word con- 
taining the leftmost digit of A; L:, is a single digit giving 
the position of the leftmost digit of A within N.4; RA is the 
digit address (in the sense of the five-digit number, above) 
of the rightmost digit of A, relative to digit 0 of N:,. Thus, 
R.4 -- LA -t- 1 is the length of the field, the integer part  of 
(RA + 10) ÷ 1 is the number of words containing A, and 
R,~ (rood 10) is the position of the rightmost digit of A. The 
morM of this story is that  the Generator should be able 
to do additive ax'ithmetie in a radix equal to the number of 
bytes pet' word for each byte size of the object machine, 
so t ha t  no division need be performed. Once this represen- 
tat ion was chosen, the unnaturM 220 generators reduced to 

r~ e sequettces of ari thmetic tests on the Data  Definition [ab l .  
entries interspersed with some minor ari thmetic opera- 
lions on these entries. Because of the space problem and 
the reassurance given by the  Seventy-five Percent Rule, a 
naturM choice of language in which to express the genera- 
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tors was a simple three-address interpretive code. Such a 
choice leaves something to be desired in the way of ele- 
gance. 

l:inMly, we discuss the assignment of addresses to branctt 
inst.ructions. No one-pass compiler can generate complete 
code, since in response to a GO TO statement which jumps 
forward the compiler cannot possibly know on the first 
pass what address to put: into the branch instruction. Since, 
with the subset of CoRot, being considered here, forward 
branching is the only reason for a second compiler pass, it 
is usually economical to perform the remaining operations 
at  load time by fixing up the branch addresses in the object 
me lno ry. 

To be more specific, assume that  three statexnents, GO 
TO INDECISION,  occur in the source program before the 
procedure name INDt~CISI()N occurs as a paragraph 
1lame. Furthermore,  assume that  the three GO TO's gen- 
erate unconditional branches (BUNs) at  locations 0528, 
0742 and 0856; also the nmne I N D E C I S I O N  is finally de- 
fitted to have the value 11234. Clearly, the desired coding is 

0528 : B U N  1234 

0742: BUN 1.234 

0856 : B U N  1234. 

This is what  actually gets generated: 

0528: B U N  0000 

0742: BUN 0528 

0856: BUN 0742 

xxxx: FIXUP (0856, 1234). 

The FIXUP(0856,  1234) is not loaded into memory but 
is an instruction to the loader to fix up the address of the 
word in location 0856 to be "1234". Before making the 
change, the loader checks fox" zero in the address; if the 
address is zero loading is resumed after the fixup 
terminates;  otherwise the nonzero address specifies the 
next location to be fixed up. 

In the compiler this technique requires storage for an 
address plus a bit for each unique procedure name. The 
bit records whether the value of the procedure name has 
been defined yet  by  the occurrence of the name in a para- 
graph or section heading. The address storage cell, ini- 
tialized to zero, holds the value of the name (if it has been 
defined) or the location of the most recent forward branch 
to that  name; this cell provides the address of every 
branch instruction generated. 

The object location of each instruction generated is de- 
termined by a location counter, LC, wMch records the lo- 
cation of the instruction currently being generated and is 
incremented immediately after the generation of each im 
struction. 

As Figure 14 shows, the Polish operators controlling 
sequencing in conditionM sentences are written at the 
places given below in parentheses. 
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[iF c o n d i t i o n  (TW) st(J.em.ent ELSE (FW) sl(zteme.~,t (F;ST) 
IF c o n d i t i o n  (TW) s ta t e . zen . t  (FW) t E S T ) .  (ESN) 

Notice that  the second form never  a p p e a r s  wi thout  e~Mino 
in a period. The operator names  T W ,  T N ,  FW,  l"N, EST,  
and ESN are mnemonics  for True  is now,  True is ~ext, 
t!'alse :is now, l:'alse is next, E n d  s t a t e r n e ~ t ,  and  t,;~(t semi- 
ten('.(', respectively. Where  ins tead of  s[a&meng i!~, , t)l~raso 

< r' \ - T F N C m "  N E X T  ~,e . . . . . . . . .  r, occurs, the operat(~rs T W  aim I.'\V 
are replaeed by T N  and .["iN. 

