
Design of a Separable
Transition-Diagram Compiler*

MEt, VlN E. CONWAY

Directorate of Compute)'s, USAF
L. G. Hanscom Field, Beelford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

In troduc t ion

This paper is written in rebuttal of' three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) COBOL [21] compilers
must be complicated. The form of tile retmttal is to de-
scribe a lfigh-speed, one-pass, syntax-directed Cot~or, com-
piler which can be built by two people with art assembler
in less than a year.

The compiler design presented here tlas the [ollowing
properties.

l. I t processes full elective COBOL except for automatic
segmentation and its byproducts, such as those properties
of the ALTER, verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE a n d INCLUDE are accessible
to the design but were not included in tile prototype coded
at the Case Computing Center.

2. lit can he implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high-
speed storage. In this configuration it processes a source
deck as fast as current one-pass algebraic compilers.

3. I t can be segmented into many possible configura-
tions, depending on the source computer's storage size,
such that (a) once a segment leaves high-speed storage it
will not be recalled; (b) only two working tapes are l~-
quired, and no tape sorting is needed. One such configura-
tion requires five segments for a machine with 8000 six-
bit characters of core storage.

Of course any compiler can be made one-pass if the high-
speed storage of the source computer is plentiful enough;
therefore, what this exposition has to offer is a collection
of space-saving techniques whose benefits are real enough

* The work described here was performed at Case Institute of
Technology in 1961 and was supported in part by Univac Di-
vision of Sperry Rand Corporation.

396 Cmnmunications of the ACM

to make this design (in which all tables are accessed while :i
stored in memory) practical on couten-lporary computers. {{
None of these teet miques is limited in application to Cof~oL
compilers. The following specific techniques are discussed: ;
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, attd instrttetion generation for conditional state-)
ments }

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
lhat machine, and first-pass code was checked out through :)
the syntactical analysis. At the time the projeet was dis-
continued a complete Co~t(u, syntax checker was operating
at 140 fully~punehed source cards per minute. (The Case
220 had a typical single-address instruetion time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word maehirm, would rut, at well
over 100 source cards pet' minute.

ii Corout ines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable it' it. is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of discrete items of in-
formation; (2) tile flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that tile input is at the left extrerne, tile output is at
the right extreme, ande~'erywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be inade into
a co,online; that is, it may be coded as an autonomous pro-
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, eoroutines
are subroutines all at the same level, eaeh acting as if it
were the master program when in fact there is no master
program. * There is no bound placed by this definition on
the number of inputs and outputs a eoroutine may have.

The eoroutine notion can greatly simplify the concep-
tion of a program when its modules do not eommunicate
with each other synchronously. Consider, as an example, a
program which reads cards and writes the string of char-
acters it fin(Is, eohmm 1 of card 1 to eolumn 80 of card 1,
then column 1 of card 2, and so on, with the following
wrinkle: every time there are adjacent asterisks they will
be paired off from the left and each "**" will be replaced
by the single character " 1" ". This operation is done with
the exponent*at*on operator of FOt~TRAX and CoBo*,. Tile
flowehart of such a program, viewed as a subroutine pro-

To the best of the author's knowledge the coroutine idea was
concurrently developed by him and Joel Erdwinn, now of Com-
puter Sciences Corporation.

Volume 6 / Number 7 / July, 1963

!i: :
t/

?

i
i

--;,-;;,:,, (~[]a-~'ar:t(,P~ to at :ma[n voutii~e w l } i c h ca l l s i t . [s s h o w n

• i.-iattve ~

t!i'~{ Ell0 ~.liV}.D/(' l'O(!IiPO,.'l~(,l~ O(COIllpl 'eSsi l t~ x l - , .

ast{:,r:i~ks re{t triPes ,i,£: i~v{Poductio~, o ~ a switch which

i RDCRD

i

__...~ SQi;ASHER

SUbROUTiNE - - - - - - ~

B~AN

ROUT!NE

SQUASHER: ~N : .

. . . . o ~ OFF ~-----~Q~...:

T I ~.- C ARD(2,.) ';

i
: > < : > = (!) r~ " ~'"

; i
OUT ~-T I j

{. ~ x , r)
x .~_ . j /

2;2-
/f-~\
f

RDCRD , ~N #

t
i r 2 ~ c A a ~ i

L - T - - -
i

[" i+i

i

T!~ ' SWITCH

ON

-- [

£2>=- ! ~ . , ?

! r o t e i
i , c,~!!:eo~.__j

sL-.,

t:l(;. 1. Asterisk squasher sutwoutine with environment .
S W I T C H is init ial ized ()[:t:- i is initialized t{, S;1; O[7[" is o u t p u t
:,r{m of S Q [A S H E l l .

• E×Ecor[
r R DCI-I,3 I

T [
T 1 ~-" G~-RIR 2}1

~___J
f __.L_.__.,

* ~ i + t

--7---- '
J

i RDCRD i

[---.--.. i ~]

i i
[

,/7"~
",.22 i i ~ i + l i

~ r 2
!

f

i

F r o , 2. Asterisk squasher as eoroutine. First entrance is to 1,

V o l u m e 6 / N u m b e r 7 / J u l y , 1963

biflwcates the subroutine and selects the part to be used
al~ each call depending on the situation at the last, call. The
Peasen fop the switch is that each call oj" the subroutine must
,'esprit in o~tput qf exactly one charactec. A programmer well
versed at inventing counterexamples could dream up a

re(tuirenmnt f o r a subroutine which would necessitate an
a bstwd aPrangement of switcltes in order to preserve the
one-output-for-each-call relationship required of the sub-
Poutine.

The coroutine approach to the same probleln accom-
plishes the switching job implicitly by use of the subrou-
tine calling sequence. When eoroutines A and B are con-
|meted so that A sends items to B, B runs for a while
~mtil it encounters a read command, which means it needs
something froln A. Then control is transferred to A until
it wants to "write," whereupon control is returned to B
at the point where "it Iqft q{]'. I"igure 2 shows the asterisk
squasher when both it and the using program are eorou-
tines.

I:igure 3 illustrates the essertce of separability. Instead
of having modules A and B communicating as coroutines
with a coroutine linkage between write st, atements in A
and read statemeut, s ill B such that control is passed back
and forth once each time an item is trmtsferPed, it is possi-
ble without changin.g an.ytMn(.l in A or B excet)l the read and
wri& linkages to have A write all its items on a tape, to
rewind the tape and then to have B read all the i tems fi'om
the tape. In this sense, then, the pair of programs A and B
{.an operate as a one-pass or a two-pass processor with
only trivial modification.

As background, the eoroutine linkage on the Burroughs
220 is described here. The 220 is a sequential, single-address
machine with the sequence counter called the P-register;
dm'ing the execution of an instruction it contains the loca-
tion of the next instrttetion to be fetched. Unless the cur-
rent instruction causes the machine to branch, the P-
register will contain one plus the location of the current
instruction. The I Y N C O N D I T I () N A L B R A N C H instruc-
tion B U N A works by placing its address A. into
the P-register. The S T () R E P instruction. S T P B
places the contents of P plus one into the address part of
the contents of location B. The standard subroutine call is

STP E X I T
B U N E N T R A N C E

I
I

l

[-.

k - - .

Fro. 3. I l lustration of a property of separable programs.
A. A and B, l inked as eoroutines, communicate direct ly.
B. A writes its entire output before B reads anything .

C o m m u n i c a t i o n s o f t h e ACM 397

where EXIT contains a BUN instruction whose address
will be altered by the STP instruction in the call. A pair of
subroutines becomes a pair of eoroutines by adding to each
an isolated BUN instruction which we can call its router,
and by changing the addresses of tile STP, BUN calls as
follows: when eoroutine A calls eoroutine B the call is

STI' AI~()UTER
BUN BI/OUTER.

Thus, the router is actually a generalization of the switch
of Figure 1. Getting a system of eoroutines started is a
matter of properly initializing the routers.

