
I
. i

I

I

Technical Report 844
..a do

I

0 0

-.4100- - - I I

k k
- - -

14440owppl

/OMON I A A -. 1 -
A

I

" icia InteIN41T Arti igence La oratory

11

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE. BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIIEN�FS CATALOG NUMBER

844

4. TITLE (and Subtitle) S. TYPE OF REPORT PERIOD COVERED

ACTORS: A MODEL OF CONCURRENT COMPUTATION Technical Report
IN-DISTRIBUTED SYSTEMS

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(�)

Gul Abdulnabi Agha N00014-80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADRESS lo. PROGRAM ELEMENT, PROJECT, TASK

Artific i a I I nte I I i gence Laboratory AREA WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Pro'ects Agency June 1985
14oO Wilson Blvd 13. NUMBER OF PAGES

Arl-ington, Virginia 22209 198
14. MONITORING AGENCY NAME ADORESS(11 diflor*nf from Controlling Office) IS. SECURITY CLASS. (of this report)

Office of Naval Research UNCLASSIFIED
Information Systems
Arl ington, Virginia 22217 134. ECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document 'is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entwed in Block 20, it fferent from Xeport)

is. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide if necessary and Identify by block numbor)

Distributed Systems Object-oriented Programming
Concurrency Deadlock
Programming Languages Semantics of Programs
Processor Architecture Functional Programming

A foundational model of concurrency is developed in this thesis. We
examine issues 'in the design of parallel systems and show hy the actor
model 'is suitable for exploiting large-scale parallelism. Concurrency in
actors i's constrained only by the availability of hardware resources and
by the logical-dependence inherent n the computation. Unlike dataflow
and functional programming, however, actors are dynamically reconfigu.rable
and can model.shared resources wth changing local state. Concurrency is

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (*hen Data Entor0d)

9.0 *Nfi. I , I � I .- 11 - I--- - ". - , I i -19, � ". ,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (%on Date Entor*d)

20 ASTRACT (Continue on rverse oide It noceseary and dentify by tock number)

FORMDD IJ AN 73 1473 EDITION OF i NOV 5 IS OBSOLETE

S/N 2.02-014-6601 1

20. spawned in actors using asynchronous message-passing, pipelin' nd the
dynamic creation of actors.

We define an abstract actor machine and provide a minimal programming
language for 'It. A more expressive language, which includes higher level
constructs such as delayed and eager evaluation, can be defined in terms of
the primitives. Examples are given to illustrate the ease with which concurrent
data and control structures can be programmed.

To send a communication, an actor must specify the target. Communications
are buffered by the mail system and are eventually delivered. Two different
transition relations are needed to model the evolution of actor systems. The
possibility transition models events from some view-point. It captures the
nondeterminism 'in the order of delivery of communications. The Subsequent
transition captures fairness arising from the guarantee of delivery We
provide a denotational semantics for our minimal actor language in terms of the
transition relations.

Abstraction in actors is achieved by a model in which the only observable
communications are those between actors within a system and actors outside it.
Our model makes no closed-world assumption since communications may be received
from the outside at any point in time. The model provides for the composition
of independent modules using message-passing between actors that interface the
systems composed with their external environment.

This thesis deals wth some central issues in dstributed computing.
Specifically, problems of.divergence and deadlock are addressed. For example,
actors permit dynamic deadlock detection and removal. The problem of divergence
is contained because independent transactions can execute concurrently and
potentially infinite processes are nevertheless available for interaction.

III

.Actors : \4ode Of

Concurrent Cornputation

IIn Distributed S sten-is

Gul A. Agha

III

Thi's dissertation was submitted to the University of Michigan in partial,
fulfillment of the requirements of the degree of Doctor of Philosophy n

Computer and Communication Science.

The report describes reseaxch done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-

tory's aritificial intelligence research is provided in part by the the System
Development Foundation and in part by the Advanced Research Projects
Agency of the Department of Defence under Office of Naval Research con-

tract N0014-80-C-0505.

Gul Agha 1985

A

To ga 6alticut life

In Renwry Of

&a

Rug 19S3 v-, illa 1S4

------- -- -

I

I I

III

PREFA E

It is generally believed that the next generation of computers will involve
massively -parallel architectures. This thesis studies one of the proposed
paradigms for exploiting parallelism, namely the actor odel of concurrent
computation. It i's our contention that te actor model provides a general

framework in which computation in distributed parallel systems can be
exploited. The scope of this thesis is limited to theoretical aspects of the
model as opposed to any implementation or application issues.