The three basle control pa ths  w i t h i n  a condi t ional  state- 
ment  are shown as dotted arrows below.  T l m y  are given the 
names T R  U E, FA LS E, and  ARO U N  D.  

F A L S E  

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
T R U b ;  

lI" condition . . . . . .  ~ tTW) statement--- E L S E  (FW) ~-~.-~ staterrte~l r -----~ (I,;N'I') 
i " " 

[ A R O U N I )  i 
i 

A fourth path, called N E X T ,  hand le s  iN E X T  S E NT E N C E 
and will be treated later. W h e n  c o n d i t i o n a l  s ta teme~ts  are 
nested, the T R U E ,  FALSE,  a n d  A R O U N D  paths  e×hibit  
nested last-in-first-out (LIti 'O) b e h a v i o r .  As might  be ex- 
pected, then, three L IF t )  s tacks ca l l ed  TILL;E, [:AI,SIC' 

~;cl!Lan(e: ( ) 
s Ca t (,::.;(: n t. 

statement: ~ I F  

r;.v': 
1.___1 

< 
SEX2ZXCE 

J.£1 

I NEXT 
EST[ 

lEST ______~ 

Fro. 14. Production of s equence -con t ro l l i ng  operators.  Square 
boxes conta in  names  of symbols wr i t t en  b y  act ions .  
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and A.i(~.)(~ND are ~.ised by the (;er~erator to , : : r , ~ , : : ~  ~ i , . .< .~ ,  " 

pa.tl~s._ ~l.:'~'r %i iowi i i~ table defiues the tbegi~inii~a- a.i~d ..~:! 

of eaci~ path. 
P~zlh ]'eginnin~ ,find i 

r~ ) *¢- [ t~(  ~:~ test ,ul)erat,w T W  or q~N 
"~ " -~ F'\- E ST : \ . ( 1 1  N , )  F ' W  o r  ~ 

t"AL~E tesi operator }:W or ["N 

The test operator i~ the t)ol ish is the last t : i~ i~  ro~!~ ,.,~, ' 
from a test i~ a c'o~MitioH a,.~d generates code for a f:ork~,,i 

) - ; -  con(litio,.ml brancl~ with lwo branch adch'esse~, a: q;I~ ( ~,. a~:! 
a I:ALSE address. 

Before speeif'viug tile generator actions i~ ~'ospo ~ ~,) 
the sex'eral sequential operators let. us defi~e a few t~'rrns. 
There are the thre(-' stacks, the location coun te r  ~r~ and 
two cells 'I'li;Mt ~ a~:t NEXT.  The top element: of ti~(:~ 
" I ' t l [E  (I:AI~SI:;, A t i ( )UXD)  stack stores the  lota~i~).~ ¢~: 
the most recent true (false, around) branct~ instr~.¢i,~. 
CFhe A R O U N D  stack serves double du ty  a~cl also st()r~ 
the locations of beginnings of test coding for use i~ pr~ 

- ) r - ,  

cessing of ANI)  and ()L operators.) l he N E X T  e4! co:~ 
rains the location of the most recently gene ra t ed  !)ra~:~,i~ 
to the beginning of the next sentence. 

Several stmMard procedures occur in the  (;~nera~,(,r : 

(~I']NI':IIATI';C r) writes the coding or fixup :c. (I' IX[ ~ ~:., 
A) is as above, and when read by the loader causes  ioeat i¢)~ 

L to have " A "  put into its address, and so on.) ()X( . i . .~  
puts the contents of .1 onto the LIFt)  s tack  S. ()t.'ii:(,~ 
has as its value the top of the stack S, which is ren~.ovM " 
the process, l:or example, ON(OFF(S) ,  7') t ransfers  ~}~ ' 
top element from S to T. 