Figure 3 shows that the coroutines of a separable pro-
gram may be executed alternately or serially• When true
parallel processors are available the fact that the coroutines
of a separable program may be executed simultaneously be-
comes even more significant.

COBOL C o m p i l e r O r g a n i z a t i o n

Figure 4 presents the coroutine structm~ of the COBOL
compiler designed at Case. Tile program is separable under
the condition that the two pairs of modules which share
tables are considered to be a single coroutine.

Tile reader is asked to understand that the present
treatment is concerned more with exposition than com-
pleteness. A more thorough treatment would not ignore
coeY, pictures, and literals, for example. Let it sufIiee
to say that these features ean be accommodated without
any significant design changes over what is presented here.

In Figure 4 solid arrows are communication paths be-
tween eoroutines; dashed arrows show access to taMes.
When the dashed arrow points to a table the latter is being
built; when the dashed arrow points away the table is
supplying values to tile using eomutine. The specific opera-
lions performed by tile eoroutines will be discussed in the
following four sections.

Lexical Ana lys i s

Tile input, on line B of Figure 4, to the Diagrammer con-
sists of (one-word) items denoting either names or COBOL
basic symbols. Tile class of basic symbols, over 300 ele-
ments in size, consists of all characters of the source alpha-
bet (other than numerics, alphabetics, hyphen in names,
and space) together with all the COBOL reserved words and

/ • \ I
/ / / // ~\ \ I

the paragraph symbol ~i. (This inter~al special symbol is
inserted t)y the card scanner whosoever card column 8 is
not blank. Such a device converf, s many format recogni-
tion problems to syntax analysis problems.) The lexical
analysis process embodied in the Basic Symbol Reducer
and the Name Reducer converts the source program into
a sequence of integer-coded one-word items in one-to-one
correspondence (with the exception of ~i) with the words
and special characters of the source program.

The Basic Symbol Reducer attalyzes tile i npu t string
by what is essentially a character-pair analysis, but tile

T A B L E 1
Class Character

0 012 . . 789
1 A B C . . . X Y Z
2

3 b (space)
4 = * /
5
6
7
8 ~I (
o)
x +

0-9
A-Z

b

5
6

" 7
¶(S
) 9

+ X

T A B L E 2

Right Character R

0-9 A-Z -- b = * / , . " ¶() +

0 I 2 3 4 5 6 7 8 9 x

1 1 3 3 1 3
1 1 3 3 1 3
1 1 6
2 2 5 5 2 4 5 2

6 7
6
1
5 5 5

6 6
6 6 6
6

0 1
1 I
2 i
3 2
4

I

6

1

F u n c t i o n s :
1. S ~ S L

2. S ~- e m p t y

3. F u n c t i o n 1, t h e n w r i t e S

4. E n t e r n o n - n u m e r i c l i t e r a l s c a n n e r
5. Do n e t h i n g

6. W r i t e L, t h e n f u n c t i o n 2

7. I f L R = " * * " t h e n R ~ " ~ " else e r ro r
t ' ink: e r ro r

ti/~ a string accumulator

t

Fro. 4. C O B O L C o m p i l e r O r g a n i z a t i o n

I
PROORAM

398 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 6 / N u m b e r 7 / J u l y , 195 I~

: .

: ::):
: :?. :: ::.

::: : , 1:7:
: i: : ::}:

: :: : : q

i::;;jili;:~!

set) need not be ci~ai'act< pair ~:~>.~trix (for the !B3["IIi" - '
4t-) X 49 b,tt ()~,lv i i X !tt since there are only eleven

r -1
operatio~mliy di':" ¢ ~ . , . ct:m a,.~e~s. ~er~.~t. types of • "~'-"~e, 1 nese types are
listed ~t %, b), * tile (' ha rac te r Class I a)~e. I :urthermore.
o~iy three bits are required for each en t ry of the Char-
actt(~r Pair .. Jat~:~x. whic!~ occupies eleve~l words on the 2'20.
"l'al)ie '2 shows the matr:ix wi th tilt set: of actions taken for
(,at!,, charactei" pail'.

The t leserved Word List and LName T~tble were built
for the 220 accorc!i-::~g to a me thod of F. A. Wil l iams [3].
W!te~,, ti,.e so~..:~'c.,., machine has a~ adequate m e m o r y both
tables ca~ t)e combined into one, initialized to the set of
res(.rved word.~. ()n li~e A of I:'igure 4 all the reduction has

• ") 1 taketi Mace except: that :;mines are in a fixecl o0-characte "-
pl,,~s-idel~ti fication fornmt.

list light of the organizat ion of the compiler into lexical
mmlysis, synm(:tic atm!ysis and synthesis (including data
storage allocation: i~ the D a t a Divis ion and code genera-

• 1 ¢¢ tioa i~ t.ne Procedure Division), with the three in series
there is a clear-e:~ sr~rategy for gett ing both h igh conl-
pili~tz speed mad low space consurnpt ion from the one-pass
vcrsio.,~ of the ciesio'n" make the lexical analysis as :fast as
possible even at the expense of some space, arm make the
rest as compact as possible even at the expetise of speed.
Tl,is is explained by the s imple fact that most of the t ime
is spent i~ lexical analysis. In our experience with the pro-
totype we found tha t the input speed difference between
lexical analysis alone and lexical plus syntact ical analysis

(IS {NOT] GREATER THAN
IS ~ ~ , i.N(I] LESS THAN

condition: IF formula, IS [NOT] EQUAl, TO }formula =
EQUALS !

~EXCEEDS i
FIr;. 5. Corn)L-like definition of condition

c<,,.~d : C ion: ()

i F

1

~S :':OT

F
EXCEEDS GREATER

i formula

Fro. 6. Transition diagram definition of condilion

V o l u m e 6 / N u m b e r 7 / J u l y , 1963

was about ten percent. It appears that nothing short of
pure sabotage can be done to the syntact ical analysis and
synthesis portions to slow the whole compiler down to less
than 75 percent of the speed of the lexical analysis routine
alorle; hence our name "Seventy-five Percent Ru le" for
t l,.is strategy.

S y n tac t i c a l A n a l y s i s

An abbrevia ted definition of condition is given for this
exposition in Figure 5. Keep in mind that the syntact ical
analyzer (Diagrammer) sees single symbols entering it for
things we call n~', :ts, xOW, data-name, and so on. Call these
symbols which are input to the d iagrammer input symbols.
Observe, then, tha t any sequence of input symbols prop-
erly called a condition rnust correspond to one of five paths
througti the condition definition, s tar t ing at the left IF and
ending at the right Jbrmula, each pa th corresponding to a
par t icular choice of relation. If the Diagrammer is thought
of as having a window wlfich displays each inpttt symbol as
it conies fi'om the lexical analyzer, the definition of a syn-
tactic type like condition is a rule for predicting, for" each
input syinbol in the window, what the legal set of suc-
cessors of that symbol is. A transition diagram is a formali-
zation of this notion of what a definition :is. Figure 6 shows
tile diagram equivMent to the definition of Figure 5.

A transit ion d iagram is a network of nodes arid directed
pa ths with two dist inguished types of nodes: an entrance
node (usually drawn at the top) has at least one pa th lead-
ing from it, arid art exit node (labeled "X") has at least
one path leading to it and no paths leading from it. Every
transit ion diagram defines a syntact ic type wMch is not an
input symbol, and eveLv such syntactic type has one transi-
tion diagram which• defines it. A transit ion d iagram has
exactly one entrance node arm at least one exit node.

Each path is said to be blank (as, for example, one path
leading from node 3 to 4 in Figure 6) or to have a symbol
on it. The symbol is either an input symbol, or" else it is a
syntact ic type defined by a transi t ion diagram. (We use
capitalized words on the paths for reserved words and
lowercase •words for names and syntact ic types.) No two
paths leading from a node m a y be blank or m a y have the
same symbol on them. No transi t ion diagram m a y have a
sequence of b lank paths leading from the entrance to an
exit node. The set of b lank pa ths m a y contain no loop.