Many observers have noted the computational power that is likely to
become available with the advent of a new generation of computers. This
work makes a small contribution 'in te direction of realizing technology
which seems 'ust on the horizon. The possibilities that emerge from the
availability of a massive crease in computational power are simply mind
boggling. Unfortunately, humankind has generally lacked the foresight to

use the resources that science has provided in a manner that would be com-
patible wth its long-term survival. Somehow we have to develop an ethic
that values compassion rather than consumption, to acquire a reverence for
life itself. Otherwise this work, among others, will be another small step
the global march towards self-destruction.

The research reported in this thesis was carried out for the most part
at M.I.T., where I ave been working wth the Message-Passing Semantics
Group. The group is currently implementing the Apiary architecture for
Open Systems, which is based on the actor model. Mch of the develop-

ment of the actor paradigm has been 'inspired by the work of Carl Hewitt
whose encouragement and constructive criticism has been indispensable to
the development of the ideas 'in this thesis. Carl Hewitt also read and
commented on drafts of this thesis.

This thesis has been influenced by other work in the area of concur-
rency, most notably tat of Robin Mlner. Although we have shied away

from using a A-calculus like notation for an actor calculus, the transition
system we develop has a similar flavor. Our preference has been for using a

a
H

programming language notation for purposes of overall clarity in expressing

simple programs.

John Holland has provided both 'Intellectual ipetus and oral sup-

port over the years; in particular, numerous useful discussions with John

have led to a better perspective on 'Ideas in the field. I wi-1 also indebted to

William Rounds for numerous suggestions, among then-i to develop a simple

actor language and to illustrate its flavor by treating a number of commonly

understood examples. My first thorough exposure to object-oriented archi-

tectures was in a course offered by Paul Scott. Conversations with Robin

Milner, Vaughn Pratt, and Joe Stoy have provided critical feedback. Will

Clinger's thesis 'Interested me in the axea of actor semantics. Members

of the Message-Passing Semantics Group at M.I.T. have created an atmo-

sphere which made the work described here possible. In particular, Henry

Lieberman, Carl Manning, Chunka Mui and Thomas Reinhardt provided

helpful comments.

The work described in here was made possible by generous funding from

the System Development Foundation and by the support of the Artificial

Intelligence Laboratory at M.I.T.

Finally, the time during which the ideas in this thesis were developed

was a rather intense time in the lives of my family. Nothing would have

been possible without the patient cooperation of my wonderful wife Jennifer

Cole. It ust be added that it was only due to the high spirits aintained

by our son Sachal through most of his short, dfficult life that any work at

all could have been done by me.

Gul Agha

Cambridge, Massachusetts
March 1985.

0
IV

i

0 0 0
III

v

VIHi

I

2 General Dsign Decisions
2.1 The Nture of Computing Elenients

2.1.1 Sequential Processes
2.1.2 Functions 'Transforming Data Values
2.1.3 A ctors

2.2 Global Synchrony,cmd Asynchrony
2.3 Interaction Between Agents

2.3.1 Shared Viiriables .
2.3.2 Communication .
2.3.3 The Need for Btiffering

2.4 Nondeterminism and Fairness
2.4.1 The Guarantee of Delivery
2.4.2 Fairness ad the Mail System

2.5 Reconfigurability and Extensibility . 0 a . . 0 . la
2.5.1 A Resource Manager
2.5.2 Te Dynamic Allocation of Resources

8
9
9

10
12
14
17
18
18
20
22
23
24
26
26
29

3 Computation In Actor Systems
3.1 Dfining an Actor System - - - - -

32
33

v

'on en s

Preface

Table Of Contents

List Of Fgures

I Introduction

3. 1.1 Tasks . 33
3.1.2 The Bell-avior of an Actor 36

3.2 Prograiiiiiiing With Actors 43
3.2.1 The Bsic Constructs 44
3.2.2 r4.jx-iiiil)les . 51

3.3 Mininial Actor Tanguages 58
3.3.1 A Simple Actor LaTlgtiage 59
3.3.2 A c t . 63

4 A More Expressive Language 66
4.1 Several Incoming Coinnumications 67

4.1.1 A Static Topology 67
4.1..2 A Dynan-lic Topology 70

4.2 Insensitive Actors 75
4.3 Sequential Coinposition . 81
4.4 Delayed --md Eager Evaluation 84

4.4.1 Priniitive Actors . 85
4.4.2 Delayed Evaluation 87
4.4.3 Representing infinite Structures 89
4....4 Eager Evaluation . 95