Table  ;I (lefi~ws the ( lenerator  responses to the  se(lu('~!.i:~i 

T A I ' I  I ,E  3. (]ENERAT(H~. ]{ESPONSES TO S E Q U E N T I A L  ANI) B,~();.i.;AN 

OPERATORS " i 
Operator Response !: 

TW OFF(AROUNI))  ; }: 
(1ENli; RATE (F.[ X UP (OFF (TR UE ) L(7) ~ i! 

TN OFF(AROUNI)'); TEMP t - O F F ( T R U E ) ;  

( l EN E RAT E (F IX U P (T EMP, NiF] XT  ) ) ; 
iN E XT ~-- TEM I ) 

FW ON(LC, AR()UNI));  G E N E I t A T E ( B I ; N  0); 
G E N E II. AT E ( F I X U P (O F F (F A L S E ),  L C ) ) 

FN ON(LC. AR()UNI));  G E N E R A T t g ( B U N  0) ;  

TEMP ~-- OFF(.FALSh;) ; 
GENE [{ATE (FIX UP (TEMP, N E X T )  ) ; 
N E X T  ~-- TEMP 

EST GENERATE (FIXUP (OFF (AROUNI) ) ,  LC) 
ESN GENERATIC(FIXUP(NEXT,  LC)) ; N E X T  ..... . 
N()T TEMP ~-- OFF(FAI,  SE) ; 

ON(OFF(TRUE) ,  FALSE);  O N ( T E M P ,  "Fi~iE; 
OR OFF(At{OUNI));  T E M P  ~ O F F ( T R U E )  

(liE N ERATE (F [XUP (TEMP, O FF (TR  U E) ) ) ; 
ON(TEMP, TRUE) ;  TEMP ~-- OI: 'F(FAI,SE : 
G EN EIIAT E (F I XU P (O FF (F ALSE),  
Ot.q"(AI{OUNI)))); ON(TEMP,  I,'ALSF;); 
ON (LC, A R O U N I ) )  

ANI) OFF(AROUND);  TEMP ~-- O F F ( F A L S E )  ; i 
G E N E R A T E i F I X U P  (TEMP, O F F ( F A L S E ) ) ) ;  
ON(TEMP,  FALSE);  TEMP ~-- O F F ( T R U E ? ;  
GENERAT E (FIXUP (OFF ( T R U E )  . . . . . . 

OFF(AROUND)) ) ;  ON(TEMP,  T R U E ) ;  
ON (LC, AROUND) 
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a~d Boo]ea~:~ ope:ators. Note that  AND, OR, and NOT 
get~erat.e rxo coding. 

I)epe~ding oa ghe code structure of the object machine, 
mox~c than t.wo branch addresses can be generated pet" test. 
Let [TEMP] detlote the contents of TEMP,  and let z 
be a variable whose values are the stack nalnes T R U E  and 
VALSE. Each t i~e  a z-branch must be generated the 
following oecm>: 

TEMP ..... ()FF(z); ON(LC, z); 
:~E: I:Jt~A~E( BRANCH LI.EMP] ). 

Before any code generation for a test, ON(0, z). At the 
end of the code aeneration for each test, ON(LC, 
ARO UND). 

This brief treatment of conditions may be clarified for 
the studious reader by an example. For the sake of dis- 
cussion assume the following coding to be generated in re- 
sponse to the test operators LSS, EQL, and GTR:  

A,B,LSS: LDA A, SUB B, BNA true address, 
BUN false address; 

A,B,EQL: LDA A, SUB B, BZA true address, 
BUN false address; 

A,B,GTR: LDA B, SUB A, BNA true address, 
BUN false address. 