There will be one transit ion diagram labeled (that is,
defining) COBOL program.. The Diagrammer starts at its
entrance node. The object is to get to an exit node; to have
done so implies tha t a COBOL program has traveled past
the window of the Diagrammer. Similarly, getting fi'om the
entrance to an exit of any transi t ion diagram means that
the corresponding syntact ic type has been traversed.

The rules of the Diagrammer for leaving a node are as
follows.

STEP 1. Examine all paths leaving the node which have input
symbols on them. If there is a match with the symbolin the
window, read tim next input symbol into the window and tra-
verse the path. Now go to Step 5.

C o m m u n i c a t i o n s o f t h e ACM 399

STEP 2. If there was no match in St~ei~ I, t r y each r e m a i n i n g
nonblank path leaving the node. Each pat(~ wi!l correspond
to some transition diagram. The path may be traversed if and
only if it is possible to get from the entrance to an exit of ihat
diagram. This is at tempted by pusi~ing down in a last-in-firsii-
out stack called the ti'n.kagc stact;: the current node. n u m b e r tt[~([
then going to Step 1 for the entrance node ,,f the p a r t i c u l a r
transition diagram being tried.

STEP 3. If there was no match in /4tep 2 and there is a blank
path leading from the node, foil,w it and go to Step 5.

STEP 4. If Step 3 was unsatisfied the l)iagrammer is at a dead end.
If the linkage stack is n o n e m p t y this condition is a failure it)
traverse, in Step 2, a, p a r t i c u l a r pa l l t eo r re spond i : tg to lira
transition diagram in which the dead end occurs. !%p tap tim
linkage stack, reposition the window to tiJe symbol present
when the diagra.m was enlered, and try a~.timr path in Step 2.
If the linkage stack is empty a syntaelieal error exists in the
input string.

STEp 5. There are two ea.ses.
a. The path just traversed does not end at, ,'tn exit node. (:;(, to

Step 1 for this new node.
b. Otherwise, pop up the l i nkage s lack , r e t u r n t() the node

whose number was at the top of the stack, and traverse the
path corresl)on(ling to the diagram just exited. Now go baek
to Step 5.

The above p r o c e d u r e const i tutes the eu t i re ty of tha t
pa r t of the D i a g r a m m e r wMch cheeks syntax.

Recall the eondi t ion t h a t no two paths leading from the
same node m a y h a v e the same symbol on thein. The follow-
ing quest ion a r i ses : W h a t if two paths leading froln the
same node h a v e syn tac t i c types on them, a~d the two
t ransi t ion d i a g r a m s de/thing these types have paths lead-
ing f rom the e n t r a n c e nodes which have the same symbol
on them? I f th is happens , then with certain pat hologicM
languages t he i n t e rp r e t a t i on 0f a give~ input string might
depend on the o r d e r in which the paths leadi~g from a
node are tr ied. I n d e e d , the same problem ea,~ occur if this
nonuniqueness exis t s at, a deeper level than the first. Be-
cause it is des i rab le not to have to worry about this prob-
lem, let us cons ider it now in more detail.

Two condi t ions on a system of transit ion diagrams are
presented a n d the i r effeets on regularizing languages are
diseussed. The f i rs t condit ion, called the "No-Loop Condi-
t ion ," says t h a t no t ransi t ion d iagram will make a refer-
enee to itself (i.e. i t will not have a pa th with the syntact ic
t ype which it defines) wi thou t having first read an input
symbol a f te r it. w a s entered. For, if after enter ing a transi-
t ion d iagram def in ing syntac t ic type t no input symbol has
been read w h e n a n a t t e m p t is made to t raverse a pa th with
t on it, a per iodic (infinite loop) condition exists. And only
then does an inf ini te loop exist, since if the input string is
finite a loop w h i c h reads- input symbols will terminate .

The second eondi t ion , called the " N o - B a c k u p Condi-

t ion ," defines a w a y a n y need to specify an order in which

the nonb l ank p a t h s leading from a node should be tried.

E v e r y p a t h has assoc ia ted with :it a set of input symbols,

called its set, of in i t iM input symbols , defined as follows.

W h e n the p a t h h a s a syntac t ic type on it an input symbol

is an initial i n p u t symbol if and only if when it is in the

input window a n d the t ransi t ion d iagram defining the syn-

400 C o m m u n i c a t i o n s of the ACM

tactic t.3"po on the path. in. questioi~. ;is e~ter(,(!, t}~at ~.:~J>(~i
wil l be read before either a dead e[~d. occurs or ~. }~c, ,i;

is exited. The class of initial ; ,npu~ symbols oi: a })ia,.~h i:~atL
is en-tpty, and the class of in:triM input symbol)el> of ~., ~,,,¢.
witl~ an h-lput symbol oil it: is the one-el(,:i-~(u~i- <:l:~ss ,,~)~
taining tha t symbol. The No-Backup C,.)~tcii:_o,~ s:::r.< ~i~t
the No4 ,oop Condition holds and t h a t fo~ ,-v<,.v ~o~i~ "
the sys tem of t ransi t ion diagrams the sc, t.~ of i>i~i,,i 5,,.-, ~

symbols of all the pa ths leading from that• ~ode a~(> dis-
joint, t:or, if the classes of ilfitiM h ipu t symbols for g, li t},.~:,
l,ont)lank pa ths leading froln a node are dis ioi~at, t};(,~ t},<:~
classes of input strings which enalfie th(~ r(~sl)ectivc >ati~:-
to be t raversed will be disjoint, and tt~erefor(, t:i~(, (~r{icq '
which these pa ths are tried will be i rreleva~t . The, N4:0--
Backup Condit ion is clearly strot:~ger t tm~ it has t:~ !,,-, ill
order to obtMn independence of order" of ' a ", ,,
condit ion confers another property on a. syste>.~ of tra~si.
t ion diagrams which is to be sought: such a sysu,~ c~i: dia-
grams wil l never req~fire [rocking up the input st ri~>,; ::t,~'i~:~
scanning. Al l n o n , e r r o r dead ends encouutered withi~ a~,::y
transit ion diagram wil l be encountered before m~y i;,:LI>~t
symbol is read; thus the response to a dead end i~ St(.-:) 4
(whe~ the linkage s tack is nonempty) is simply to per up
the stack and t ry another pa th in S tep ') without rel),~i-
tioning the window. In fact the tes ts of Steps I aw(i '2 :~aa
be freely intermixed.

The No-Backup Condition makes err()r limitation, ~<'<~
specific because an error dead end can be immediately dis:-
covered wi thout first en~ptving the l inkage stack ~)v t }~
fact tha t a t least one svrnbol has been read since o~t-,';,~,,-
the transition d iagram harboring the dead end.

h i a sense, the No-Backup Condi t ion is a device i,:,r
[egislati~g out of existetme the a m b i g u i t y problem i i, i,:,
languages defined by t ransi t ion d iagrams. The crl,(%.i
point here is tha t the syn tax of COBOL-61 arm ALCO~,-i;{)
nlay be defined by t ransi t ion d i ag rams which satisfy the
No-Backup Condition. A one-pass compiler for eitl~(:.r ,'~f
these languages which is constr tmted accordi~g to ,,i~:(~
S ~_eventy-five Percen t Rule and wMeh uses iN<)-l:~ackup
tt 'ansition diagrams will be compete t ive in both compilh~g
speed and memory spaee with a compi ler of any other co, t-
t empora ry design.

The catch in all this is tha t a set of N o - B a c k u p d iagrams
for a givert language is const ructed b y a process which :is
neither s t rMghtforward nor easy to describe. The Co~oL
condit ion, for example, m a y begin w i t h a left parenthes is
which can surround an entire condi t ion or just th(' k 'ft
f o r m u l a of a relational test. To expose the subtleties of t he
construct ion of No-Backup d iagrams, we change ti~(:' c~ '~--
nition of condition, in I:igure 5 to re ta in only the essentials.
Fur ther , we define f o rmu la . These are both done in l.igu*'o
7. Examples of conditions are (A = B) , A = B, ((A + B) -=
C), (A + B) = C, and so on2 An equiva len t s e t o f N ~
Loop t ransi t ion d iagrams are given in I,'igure 8.