5 A Model For Actor Systems 98
5.1 Describing Actor Sys tellis 100

5.1.1 Configurations . 100
5.1.2 Requirements for a Transition Relation 102

5.2 Initial Configtirations . 103
5.2.1 Forinalizing Actor Behaviors 104
5.2.2 The Meaning of Behavior Definitions 108
5.2.3 Mapping Actor Prograins 115

5.3 Transitions Between Configurations 117
5.3.1 Possible Transitions 119
5.3.2 Subsequent Transitions 122

6 Concurrency Issues 127
6.1 Problems 'in Distributed Computing 128

6.1.1 Divergence . 128
6.1.2 Deadlock . 132

Vi

T

pol"No" M I

6.1.3 Mutual Exclusion. . o # * e * # * # # # . . . 137
6.2 Graphic Representations . 138

6.2.1 Stream s 138
6.2.2 Message Channels 140

7 Abstraction And Cornpositionality 144
7.1 Abstraction 145

7.1.1 Atom icity . 146
7.1.2 Nesting Transactions '148

7.2 Compositionality 150
7.2.1 Actors and Ports . 151
7.2.2 Encapsulation in Actors # * .*. 1. 152
7.2.3 Composition Using Message-Passing 154
7.2.4 Rules for Composition 155

7.3 The Brock-Ackerinan Anomaly 161
7.4 Observation Equivalence 166

8 Conclusions 172

A Asynchronous Communication Trees 176

References 187

vii

I PIR � TT-- -- 1. � � I

An indeterminate applicative program
History sensitive functions
A synchronizing mechanism
A static graph linking the resource-manager to

An abstract representation of an actor
An abstract representation of transition. . . .

Actor event diagrams

A factorial computation . . . * . #

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

12
13
16
28

* & 0 . 0 0 . .

two devices.

38
39
42
56

4.1 A fixed topology for a two input function. 69
71

0 73
0 * h 78

. . . . 0 96

4.2
4.3
4.4
4.5

6.1
6.2
6.3
6.4

7. i
7.2
7.3

Dynamically accepted input
Implementing call expressions . . .
Insensitive actors
Eager evaluation

A perpetual loop .
Dining Philosophers .
Streams and replacement in actors
Communication channels

Synchronous composition .
Encapsulation in actor systems
The Brock-Ackerman anomaly

130
133
140
142

150
153
165

A.1
A.2
A.3

A typical Asynchronous Communication 7�ee
Possible nondeterministic transitions. . * . * . . . * . * 4 .
A new receptionist definition

178
182
1.83
183A.4 Acceptance of a communication by an external aetor.

*

Vill

0

is 1 ures

a er

n ro uc ion

The purpose of any language 'is to communicate; that of a programming

language is to communicate to a computer actions 'it ought to perform.

There are two different sorts of ojectives one can,emphasize 'in the design

of a programming language: efficiency 'in execution, zand expressiveness.

By efficiency," we refer here only to the speed wth which the actions

implied in a program can be carried out by the computer. In a precise

sense, the most efficient programming language would be one that literally

told the computer what actions to carry out; in other words, a machine

language.' Expressiveness refers to the ease with which an program can

be understood and shown to behave correctly. A programming language is

expressive to the extent that it can be used to specify reasonable behaviors

in the simplest possible terms.

'Of course, every kind of processor has its own machine language. Some of these lan-

guages may be "inherently' more efficient than others.

1

CHAPTER 1. INTRODUCTION 2

A programming language that iaximized efficiency would ot necessar-

ily lead to the specification of programs with the best performance. This is

Simply because the programmer may end up spending ore time figuring

out how to express rather than what to express. The best gains in per-

formance are to be achieved by discovering less coniputatiohally complex

methods ofachieving the same result.

By and large, the goal of introducing new programming languages has

been to make it simpler to express more complex behavior. Historically,

the class of actions computers were first expected to carry out was that of

computing well-defined athematical fnctions. owever such computa-

tions are no longer the only tasks a modern cmputer performs. In fact, the

storage of information, sorting and searching through such information, and

even exploration of an iprecisely defined domain in real-time ae emerg-

ing as significant applications. For example, computerized databases, such

as the records maintained by a state Motor Vehicle Bureau, and artificial

intelligence applications, such as computerized vehicles pioneering the nav-

igation of Martian surface, axe common uses of the computer. This more

general use of computer programs has, in and of itself, 'Important conse-

quences for the class of behaviors we are interested in expressing.