The COBOL sentence to be considered is the following: 
[ F X >  Y I t : A  = B OR X = Y M O V E  C TO D 

ELSE N E X T  S E N T E N C E  
ELSE IF C < D N E X T  S E N T E N C E  ELSE 

MOVE E TO F. 
The Diagrammer produces the following Polish: 

X, Y, GTR, TW, A, B, EQL, X, Y, EQL, OR, 
TW, C, D, MOVIE, FN, EST, 

FW, C, D, LSS, TN, FW, E, F, MOVE, 
EST, EST, ESN. 

] 'he Generator's response is given in Table 5. After loading, 
4: 
I the code appears in memory as shown in Table 4. 

:',~ ~ Except for the handling of the " ~ "  operator, which re- :~h i: • 
{ 

:: 1: quires one bit of storage at object time, the techniques 
~ :::f: given here have direct applicability to the translation of 

2,i! ::~':. Huskey and Wattenburg [8], with some modification for 
<i*:,: reducing storage requirements in the Generator when 
:: generation is unnatural. See also Arden, Galler, and 

'-: Graham [9] for optimization techniques which might be 
~.,::: useful for some object computers when Generator space 
b ;~f 

~ is available. 

::: 'On P r o d u c i n g  C o m p i l e r s  

i:~ii In the past few years there has been an expenditure of 
I~i~;~ energy toward both writing and speaking about compilers 
¢~L: which will generate copies of themselves. When a claim 

i ~ of superiority for such compilers is made it usually says 
Li~i~i that  a compiler which can reproduce itself greatly simpli- 

:::::i: ties the conversion to a new source or object language. 
.~[iS~i~: Usually the arguments given in support of this claim take 
;,,~'~ :: little or no account of the set of available methods which 
:::::: the proposed technique would supplant. 

[i~;ii: No compiler-writing technique will eliminate the re- 
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quirement to analyze tile task which the compiler to be 
created must perform, although it can provide a convenient 
language with which to carry out the analysis. The chief 
purpose of a compiler-writing technique is to reduce the 
labor which follows analysis and which is necessary for the 
production of the actual compiler. There are other ways to 
create a cheap compiler than simply to use a compiler as 
a programming aid. This article attempts to suggest one 
such way. 

If a fast compiler is desired more ean be said. The front 
end of any fast, one pass compiler will be written with an 
assembler; that 's a eorollaILv of the Seventy-five Percent 
Rule and some common sense about efficiency of eom- 
piler-genet'ated code. Furthermore, the really fast eom- 
priers will have Olfly one pass; that 's the result of 
an analysis of how much extra work must be done by a 
multi-pass compiler. Notice that a corollary of these two 
statements is that really fast compilers can be written only 
for source languages wlfieh permit one-pass compilation. 
This proposition ought to be taken into account by lan- 
guage designers. 

Our experience in the development of the prototype 
suggests that one analyst-programmer, with one or two 
understanding individuals around to talk to occasionally, 
can produce a COBOL compiler (sans library and object- 
program I-O control system) in a year or less, if he is pro- 
vided with an assembler which permits incorporating all 
the special formats he will need into the assembly lan- 
guage. 

Acknowledgments. Joseph Speroni of the Case Com- 
puting Center worked closely with the author during the 
six months of the project described here. His contribu- 
tions were indispensable to the creation of the prototype 
program and a significant part of the design. Before the 
specific COBOL effort was begun, the author worked with 

T A B L E  4. APPEARANCE OF GENERATOR OUTPUT AFTER LOADING 

1000 LDA Y 
1001 SUB X 
1002 BNA 1004 
1003 BUN 1016 
1004 LDA A 
1005 SUB B 
1006 BZA 1012 
1007 BUN 1008 
1008 LDA X 
1009 SUB Y 
1010 BZA 1012 
1011 BUN 1023 
1012 LDA C 
1013 STA D 
1014 BUN 1015 
1015 BUN 1023 
1016 LDA C 
1017 SUB D 
1018 BNA 1023 
1019 BUN 1021 
1020 BUN 1023 
1021 LDA E 
1022 STA F 
1023 next sentence 
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Gilbert St( il, now of Mitre Corporation, in an investigation 
of the application of transition diagrams to the :recogni- 
tion of AL(~IOL; this work led to the No-Backup Condition 
~md the desirability for the sake of efficiency of separatiug 
lexical and syntactical analysis. Itoth Mr. Speroni and Mr. 
Stcil assisted in the proofreading of this article. 
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T A B L E  5. (~q!;NERATO[t I~ESPONSES TO INPUT IN EXAMPLE 