2The presence of the IF, strictly speaking art error in ii,.e
COBOL manual as well as Figure 5, has been eliminated in Figure
7.

Volume 6 / Number 7 / July, 1063

i.}
I? (

i i
l-

This is i~o~ a set of No-Backup defitiitions, however, be-

cause e~eou],vevitig a,x initial left parenthesis gives no in-
dieatio~ vche~};e~' i~ surrotmds the e~tive e(mdition or just
the left :fovv~.uia. Cow,skier (A + t/') = (~. T h e sequence of
tm~,_~itio~s wil] he as follows.

1 - . 2 !'ead .:
1 enter .co,uli!;(,;~
(i ent el' ,/o ;;;~ ;~ bt
9 en{er ~ertn

!2 - N re:M A
9 - t 0 pre;;mc.;/ traversed

10 X -b is n o t *
i; -+ 7 germ. traversed
7 -~" 8 read +

0 e n t e r te rm

i 2 - X read B
,q --~] 0 p;'imar!/ t r a v e r s e d

10 -- , X) is n o t *
S ~. 7 re;,; traversed
7 - ~ X } is not +
I ~ form;d(, t r a v e r s e d

(~ condit ion "~
c(,ndi~i()n, i ' o r m u l ~ . l = f (n ' n u l J t a ~

: term
f o r ! l l l l | a :

~ formula + term
(•

t e r m j prmmry
t e r m * primary (
(d { t t ~ l - r l a l l l e :

I)rimarY :(f(,rmula) f

U'[(;. 7. Another definition of cotMiho, ,

i ! '

{ 4

k_

)

: c £ m :

7 : :::a Q.

(

)

)

I
~: a ~ a - z3 ~ 3>2 rTml i a

Q '

FtG. 8. N o - L o o p definitions equivalent to Fig. 7

V o l u m e 6 / N u m b e r 7 / J u l y , 1963

=\t this point the .Diagrammer reaches t~ dead end. The
eomii t ion can on ly be seamled d i rec t ly if the inpu t is

btteked tlp and the iivst= transition is made 1 ~ 4, not 1 --, '2.

'The diff iculty is t h a t t b r m u l a can also begin wi th " (" ;

to scan wi thou t |)aekup means t h a t to go down a p a t h wi th

a ~'(" oll it shouM not involve a e o m m i t t m e n t t h a t t iw
s t r ing being scanned is a condi t ion and not a formula , or

vice versa. T h u s a solut ion is to in t roduce a m u l t i p l e - e x i t

t r ans i t i on d i a g r a m so t h a t all s y n t a c t i c types beginning
w i t h the same input cha rac te r are defined by t h a t d iagram"

the different synt=aetie types resul t in different exits, la-

beled X [or X2. !"i~ure 9 (lefines c o m t i t i o n this way.

T'nero is l i t t le else to the I) i ag rammer except the genera-

t ion of l 'ol ish. Th i s is accompl i shed by l i t t le subrout ines

cal led actiot~,s whiett are ac t i va t ed when cer ta in pa ths are

t raversed . Figure l() gives the ac t ions re(luired to create
t ra i l ing-opera tor l 'o!ish from formulas. I{emember t h a t an

ac t ion on a pa th wi th a syn t ac t i c type is executed a:fte;' the
correspond|rig: t r ans i t ion d i a g r a m is exited. The act ions

for t r ans la t io~ of AL(;O[, into the in te rmedia te language

sugges ted t)y Grau [5] would be as simple as F'igure i0
~ 1 I O ' f f , R I s 4

Il l a compute r represen ta t ion each pa th is represente(l

by an i tem occupy ing one word or less, if possiMe. All

....... I

5 /
I 2

.

'd

.. ~at s it :

(~:rrm.: i.,7)

, . ~ E X I T E: c o n d i t i O r r r ~ , a t t t] n

@
FIG. 9. N o - B a c k u p diagram to replace tile condition diagram of

Fig. 8.

C o m m u n i c a t i o n s o f t h e ACM 4 0 1

paths from a given node are grouped together and a node
number, instead of being all element of a sequential set of
integers, is the address of the first path word of that node.
A given path word contains a final node m t m l) e r , a n action
number, a bit to distinguish betwemt input syntbols and
syntactic types, an input symbol or syntactic type nmn-
ber (in the la t ter ease, the number of the entrance node),
and a bit to distinguish the last path from a node. (If this
path is blank its word can be eliminated simply by be-
ginning the node to which it would connect in its place.)
Exit nodes are represented by special one-wm'd items.
Clearly, if the syntax is to be coded in the programming
language using the advantages of symbolic addressing
(and this is most desirable), t, hen an unusual programming
system is required for building a transition-diagram com-
piler. Macros may be useable in tMs connection but would
be cumbersome if they are processed slowly. The Case
assembler was given a definable operation with specifiable
operand fields to implement symbolic coding of the syntax.

The No-Backup Condition removes ambiguity in the
task of syntax recognition. There is no reassurance that the
introduction of nmltiple-exit diagrams confers the same
blessings on the translation, task. What if, for example, the
actions associated with the several syntactic types ot7 a
multiple-exit diagram were very different? There would
still be an ambigui ty in the generation of Polish. The an-
swer to this question is that in the general ease the prob-
lem is real; with A~x;oL and Co~mi, :it. does not exist.

D a t a S t r u c t u r e A n a l y s i s a

Consider the processing of I)a ta Division item descrip-
tions by the Da ta I)escriptio~ lh'ocessor. Each clause gen-
erates an operator in the l 'olish string which is passed along
line C of Figure 4, accompanied perhaps by a numerical
parameter like size. These clause operators are used to
build description vectors which are then completed and
checked according to a method given in another article
[6]. The final item description vector m~d other non-
Boolean-valued declared parameters such as size mad point
location are then given on path E to the Data Proper ty
Recorder which allocates storage for the object-program
item and sequentially adds an entry to the Data Definition
Table. At this time the index into the Data Definition
Table of the en t ry just added is sent on line G to the Data
Structure Recorder which controls its insertion into the

Tree Table.
The Da ta Structure Recorder handles qualification of

data names by means of the Tree Table. We now consider
the techniques used therein, because they are crucial to
the one-pass handling of qualified names. First, observe
tha t the purpose of the Tree and Data Definition tables is
to supply enough information along with each data name
in the Procedure Division Polish to enable the Generator

a Added in proof. The au tho r has learned tha t Harold W. Law-
son, Jr. of IBM Poughkeepsie del ivered at the 1962 ACM Confer-
ence a paper conta in ing most of the mater ia l in this section: The
Use of Chain List Matr ices for the Analysis of COBOL D a t a

Structures .

4 0 2 C o m m u n i c a t i o n s o f t h e A C M

to generate complete code. The Poiisi~. wri.tte~, d~-i~,-*~,
Procedure Divisio~ follows path F to tl;e Da:-:a S~>ir:~m-:.
I n te rp re te r where suf f ic ient ly qual i f ied name5 v..:l~ie}:, a~.-e
ac tua l l y sequences of integer i~dices in to t}~c. ~ a::~(, ia}>i(-~
p ick tip ~ew single in teger vaha.,s w}-iic},_ am ()i~,-~~ ,,~..(,
with declared object-program data items, ~ot wit} ~)~(,.
word names, as i~l the Williams algorithm I:~;]. "!'k~is fiual
integer value for each item is actually the iudex w}~ic!~.
came down path (7 when the Data i)efi~itio~ Tai)le e~trv
for that item was created. That is, this >.ew represe~tatio,,
of the data item name can be loaded i;~to an :imtex r~ister
to access directly from the Data I)etinitio~ Tabl(:: ait the
important information about the item. The procedural
l 'olish moves along path H to the Data Property lute>
preter, where this access operation is perfortned at~d ~}~e
new name of each data ken,, is replaced by the set of i)rop(,~ ~

A C T I O N S :

I. WroTE "+"

2 . W R I T E u ,I

3. WRrrE THE DA-rA-NAME

i :

:.
I
! ::

-7?: %
i ~ 2 i -~

:?