Although newer programming languages have generally favored con-

siderations of expressiveness over those of efficiency, the ability to solve

complex problems by means of the computer has nevertheless increased.

This remarkable trend has been achieved by creating faster and bigger pro-

cessors. However, there is now good reason to believe that we may have

III

--

%1--"L'li.APT4R 1. INTRODUCTION 3

approached the point of diminishing returns in terms of the size and speed

of the individual processor. Already, saller processors would be far ore

cost-effective, if we could use large nunibers of them cooperatively. In par-

ticular, this iplies being able to use them in parallel.

This brings us to the central topic of consideration in this tesis; naniely,

the developnient of a suitable language for concurrency. By concurrence

we mean the potentially parallel execution of desired actions. Actually,

concurrency by itself is not the real issue; after all concurfency has been

exploited for a long tme 'in the software revolution caused by tmesharing.

The key difference between the now classic problem of operating systems,

and or desire to exploit concurrency, is that in the former there is little

interaction between the various "jobs" or "processes' that are executed

concurrently. Indeed, te correctness of an operating system is dependent

on aking sure that none of the numerous (user-defined) processes affect

each other.

Our problem is quite the reverse: we wish to have a number of processes

work together in a meaningful manner. This doesn't really 'imply that there

are no important lessons to be learned from operating system theory. For

example, notice that we switched from talking about "processors" to talking

in terms of "processes". A processor 'is a physical machine while a process

is an.abstract computation. From operating systems, we know that we may

improve over-all performance of a processor by executing several processes

concurrently instead of sequentially. How the processors are utilized is an

issue for the underlying network architecture supporting the language. Our

CHAPTER 1. INTRODUCTION 4

interest is in a model of concurrency that exploits concurrently executed

processes without assuming anything about teir concrete realization. The

processes may be distributed over a network of processors which can be used

in parallel; owever, if or programining language did not spport concur-

rency such a distributed architecture would not result in any iprovement

in. performance over a single processor.

Actually, we are not so much concerned with a particular programming

language, but rather, with the meta-linguistic 'issues behind the constructs

of a concurrent language. The operational semantics of a language defines

an instruction set for computation on an abstract machine. (More precisely,

in case of te actor model, a system of machines). We are iterested in the

characteristics of the underlying models of computation. Specifically we

will examine the issues of expressiveness and efficiency in the context of

concurrent computation.

There are some intrinsic reasons for a theory of concurrency as well. One

of these is the relevance of concurrency to an understanding of intelligent

systems and communities. In particular, natural systems that appear to

learn or adapt are all intrinsically parallel, and in fact ql'te massively so:

the brain of animals, ecological communities, social organizations whether

these are of human or non-human animals, are all examples of distributed

systems that exploit concurrency. In fact, the genetic algorithm which is

the foundation for adaptation and natural selection is itself ntrinsically

parallel [Holland 75]. The success of tese mechanisms 'is sufficient grounds

to interest one in the study of the plications of concurrent processing.

'. I Iowa _1 :� --, -, 1, I " . -,

CIIAPTE4R 1. INTRODUCTION 5

The rest of this chapter gives an overview of the thesis. The next chap-

ter reviews the general design decisions that inust be made in any odel

of concurrent computation. In Chapter 3 we describe the behavior of an

actor and define a smple actor language which 'is used to show some spe-

cific examples of actors. In the following chapter, we then define several

higher level constructs which make the actor language more expressive, and

provide a mechanism for abstraction 'in actor systems. These constructs are

definable 'in terms of the primitive actor constructs and re not considered

as part of the actor formalism. Chapter 4 lso defines an expressional lan-

guage, and discusses different strategies for the evaluation of expressions.

Chapter defines an operational semantics for actors by specifying a

transition relation on configurations of actor systems. The guarantee of

mail dlivery is formalized by defining a second transition system which

expresses this property. We take the primitive constructs of an actor lan-

guage and show how one can provide tese an with operational definition.

In chapter 6 we are concerned with 'issues raised 'in related models.

There are some sgnificant dfficulties in exploiting concurrency: Distributed

systems often exhibit pathological behavior such as divergence and dead-

lock. The'actor model addresses these problems at a variety of levels.