Polish Output Internal stales after respons(~ 

Ini t ial  s t a t e  
X 
Y 
G T R  

TW 
A 
B 
EQL 

X 
Y 
EQL 

OR 

TW 
C 
I)  
MOVE 

F N  

E S T  
FW 

C 
D 
LSS 

T N  
FW 

LC = 1000, N E X T  = 0 

1000: L I )A  Y LC = 1001, F A L S E  = 0, T R U E  = 0 
1001: SUB X LC = 1002, T E M P  = 0, T R U E  = 1002 
1002: BNA 0 LC = 1003, T E M P  = 0, F A L S E  = 1003 
10()3: B U N  0 LC = 1004, A R O U N D  = 1004 
FIXUP(1002,  1004) AROUN1)  emp ty ,  TRUF~ e m p t y  

1004: LI )A A LC = 1005, F A L S E  = 1003/0, T R U E  = () 
1005: SUIt  B LC = 1006, T E M P  = 0, T R U E  = 1006 
1006: BZA 0 LC = 1007, T E M P  = 0, F A L S E  = 1003/1007 
1007: B U N  0 LC = 1008, A R O U N I )  = 1008 

1008: LDA X LC = 1009, FALSE = 1003/1007/0, T R U E  = 1006/0 
1009: SUB Y LC = 1010, T E M P  = 0, T R U E  = 1006/1010 
1010: BZA 0 LC = 1011, T E M P  = 0, F A L S E  = 1003/1007/1011 
1011: B U N 0  LC = 1012, A R O U N I )  = 1008/1012 

A R O U N I )  = 1008, T E M P  = 1010, T R U E  = 1006 
FIXUP(1010,  1006) T R U E  = 1010, T E M P  = 1011, F A L S E  = 1003/1007 
FIXIl 'P(1007, 1008) F A L S E  = 1003/1011, A R O U N D  = 1012 
FIXUP(1010,  1012) A R O U N I )  emp ty ,  T R U E  e m p t y  

1012: LDA C LC = 1013 
1013: STA D LC = 1014 
1014: B U N  0 A R O U N I )  = 1014, LC = 1015, 
FIXUP(1011,  0) N E X T  = 1011. 
FIXUP(1014,  1015) A R O U N D  e m p t y  
1015: B U N  0 A R O U N D  = 1015, LC = 1016 
FIXUP(1003,  1016) F A L S E  e m p t y  

T E M P  = 1011, F A L S E  = 1003 

1016: LDA C FALSE = 0, T R U E  = 0, LC = 1017 
1017: SUB D LC = 1018, T E M P  = 0, T R U E  = 1018 
1018: B N A  0 LC = 1019, T E M P  = 0, F A L S E  = 1019 
1019: BUN 0 LC = 1020, A R O U N I )  = 1015/1020 
FIXUP(1018,  1011) A R O U N D  = 1015, T E M P  = 1018, T 'RUE empty ,  N E X T  = 1018 
1020: B U N  0 A R O U N D  = 1(}15/1020, LC = 1021 
FIXUP(1019,  1021) F A L S E  e m p t y  

E 
F 
MOVE 1021: L D A  E LC = 1022 

1022: S T A F  LC = 1023 
EST FIXUP(1020, 1023) AROUND = 1015 
EST FIXUP(1015, 1023) A R OU N D  empty 
ESN FIXUP(1018,  1023) N E X T  = 0 
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