):

7

g : ~ i :
\

~2

:: i)i

?

i

}

L~
:L

p r i : , w i
I I

L____J

FiG. 10. Actions whose numbers are in square boxes ge[mratc
t ra i l ing-operator t 'olish.

4

I , i " ~ . ~ "-. - 5 / \ , - -'~"

K i

P O I N T E R T R E E

FIG 11. S t ruc ture of da ta and data-names in example

V o l u m e 6 / N u m b e r 7 / J u l y , 1963

:7};

:alllpl~: j ::

/J<

,i(~s of ~i~is i~<~3. The procedural Polish :ilen eltters the
C.e!~ora:ior a io~/ pa th K. The Generator can create com-
piete dai:a-i~a~(ili~a code t)eeause accompa!wing each
ope,~,-,, in the Polislx is a complete d,:'scriptiot~ of *~,i~:'

co rr(.spo~dil ~g o};j eet-program item.
Co:isider tile [oitowiilg hypothet ica l da ta st~rueture:

V I) A
01 I3

O3 J
03 K

04 C
04 J

03 I)
01 C

02 J
02 1)

Assume further that tile il~ternal represe~m~tions given by
i i~e Williams Name t~educer are as follows:

A" 31
B: 32
(~: 33
1) : 34
J: 40
K : 41.

The structural relationships are shown by the solid lines
of I:igure 31 I. This structure can be represented by tile

following tree t a b l e

Loc Name Up

OOl A 31 000
002 B 32 001
003 J 40 002
004 K -tl 002
005 C 33 0O4:
006 J 40 (104
OO7 D 34 (X)2
008 C 33 001
0o9 J 40 008
010 I) 3t: 008

i,()(3 is not in the table, but gives tile relative location of
each word of the table. The N A M E field contains the in-
ternal representat ion of the data name and the UP field
gives the LOC address of the immediate parent in the da ta

structure.
Notice tha t level numbers do not enter the table; they

are used only to provide structural information. Spe-
cifically, if two adjacent i tem descriptions in the D a t a
Division have equal level rmmbers, they ihave the same
parent, namely the most recent i tem with a lower level
number; if the second i tem description has a Mgher level
number it is a descendant of the first; if the second i tem
description has a lower level number then there is a pre-
ceding item description with the same level number as the
second, such tha t all intervening level numbers are higher;
these two have the same parent . The uP en t ry is
constructed from the level nmnber with the aid of a p u s h -

d o w n list. The details of this construct ion will be given

later.

Volume 6 / Number 7 / July, 1963

The l) a t a Structure In terpre ter will accept sequences
of name representat ions as the representations of quali-
fied names, for example, i ~,)o, 41. o I, 0) for "C [N K IN A .
This will b(? called a qualification sequence. I t is assumed
that no name has () as an internal representation.

(; iven the correct entrance point into the table (I,()C -

0053, it is a simple mat ter to establish tha t (oo,i 4l,",)1, 0)
is in the table; just start at the entrance point and nmtch
the names in the qualification sequence against tile names
in tlle N A M E column, usiag th(' [t ' column to specify
the next word to check. Thus, 3:-; matches against word
005, 4l matches against word 004, 3l does not. match
agai~lst 002 but it does against 0()1. The matching process
is successful unless a table word with tile UP ent ry =
000 is encountered before the (iualifieatioll sequence is
exhausted. The process is equivale,l t to crawling up the
da ta structure tree matching; elements of the (iualifieati<m
sequence with names at nod(,s of the tree.

Ent rance call be made into the table by a list of pointers.
This list contains lit location k the address of the first
we rd o t' the tree tat>le co n tail ~ ing a~ ~ o(:eu rrence o f ttm hal ne
representat ion whose value is k.

Loc .Pointe r

3 1. oo l
32 OO2
33 0(}5
34 (~}7

4(} (]0}{
41 (104

Hence, entrance into the tree table is gained by looking at
word k of tile pointer table, where k is the first element of
the qualification sequence.

Now it remains only to take care of multiple occurrences
of names. Consider "J IN C" : (40, 33, 0). This would be
found t)y jumping up the tree tat)le frotn 009 to 008, except
t ha t there is no entrmme to word 009. This ent ry is accom-
plished by linking up all equal names with a N E X T
cohmm in the tree table corresponding to the dashed lines
of I:'igtlre Ill. '}'he final form of tile Tree Table follows.

Loe Name Up Next Link

001 31 000 0(X~
(X)2 32 001 000
003 40 002 006
004 41 0(}2 000
005 33 004 iX)8
00(i 40 004 009
(X)7 34 002 ()10
008 33 001 000
009 40 008 000
010 3-t 008 ooo

The L I N K column points to tile e n t w in the Da t a Defini-
t ion Table corresponding to the da ta item represented by
each word in the Tree Table; this is the index which is pro-
vided by the D a t a Proper ty Recorder along pa th G and
which is tile unique internal representat ion of declared

C o m m u n i c a t i o n s o f t h e A C M 4 0 3

object-program data itellls. It should now be clear that
pa th D =carries ordered pairs (level number, name) for
constructing the Tree Table entries, l ' a t h D could be
el iminated by sending the ordered pairs through the Data
Proper ty Recorder.

Figure 12 describes the program I.Ised by the I)a ta Struc-
ture. Recorder for building the Tree Table from these
ordered pairs. If the level 1"I) is g'iv(:~t the value 01 then
one must be added to all level numbers before ~I~¢'.y (,~t~,r
this program. Figure 13 shows the program used by the
I)a ta Structure In terpre ter for matcl~ing (lualification se-
quences. Notice tha t existence and mdqueness checks are

made.
A useful characterist ic of the Tree Table method for

representing data s t ructures is the ease with which the
immediate descendants of an i tem can be t'omM in
the table. Thus, the C O R I L E S P () N D I N (; modifier :is
easily accomodated.

In most realizations of the design presm,ted here the
Da ta Definition Table will be the largest of all. In source
machines wi th smull memories the I)ata Proper ty Inter-
preter, which is a t r ivial program, can be made a separate
memory load, sharing storage only with the Data l)efini-
tion "['able. Happi ly , this table can be writ ten directly (),~

@

L i

I ~ ~oc I

@
I

i

.<p.. ,
......... 1 =i r 7 - 7 1

L._ [__J { L . . . l - - J [

i
I
I

1
I

L * - L O C
- - T - - -

iLOCPARENTIk ~

!
®

C_. =...L.. :

/-i,
I NEXT 7 : : P)

= _ . ~ _

F- ~ - - - I
, ERROR I
I st~:,l~u,. ,

t ©

Fro. 12. The Tree a n d P o i n t e r table bui lder . I npu t is (L E V E L ,
D A T A) . LOC gives loca t ion of new T r e e Table word. The coun te r s
i, L E V P A R E N T (1) and the a r r a y s P () I N T E R , N E X T , and U P
are in i t ia l ized to zero. The e r ro r violates rule at= b o t t o m of

page V[-19 of COBOL manua l .

4 0 4 C o m m u n i c a t i o n s o f t h e A C M

tape by the Da t a }'rope~'ty [{ecorder; rto ac('es.< t:(~ i~ " ::~.
(iuire(i except by el,f, '" : Propert:y I~t(,,'o -t,-r

-"~S (l;gf ~ . _. _,~,e~ent as tl,:e .<v~tactic stiuei-=uv('.< :)i _),.L(;O;. a:.,~,{
COBOL lli&3" a p p e a r t o be, osf.eiiv!t.til3 {ll(: Sa, iiK ~ 0Oi;'-:!)iiO~, >

m a y be ,,tse(.1 for l~)ot}~ source ia~auaaes. Q1taliticatio~ ii~
, - I-~I,.(A- (.>OBO[~ has its a~.mio~y ~: AL(;()L a:-~ iClow> ii (,\(,ry •

is gi \e~ an i~ter:mllv-~e~>'mted ~mm~, tl-:e:~ the ideuti.fi~,rs
local to that }).OeK are q~m!ifi:',l hv tile block tmme. 21"1~(=
Tree Table th;~s p:'ovidos a :method for disti~g~uis}li~
muit iple uses o[the sa;ne ide~,tifier.