Divergence can be a useful property because of the guarantee of delivery-

deadlock in a strict sense does not exist in an actor 'System. Besides, the

asynchronous, buffered nature of communication in actors provides mech-

anisms to detect deadlock in a semantic sense of the term. Chapter 6 also

explores the relation between some aspects of dataflow and actors; in pax-

ICHAPTER 1. INTRODUCTION 6

ticular, the similarity between replacement in actors and wat has been

claimed to be te Nide-effect free" nature of computation in both systems.

Chapter 7 tackles the 'issue of abstraction and compositionality in actor.

systems. -In particular, we discuss the nature of open systems and relate it

to the instifficiency of te history relation observed in [Brock and Acker-

man 771. Tile right level of abstraction would permit us to treat equivalentI

systems as semantically identical and yet differentiate between systems that

are unequal. We discuss the nature of composition in actors and show how

we can model composition based on message-passing.

The final chapter summarizes some of the 'Implications of the work in

this thesis. The Appendix uses tools from Milner's work to define an ab-

stract representation for actor systems in terms of what are called Asyn-

chronous Communication Trees. This representation provides a suitable

way of vsualizing computations in ctors.

Contributions

The specific contributions of this thesis are smmarized below. This thesis

provides:

0 A critical overview of the various proposed models of concurrency.

A smple outline of the actor model and the specification of minimal

primitive constructs for actor languages.

e A transition system for actor systems and a structured operational

semantics for an actor language.

-IF- -----, -- -- -- ---- - ----- ------

�-w

CHAPTER 1. INTRODUCTION 7

e A paradigm for addressing problems 'in distributed computing which

is suitable for computation n open systems.

* A model to spport compositionality and abstraction from irrelevant

detail.

a er

xenera es n ecisions

Several radically different models of concurrent computation have been pro-

posed. In this chapter, we will review the concepts underlying each -of

the proposed odels. Our interest is 'in comparing and contrasting their

primitives with a view towards determining their generality. Of particular

concern to us i's the relative case with which massively parallel architec-

tures can be eploited. The design decisions fundamental to any model of

concurrent computation include:

o the nature of the computing elements

* global synchrony versus asynchronous elements

9 the mode of interaction between'computing elements

9 degree of fairness

* reconfigurability and extensibility

8

CHAPTER 2 GENE RAL DE, SIGN DECISIONS 9

This list is by no means exhaustive but represents the aspects we think

are the ost sgnificant. Tere are other issues, sch as the linguistic issues

in the specification of a language based on each of the models, but we will

ignore such details in our present discussion. We dcuss each of the design

issues in the sections that follow.

2A The Nature of Coniputing Elenients

The elements performing computations are, in an abstract denotational

sense, some knd of a function. However, the domain and range of the

functions defining the behavior of the elements is quite dfferent in each

of the models. Ignoring some significant details we identify three distinct

kinds of computational elements:

1. Sequential Processes.

2. Functions transforming data values.

3. Actors.

2.1.1 Sequential Processes

The operational notion of a sequential process is that it performs a sequence

of transformations on states, where a state is a map from locations to

values such as integers. In addition, the transformations may depend on

certain "inputs" and produce "outputs." It is this latter aspect which makes

the denotational semantics of systems of sequential process more difficultI

I --------- 1- -- -I----

CIIAPTER2. GENERALDESIGNDECISIONS 10

in particular, explicit consideration of te possibility of deadlock (when a

process is waiting for iput that never arrives) is required [Brookes 83].

Sequential processes re themselves, predictably, squential in nature, but

can execute 'in parallel with each other.

In a sense, sequential processes re inspired by algol-like procedures in

sequential prograniming Eamples of systems based on the concept of se-

quential processes include Concurrent Pascal [Brinch Hansen 771, Commu-

nicating Sequential Processes [Hoare 77], and the Shared Va riables model

[Lynch and Fischer 81].

2.1.2 Functions Transforming Data Values

A second kind of computational element is a function which acts directly

on data wthout the benefit or burden of a store'., Such functional models

are derived from the A-calculus based languages such as Pure Lisp c-

Carthy 59]. Examples of concurrent systems using some variant of the

functional model include dataflow [Agerwala and Arvind 82] and networks

of parallel processes [Kahn and MacQueen 77]. In dataflow architectures, a

stream of (data) values pass through functional agents [Weng 75]. The con-

currency in the system is a result of being able to evaluate the arguments

to the functions in parallel.

Perhaps the simplest model of systems using functions is an indeter-

minate applicative system where the call-by-value is used to evaluate the

arguments and the result of the computation is a single value. Computa-

tion in such systems fans in as arguments are evaluated and passed along.

.71 -wMMMIRM I I I M.-

CHAPTER2. GENERALDESIGNDECISIONS 11

Fig. 21 shows an example of concurrent evaluation in an indeterminate

applicative system.

The functional elements may take several parameters as inputs but,

given the parameters, can output only a single value. The same value

may, however be sent to different computational elements. Unfortunately,

functions are history insensitive [Backus 78]. This can be a problem when

modeling the behavior of systems that can change their behavior over time.

For example, consider the behavior of a turnstile with a counter which.'

records the number of people passing through 'It. Each time the turnstile is

turned, it reports a new number on the counter. Thus its behavior is not

simply a function of a "turn" message but sensitive to the prior hstory of

the computation. The turnstile problem is essentially equivalent to that of

generating the list of all integers, producing thern one at a time 'in response

to each message received.

This problem is dealt wth in some functional systems by feedback, using

cyclic structure's as shown in Fig. 22 adapted from [Henderson 80]. The.

turnstile is represented as a function of two inputs, a "turn" message and

an integer n. Its behavior is to produce the integer n + in response. The

links act as first-in first-out channels, buffering the next value transmitted

until the function has been evaluated and accepts more input. (The saine

value is sent down all the lnks at a fork in the diagram.)

CIIAPTER2. GENERALDESIGNDECISIONS 12

zy wx

Figure 2: An indeterminate applicative program. The parameters of the

function are evaluated concurrently.

2.1.3 Actors

Actors are computational agents which map each incoming communication

to a 3-tuple consisting of:

1. a finite set of communications sent to other actors;

2. a new behavior (which will govern the response to the next commu-

nication processed); and,

3. a finite set of new actors created.

III

.,M. .- v i P

CHAPTER2. GENERALDESIGNDECISIONS 13

Figure 22: History sensitive behavior as evaluation of a function with feed-

back.

Several observations are in order here. Frstly, the behavior of an actor

can be history sensitive. Secondly, there is no presumed sequentiality in

the actions an actor performs since, mathematically, each of its actions is

a function of the actor's behavior and the incoming communication. And

finally, actor creation is part of the computational model and not apart

from it. An early precursor to the development of actors is the concept of

objects in SIMULA [Dahl, et al 70] which represented containment of data
'th the operations and procedures on such data a single object.

wi in

Actors are a more powerful computational agent than sequential po-

cesses or value-transforming fnctional systems. In other words, it i's possi-

ble to define a purely functional system as an actor system, and it is possible

to specify arbitrary sequential processes by a suitable actor system, but it

is not possible to represent an arbitrary actor system as a system of sequen-

tial processes or as a system of value-transforming fnctions. To see how

CHAPTER2. GENERALDESIGNDECISIONS 14

actors can be used to represent sequential processes or fnctional programs

is not difficult: both are special cases of te ore general actor model. If

the reader is not convinced of tis, the achinery developed later in this

thesis should inake it clear.

It is easy to see' why the converse is.true: actors may create other ac-

tors; value-transforining fnctions, such as the ones used in dataflow can

not create other functions and sequential processes, as in Communicating

Sequential Processes, do not create other sequential processes.' In the se-

quential paradigm of computation, this fact would not be relevant because

the same computation could be represented, mathematically, in a system

without actor creation. But in the context of parallel systems, the degree

to which a computation can be distributed over its lifetime is an important

cons'derat'on. Creation of new actors garantees the ability to abstractly

increase the distributivity of the computation as it evolves.

2.2 Global Synchrony and Asynchrony

The concept of a unique global clock is not meaningful 'in the context of a

distributed system of self-contained parallel agents. This intuition was first

axiomatized in [Hewitt and Baker 77] and shown to be consistent with other

laws of parallel processing 'in [Clinger 81]. The reasoning here 'is analogous

'Sequential processes may activate other sequential processes and multiple activations

axe permitted but te topology of the individual process is still static. The difference

between activation and creation is significant in the extent of reconfigurability afforded

by each.

-IF

CHAPTER 2 GENERAL DESIGN DECISIONS 15

to that in special relativity: information in each computational agent is

localized within that agent and ust be communicated before it is known

to any other agent. As long as oe assumes that there are Hinits as to how

fast information may travel from one computational agent to another, the

local states of one agent as recorded by aother relative to its own local

states will be different fro te observations done the other wy round.