Code G e n e r a t i o n

Because tile l)olisI~ int(n'n~ediate la~guage is s imply ~
min imal representat ion of the i:fformati(m i~ the sour,u.
lang~mge, tile fOl'l~l Of th(, it~t:erme(iiate]at~uage is m o t (,

natura l ly related to ~l~(- source language thm~ to the objecv
language. Tiffs ~at~rah~,ss is evMe~.t ill the s impl ich5 , ,f
a t tachi~g action,s to transiti()i~ diagram paths ouce tlw,
embod imen t of tt:e source la~guage definitio~ in tra~si-
tion diagrams has b(:e~i decided.

Whether a similar ~mtm'ah~ess exists for the translati()~
from intermediate language to object code is heavi ly de-
pe~Me~,t o~ tl~e nature of the object machine. A measure , i:
such ,mt~u'alness migl~t t,(, given as follows. If the se(:tue~w:'
of operators (as (listinguisl~ed from opel'ands) in the i~t:('r--

L,.o.o.
L ==

. y ;

1 / ~ . UNUSED !

~,J~J)): o J ~ ERROR

i t ~ r E R (
Q~o~,___.A)L_o

4 ~ ~

v

NEXT{M)

i i
• - - - - [- - - -

i J q.-- 1
L----r .____.a

G

=
i J.P J + l

i=

~ T c . ~ - e - e - f i QUAL. s~o ;

, @
iSmTOH ON

r - -

.]
~ ! - - - - J

Q
Fro. 13. Qual i f ica t ion sequence ana lyzer . Sequence is in QSE(-~

(1 :...). LOC of found Tree Table word is in F I N D .

V o l u m e 6 / N u m b e r 7 / J u l y , .1963

=i:

:f

::i!

:i

i~::iil
! : (

-:)~ .

; i ~

:i!

= ,:;::

=~iiii

i:! i

:iii
%

.~ i!l !i:

':!i
;u!~d

me(iiat~ st~'i~ stro~g!y determines the sequence of opera-
tots (a~ dist i~mished from addresses or names) in the ob-
ject • ~t:ri"~".- •.~, t}~t :is, if the form of the object code is pret ty
welt ili,,l(:pendent of the content ~;!! the Data I)efinition
Table, the!i the generatiot~ is natural. [Tnnatural genera-
tio~ is characterized by large amounts of testing of infor-
mation ill the ,at a Definition Table before the form of the
response to a~ operator" in the intermediate code can be
determit~ed. Dt~pending on the source language, this meas-
ure of :~mturalness is one component of the characterization
of a~ object com;{)titer as beil~g "commercial" or "scien-
tific."

I:or example, tl~e translation of an ALGOL intermediate
la,~,,.,,~o.~, like that of Grau [5] to Burroughs BS000 code is
aatural to the point of being trivial by comparison with
other machines. Tim translation of Co:uoL intermediate
language to the code of a word-oriented machine like the
Burroughs 2'20 is painfully unnaturM" the response to the
,\[()VE-operator in the Case prototype compiler occupied
27 pages of flowchart,.

The extensioi~ to code generation of techniques like those
discussed above in connection with syntactical analysis
and Polish generation has been considered [7] fox' nattn'al
generation processes. The construction of general methods
for code generation which are as neat as those which exist
for som'ce-to-interrnediate translation is an important un-
solved problem.

The experience of this author in construction of COBOL
generators is limited to the 220. The following observations
may apply to other word-oriented computers. Much
trouble in generating addresses, shift counts and partial
field specifications can be saved if care is taken in choosing
the representation of fields in the Data Definition Table.
The 220 hardware representation of the ten nonsign digits
within a word, counting from the left, is 1, 2, 3,- - -, 8, 9, 0.
This was rejected in favor of the 7070 representation" 0,
1, 2 , - - . , 7, 8, 9. Using the latter representation all digits
of a 10,000-word memory are addressed inonotonely by
a five-digit number. A field A is represented by three num-
bers: :Va is the four-digit memory address of the word con-
taining the leftmost digit of A; L:, is a single digit giving
the position of the leftmost digit of A within N.4; RA is the
digit address (in the sense of the five-digit number, above)
of the rightmost digit of A, relative to digit 0 of N:,. Thus,
R.4 -- LA -t- 1 is the length of the field, the integer part of
(RA + 10) ÷ 1 is the number of words containing A, and
R,~ (rood 10) is the position of the rightmost digit of A. The
morM of this story is that the Generator should be able
to do additive ax'ithmetie in a radix equal to the number of
bytes pet' word for each byte size of the object machine,
so t ha t no division need be performed. Once this represen-
tat ion was chosen, the unnaturM 220 generators reduced to

r~ e sequettces of ari thmetic tests on the Data Definition [ab l .
entries interspersed with some minor ari thmetic opera-
lions on these entries. Because of the space problem and
the reassurance given by the Seventy-five Percent Rule, a
naturM choice of language in which to express the genera-

V o l u m e 6 / N u m b e r 7 / Ju ly , 1963

tors was a simple three-address interpretive code. Such a
choice leaves something to be desired in the way of ele-
gance.

l:inMly, we discuss the assignment of addresses to branctt
inst.ructions. No one-pass compiler can generate complete
code, since in response to a GO TO statement which jumps
forward the compiler cannot possibly know on the first
pass what address to put: into the branch instruction. Since,
with the subset of CoRot, being considered here, forward
branching is the only reason for a second compiler pass, it
is usually economical to perform the remaining operations
at load time by fixing up the branch addresses in the object
me lno ry.

To be more specific, assume that three statexnents, GO
TO INDECISION, occur in the source program before the
procedure name INDt~CISI()N occurs as a paragraph
1lame. Furthermore, assume that the three GO TO's gen-
erate unconditional branches (BUNs) at locations 0528,
0742 and 0856; also the nmne I N D E C I S I O N is finally de-
fitted to have the value 11234. Clearly, the desired coding is

0528 : B U N 1234

0742: BUN 1.234

0856 : B U N 1234.

This is what actually gets generated:

0528: B U N 0000

0742: BUN 0528

0856: BUN 0742

xxxx: FIXUP (0856, 1234).

The FIXUP(0856, 1234) is not loaded into memory but
is an instruction to the loader to fix up the address of the
word in location 0856 to be "1234". Before making the
change, the loader checks fox" zero in the address; if the
address is zero loading is resumed after the fixup
terminates; otherwise the nonzero address specifies the
next location to be fixed up.

In the compiler this technique requires storage for an
address plus a bit for each unique procedure name. The
bit records whether the value of the procedure name has
been defined yet by the occurrence of the name in a para-
graph or section heading. The address storage cell, ini-
tialized to zero, holds the value of the name (if it has been
defined) or the location of the most recent forward branch
to that name; this cell provides the address of every
branch instruction generated.

The object location of each instruction generated is de-
termined by a location counter, LC, wMch records the lo-
cation of the instruction currently being generated and is
incremented immediately after the generation of each im
struction.

As Figure 14 shows, the Polish operators controlling
sequencing in conditionM sentences are written at the
places given below in parentheses.

C o m m u n i c a t i o n s o f t h e ACM 405

[iF c o n d i t i o n (TW) st(J.em.ent ELSE (FW) sl(zteme.~,t (F;ST)
IF c o n d i t i o n (TW) s ta t e . zen . t (FW) t E S T) . (ESN)

Notice that the second form never a p p e a r s wi thout e~Mino
in a period. The operator names T W , T N , FW, l"N, EST,
and ESN are mnemonics for True is now, True is ~ext,
t!'alse :is now, l:'alse is next, E n d s t a t e r n e ~ t , and t,;~(t semi-
ten('.(', respectively. Where ins tead of s[a&meng i!~, , t)l~raso

< r' \ - T F N C m " N E X T ~,e r, occurs, the operat(~rs T W aim I.'\V
are replaeed by T N and .["iN.

The three basle control pa ths w i t h i n a condi t ional state-
ment are shown as dotted arrows below. T l m y are given the
names T R U E, FA LS E, and ARO U N D.

F A L S E

i .
T R U b ;

lI" condition ~ tTW) statement--- E L S E (FW) ~-~.-~ staterrte~l r -----~ (I,;N'I')
i " "

[A R O U N I) i
i

A fourth path, called N E X T , hand le s iN E X T S E NT E N C E
and will be treated later. W h e n c o n d i t i o n a l s ta teme~ts are
nested, the T R U E , FALSE, a n d A R O U N D paths e×hibit
nested last-in-first-out (LIti 'O) b e h a v i o r . As might be ex-
pected, then, three L IF t) s tacks ca l l ed TILL;E, [:AI,SIC'

~;cl!Lan(e: ()
s Ca t (,::.;(: n t.

statement: ~ I F

r;.v':
1.___1

<
SEX2ZXCE

J.£1

I NEXT
EST[

lEST ______~

Fro. 14. Production of s equence -con t ro l l i ng operators. Square
boxes conta in names of symbols wr i t t en b y act ions .

4 0 6 C o m m u n i c a t i o n s o f t h e A C M

and A.i(~.)(~ND are ~.ised by the (;er~erator to , : : r , ~ , : : ~ ~ i , . .< .~ , "

pa.tl~s._ ~l.:'~'r %i iowi i i~ table defiues the tbegi~inii~a- a.i~d ..~:!

of eaci~ path.
P~zlh]'eginnin~ ,find i

r~) *¢- [t~(~:~ test ,ul)erat,w T W or q~N
"~ " -~ F'\- E ST : \ . (1 1 N ,) F ' W o r ~

t"AL~E tesi operator }:W or ["N

The test operator i~ the t)ol ish is the last t : i~ i~ ro~!~ ,.,~, '
from a test i~ a c'o~MitioH a,.~d generates code for a f:ork~,,i

) - ; - con(litio,.ml brancl~ with lwo branch adch'esse~, a: q;I~ (~,. a~:!
a I:ALSE address.

Before speeif'viug tile generator actions i~ ~'ospo ~ ~,)
the sex'eral sequential operators let. us defi~e a few t~'rrns.
There are the thre(-' stacks, the location coun te r ~r~ and
two cells 'I'li;Mt ~ a~:t NEXT. The top element: of ti~(:~
" I ' t l [E (I:AI~SI:;, A t i ()UXD) stack stores the lota~i~).~ ¢~:
the most recent true (false, around) branct~ instr~.¢i,~.
CFhe A R O U N D stack serves double du ty a~cl also st()r~
the locations of beginnings of test coding for use i~ pr~

-) r - ,

cessing of ANI) and ()L operators.) l he N E X T e4! co:~
rains the location of the most recently gene ra t ed !)ra~:~,i~
to the beginning of the next sentence.

Several stmMard procedures occur in the (;~nera~,(,r :

(~I']NI':IIATI';C r) writes the coding or fixup :c. (I' IX[~ ~:.,
A) is as above, and when read by the loader causes ioeat i¢)~

L to have " A " put into its address, and so on.) ()X(. i . .~
puts the contents of .1 onto the LIFt) s tack S. ()t.'ii:(,~
has as its value the top of the stack S, which is ren~.ovM "
the process, l:or example, ON(OFF(S) , 7') t ransfers ~}~ '
top element from S to T.

Table ;I (lefi~ws the (lenerator responses to the se(lu('~!.i:~i

T A I ' I I ,E 3. (]ENERAT(H~.]{ESPONSES TO S E Q U E N T I A L ANI) B,~();.i.;AN

OPERATORS " i
Operator Response !:

TW OFF(AROUNI)) ; }:
(1ENli; RATE (F.[X UP (OFF (TR UE) L(7) ~ i!

TN OFF(AROUNI)'); TEMP t - O F F (T R U E) ;

(l EN E RAT E (F IX U P (T EMP, NiF] XT)) ;
iN E XT ~-- TEM I)

FW ON(LC, AR()UNI)); G E N E I t A T E (B I ; N 0);
G E N E II. AT E (F I X U P (O F F (F A L S E), L C))

FN ON(LC. AR()UNI)); G E N E R A T t g (B U N 0) ;

TEMP ~-- OFF(.FALSh;) ;
GENE [{ATE (FIX UP (TEMP, N E X T)) ;
N E X T ~-- TEMP

EST GENERATE (FIXUP (OFF (AROUNI)) , LC)
ESN GENERATIC(FIXUP(NEXT, LC)) ; N E X T
N()T TEMP ~-- OFF(FAI, SE) ;

ON(OFF(TRUE) , FALSE); O N (T E M P , "Fi~iE;
OR OFF(At{OUNI)); T E M P ~ O F F (T R U E)

(liE N ERATE (F [XUP (TEMP, O FF (TR U E))) ;
ON(TEMP, TRUE) ; TEMP ~-- OI: 'F(FAI,SE :
G EN EIIAT E (F I XU P (O FF (F ALSE),
Ot.q"(AI{OUNI)))); ON(TEMP, I,'ALSF;);
ON (LC, A R O U N I))

ANI) OFF(AROUND); TEMP ~-- O F F (F A L S E) ; i
G E N E R A T E i F I X U P (TEMP, O F F (F A L S E))) ;
ON(TEMP, FALSE); TEMP ~-- O F F (T R U E ? ;
GENERAT E (FIXUP (OFF (T R U E)

OFF(AROUND))) ; ON(TEMP, T R U E) ;
ON (LC, AROUND)

V o l u m e 6 / N u m b e r 7 / J u l y , 1963

i:ii

t~tL.
.al;

...... i

) l :) : i

pOlE

citi,~

!
iso ~,.

'ceil
@

.] :

• i

S!!':~]: :i :

:ii;

i {

a~d Boo]ea~:~ ope:ators. Note that AND, OR, and NOT
get~erat.e rxo coding.

I)epe~ding oa ghe code structure of the object machine,
mox~c than t.wo branch addresses can be generated pet" test.
Let [TEMP] detlote the contents of TEMP, and let z
be a variable whose values are the stack nalnes T R U E and
VALSE. Each t i~e a z-branch must be generated the
following oecm>:

TEMP ()FF(z); ON(LC, z);
:~E: I:Jt~A~E(BRANCH LI.EMP]).

Before any code generation for a test, ON(0, z). At the
end of the code aeneration for each test, ON(LC,
ARO UND).

This brief treatment of conditions may be clarified for
the studious reader by an example. For the sake of dis-
cussion assume the following coding to be generated in re-
sponse to the test operators LSS, EQL, and GTR:

A,B,LSS: LDA A, SUB B, BNA true address,
BUN false address;

A,B,EQL: LDA A, SUB B, BZA true address,
BUN false address;

A,B,GTR: LDA B, SUB A, BNA true address,
BUN false address.

The COBOL sentence to be considered is the following:
[F X > Y I t : A = B OR X = Y M O V E C TO D

ELSE N E X T S E N T E N C E
ELSE IF C < D N E X T S E N T E N C E ELSE

MOVE E TO F.
The Diagrammer produces the following Polish:

X, Y, GTR, TW, A, B, EQL, X, Y, EQL, OR,
TW, C, D, MOVIE, FN, EST,

FW, C, D, LSS, TN, FW, E, F, MOVE,
EST, EST, ESN.

] 'he Generator's response is given in Table 5. After loading,
4:
I the code appears in memory as shown in Table 4.

:',~ ~ Except for the handling of the " ~ " operator, which re- :~h i: •
{

:: 1: quires one bit of storage at object time, the techniques
~ :::f: given here have direct applicability to the translation of

2,i! ::~':. Huskey and Wattenburg [8], with some modification for
<i*:,: reducing storage requirements in the Generator when
:: generation is unnatural. See also Arden, Galler, and

'-: Graham [9] for optimization techniques which might be
~.,::: useful for some object computers when Generator space
b ;~f

~ is available.