We my conclude that, for a dstributed system, a unique (linear) yobal

time is not definable. Instead, each computational agent has a ocal tme

which linearly orders the events as they occur at tat agent, or lternately,

orders the local states of that gent. These local orderinas of events are

related to each other by the activation ordering. Te activation ordering

represents the causal relationships between events happening at different

agents. Thus the global ordering of events 'is a artial order in which events

occurring at different computational agents are unordered less they are

connected, directly or indirectly, because of one or more causal lnks.

This is not to iply that it is impossible to construct a distributed

system whose behavior is such that the elements of the system cn be ab-

stractly construed as acting synchronously. An example of much it syste is

Cook's hardware modification machine [Cook 81]. Te hardware niodifica-

tion machine is a mathematicalabstraction useful for studying the probleins

of computational complexity in the context of parallelism.

The problem of constructing a synchronously fnctioning system 'is es-

sentially one of defining protocols to cope wth te fndamental epistemo-

logical limitation in a distributed system. To see ow the lements of a

16CHAPTE.112. GENERALDESIGNDECISIONS

system can be construed to be synchronous, consider the exaimple shown

in Fig 23.

Figure 23 A synchronizing mechanism A Global Master ontrols the ele-

ments of the system.

Assume one element, called the global master, controls when each of

the elements in the system may continue, all elements perform some re-

determined number of actions, report to the global master ad wait for

another "go" message from the global master before proceeding. The global

master knows how many elements there are 'in the system and waits for each

of them to report before sending out the next "go" message. Conceptually,

we can think of each of the elements acting synchronously and the system

passing through execution cycles on a "global clock". We can ignore the

III

I I - -1 -

CIIAPTER2. ENERALDESIGNDECISIONS 17

precise arrival order of messages to te global master, because i such a

system the xact order may be irrelevant.

The 'Important point to be made is that any such global synchronization

creates a bottleneck wich can be extremely 'Inefficient 'in the context of a

distributed environment. Every processmust wait for the slowest process

to complete its cycle, regardless of whether there is any logical dependence

of a process on the results of another. Furthermore, it is not altogether

obvious that such global synchrony makes 'it any easier to write programs

in general. Although systems designed to act synchronously may be useful

in some particular applications, we wll deal wth the general asynchronous

distributed environment; the behavior of the synchronous system can al-

ways be derived as a special case. (See, for example, the dscussion in

chapter 4 of mechanisms involving an effectively, prioritized exchange of

communications between two actors.)

2.3 Interaction Between Agents

How the, elements of a concurrent system affect each other is one of the most

salient features of any model of concurrent computation. The proposed

modes of interaction between the computational elements of a system can

be dvided into two different classes:

1. variables common to different agents; and,

2. communication between 'Independent agents.

We take up these two modes of interaction in turn.

CHAPTER 2. G NliaRAL DESIGN DECISIONS 18

2.3.1 Shared Variables

The basic idea behind the -shared variables approach is tat the various

processes can read and write to variables common to more than one process.

When one process reads a variable wich has been changed by another, its

subsequent behavior is modified. This sort of common variables approach

is taken in [Lynch and Fischer 81].

The shared viables approach does not provide any mechanism for

abstraction and information hiding.. For inst--cmce, there ust be pre-

determined protocols so tat one process can determine if aother has

written the results 'it needs into the relevant variables. Perhaps, even more

critical is the fact that this approach does not provide ny mechanism for

protecting data against arbitrary and improper operations. An 'Important

software principle is to combine the procedural and declarative information

into well-defined objects so that access to data is controlled. and modularity

is promoted in the system. This sort of absolute containment of information

is also an 'Important tool for synchronizing access to scarce resources and

proving freedorn from deadlock. In a shared variables model, the program-

mer has the burden of specifying the relevant details to achieve eaningful

interaction.

2.3.2 Communication

Several models of concurrent computation use communication between in-

dependent computational agents. Communication provides a mechanism

by which each agent retains the integrity of information within it. There

(3/1IAPTEM2. GENERALDESIGNDECISIONS 19

are two possible assumptions about te mature of cmmunication between

independent computational lements; communication can be considered to

be either:

• Synchronous, were the sender ad te receiver of a communication

are both ready to communicate- or,

• Asynchronous, where the receiver does not have to be ready to accept

a communication wen te sender sends it.

Hoare's Communicating Sequential Processes ad Milner's Calculus of

Communicating Systems assume synchronous communication while the ac-

tor model (Hewitt 77] and dataflow architectures [Ackerman 84] do not.