::: 'On P r o d u c i n g C o m p i l e r s

i:~ii In the past few years there has been an expenditure of
I~i~;~ energy toward both writing and speaking about compilers
¢~L: which will generate copies of themselves. When a claim

i ~ of superiority for such compilers is made it usually says
Li~i~i that a compiler which can reproduce itself greatly simpli-

:::::i: ties the conversion to a new source or object language.
.~[iS~i~: Usually the arguments given in support of this claim take
;,,~'~ :: little or no account of the set of available methods which
:::::: the proposed technique would supplant.

[i~;ii: No compiler-writing technique will eliminate the re-

:::: V o l u m e 6 / N u m b e r 7 / July , 1963

quirement to analyze tile task which the compiler to be
created must perform, although it can provide a convenient
language with which to carry out the analysis. The chief
purpose of a compiler-writing technique is to reduce the
labor which follows analysis and which is necessary for the
production of the actual compiler. There are other ways to
create a cheap compiler than simply to use a compiler as
a programming aid. This article attempts to suggest one
such way.

If a fast compiler is desired more ean be said. The front
end of any fast, one pass compiler will be written with an
assembler; that 's a eorollaILv of the Seventy-five Percent
Rule and some common sense about efficiency of eom-
piler-genet'ated code. Furthermore, the really fast eom-
priers will have Olfly one pass; that 's the result of
an analysis of how much extra work must be done by a
multi-pass compiler. Notice that a corollary of these two
statements is that really fast compilers can be written only
for source languages wlfieh permit one-pass compilation.
This proposition ought to be taken into account by lan-
guage designers.

Our experience in the development of the prototype
suggests that one analyst-programmer, with one or two
understanding individuals around to talk to occasionally,
can produce a COBOL compiler (sans library and object-
program I-O control system) in a year or less, if he is pro-
vided with an assembler which permits incorporating all
the special formats he will need into the assembly lan-
guage.

Acknowledgments. Joseph Speroni of the Case Com-
puting Center worked closely with the author during the
six months of the project described here. His contribu-
tions were indispensable to the creation of the prototype
program and a significant part of the design. Before the
specific COBOL effort was begun, the author worked with

T A B L E 4. APPEARANCE OF GENERATOR OUTPUT AFTER LOADING

1000 LDA Y
1001 SUB X
1002 BNA 1004
1003 BUN 1016
1004 LDA A
1005 SUB B
1006 BZA 1012
1007 BUN 1008
1008 LDA X
1009 SUB Y
1010 BZA 1012
1011 BUN 1023
1012 LDA C
1013 STA D
1014 BUN 1015
1015 BUN 1023
1016 LDA C
1017 SUB D
1018 BNA 1023
1019 BUN 1021
1020 BUN 1023
1021 LDA E
1022 STA F
1023 next sentence

Communica t ions of the ACM 407

Gilbert St(il, now of Mitre Corporation, in an investigation
of the application of transition diagrams to the :recogni-
tion of AL(~IOL; this work led to the No-Backup Condition
~md the desirability for the sake of efficiency of separatiug
lexical and syntactical analysis. Itoth Mr. Speroni and Mr.
Stcil assisted in the proofreading of this article.

R E F E REN CI';S

1. I rons , 17]. T. A syn t ax directed compiler for AL(',OL 60.
Comm. ACM 4 (Jan. 1961), 51..

2. COBOL--1961 -Revised specifications for a common business
oriented language. U. 8. G o v e r n m e n t Pr in t ing Orifice, Wash-
ington, D. C., 1961, O-598941. Cer ta in te rminology and defini-
t ions are t aken f rom this document wi thout reference to any
subsequen t a m e n d m e n t s there to .

3. Williams, F. A. Handl ing identifiers as in terna l symbols in
language processors . Comm. AC:II 2 (June 1959), 21.

4. Cantor , I) . G . On the ambigu i ty problem of B a c k u s s y s t e m s .
J . A CM 9 (1962), 477,

5. Grau , A. A. A t rans la to r -o r ien ted symbol ic language pr(~
g ramming language. J . ACM ,9 (1952), 480.

6. Conway, M. E. and Speroni, J. Ar i thmet iz ing declarat ions:
an appl icat ion to COBOL, ('omm. , ICM 6 (Jan. 1963), 24.

7. Warshal l , S. A syn t a x directed genera tor . Proe. F, JCC, 19(~1,
2{)5.

8. Huskey, H. D. a n d W a t t e n b u r g , W . H . Compi l ing techniques
for Boolean express ions and condi t ional sta~tements in
AI , (;OL 60. Comm. ACM 4 (Jan. 1961), 70.

9. Arden, B . W . , G a t l e r , B . A . , a n d G r a h a m , R . M . An algori thm
for t r ans l a t ing Boolean express ions . J . A CM 9 (1962), 222.

T A B L E 5. (~q!;NERATO[t I~ESPONSES TO INPUT IN EXAMPLE

Polish Output Internal stales after respons(~

Ini t ial s t a t e
X
Y
G T R

TW
A
B
EQL

X
Y
EQL

OR

TW
C
I)
MOVE

F N

E S T
FW

C
D
LSS

T N
FW

LC = 1000, N E X T = 0

1000: L I)A Y LC = 1001, F A L S E = 0, T R U E = 0
1001: SUB X LC = 1002, T E M P = 0, T R U E = 1002
1002: BNA 0 LC = 1003, T E M P = 0, F A L S E = 1003
10()3: B U N 0 LC = 1004, A R O U N D = 1004
FIXUP(1002, 1004) AROUN1) emp ty , TRUF~ e m p t y

1004: LI)A A LC = 1005, F A L S E = 1003/0, T R U E = ()
1005: SUIt B LC = 1006, T E M P = 0, T R U E = 1006
1006: BZA 0 LC = 1007, T E M P = 0, F A L S E = 1003/1007
1007: B U N 0 LC = 1008, A R O U N I) = 1008

1008: LDA X LC = 1009, FALSE = 1003/1007/0, T R U E = 1006/0
1009: SUB Y LC = 1010, T E M P = 0, T R U E = 1006/1010
1010: BZA 0 LC = 1011, T E M P = 0, F A L S E = 1003/1007/1011
1011: B U N 0 LC = 1012, A R O U N I) = 1008/1012

A R O U N I) = 1008, T E M P = 1010, T R U E = 1006
FIXUP(1010, 1006) T R U E = 1010, T E M P = 1011, F A L S E = 1003/1007
FIXIl 'P(1007, 1008) F A L S E = 1003/1011, A R O U N D = 1012
FIXUP(1010, 1012) A R O U N I) emp ty , T R U E e m p t y

1012: LDA C LC = 1013
1013: STA D LC = 1014
1014: B U N 0 A R O U N I) = 1014, LC = 1015,
FIXUP(1011, 0) N E X T = 1011.
FIXUP(1014, 1015) A R O U N D e m p t y
1015: B U N 0 A R O U N D = 1015, LC = 1016
FIXUP(1003, 1016) F A L S E e m p t y

T E M P = 1011, F A L S E = 1003

1016: LDA C FALSE = 0, T R U E = 0, LC = 1017
1017: SUB D LC = 1018, T E M P = 0, T R U E = 1018
1018: B N A 0 LC = 1019, T E M P = 0, F A L S E = 1019
1019: BUN 0 LC = 1020, A R O U N I) = 1015/1020
FIXUP(1018, 1011) A R O U N D = 1015, T E M P = 1018, T 'RUE empty , N E X T = 1018
1020: B U N 0 A R O U N D = 1(}15/1020, LC = 1021
FIXUP(1019, 1021) F A L S E e m p t y

E
F
MOVE 1021: L D A E LC = 1022

1022: S T A F LC = 1023
EST FIXUP(1020, 1023) AROUND = 1015
EST FIXUP(1015, 1023) A R OU N D empty
ESN FIXUP(1018, 1023) N E X T = 0

4 0 8 C o m m u n i c a t i o n s of t h e ACM V o l u m e 6 / N u m b e r 7 / Ju ly , 1963