Let's examine each assuniption and its iplications. A concurrent com-

putational environment is eaningful only 'in the context of a conceptually

distributed system. Intuitively, there can be no action at a distance. This

implies that before a sender can know that the receiver is "free" to ac-

cept a communication, 'it must send a communication to the receiver, and

vice-versa. Tus one may conclude that any model of synchronous-commu-

nication is built-on asynchronous communication.

However, the fact that synchronous communication must be defined

in terms of asynchronous communication does not necessarily imply that

asynchronous communication is 'Itself the right level of abstraction for pro-

gramming. In particular, an argument could be made that synchronous

communication should be provided in any programming language for con-

current computation if it provides a means of writing programs without

1.� I -,Ir

CIIAPTER2. GENERALDESIGNDECISIONS 20

being concerned with detail which inay be required in all computation.

The qestion then becomes if synchrony in cominunication is elpful as a

universal assumption for a programining language. We examine this issue

below.

2.3.3 The Need for Buffering

Every communication 'is of some finite length and takes some finite time

to transmit. During the time that one communication is being sent, some

computational agent may try to send another communication to the agent

receiving the first communication. Certainly, one would not want to inter-

leave the arbitrary bts of one communication with tose of another! In

some sense, we wish to preserve the atomicity of the communications sent.

A solution to this problem is to provide a "secretary" to each agent which

in effect tells all other processes tat the agent is "busy."' Essentially, the

underlying system could provide sch a "secretary" 'in an impleinentation of

a model assuming synchronous communication, as 'in a telephone network,

There is another problem in assuming synchronous communication.

Suppose the sender is transmitting information faster than the rceiver

can accept it. For example, as this thesis is typed in on a terminal, the

speed of the typist may at times exceed the rate at which the computer 'is

accepting the characters. To get around this problem, one could require

that the typist type only as fast as the editing process can accept the char-

acters. This solution 'is obviously untenable as it amounts to typing one

2This could be done for instance by simply not responding to an incoming communication.

CIIA P TE R 2 G ENERAL DESIGN DECISIONS 21

character at a tinic and waiting for a response (in fact, tbe rgument would

continue to te level of electrons!). The other solution i's to provide the

systern with te capability to buffer the segments of za communication.

Of course, if te underlying system 'is rquired to buffer segments of

a communication it can eually well be required to buffer dfferent com-

munications so that the sender does ot have to be busy waiting" for the

receiver to accept a communication before it proceeds to do sorne other pro-

cessing. Thus buffered asynchronous communication affords us efficiency 'in

execution by pipelining the actions to be performed. urthermore, syn-

chronous communication can be defined in te framework of asynchronous

3communication. The mechanism for doing so 'is simply "freezing" the

sender until the receiver acknowledges the receipt of a communication [He-

witt and Atkinson 771.

There is yet another significant advantage in buffered asynchronous

communication. It may be important for a computational element to com-

municate with itself; in particular, this is the case when an element defines

recursive com utation. Communication with oneself 'is however impossi-

ble if the receiver must be free when the sender sends a communication:

this situation leads, immediately, to a deadlock because the sender will be

"busy waiting" forever for itself to. be free. The problem actually is worse:

The notion of synchrony as simultaneity is physically unrealizable. The failure of .8i-

multaneity at a distance occurs because whether two clocks axe synchronous is telf

dependent on the particular frame of reference in which the observations axe carried

out [Feynman, et al 19651. We assume any notion of synchronous communication i's a

conceptual one.

CIIAPTER2. GENETALDESIGNDECISIONS 22

no mutually recursive structure is ossible ecause of te same reason. Mu-

tual recursion, owever, may not be so transparent rom the code. There is

no a priori problem with sch recursive structures]if te communications

are buffered.

Both te dataflow architecture for functional programming [Ackernian 82]

and te apiary architecture for actor systems ewitt 80] provide the capa-

bilities to buffer communications from synchronous computing elements.

However, it is not altogether obvious how the computational elements to

provide for buffering communications can be defined in a fnctional Ian-

guage (as opposed to simply assumed). Such buffers are readily defined

actor languages.

2A Nondeterminism and Fairness

Nondeterminism arises quite inevitably in a dstributed environment. Con-

ceptually, concurrent computation is eaningful only in the context of a

distributed environment. In any real network of computational agents, one

can not predict precisely when a communication sent by one agent will ar-

rive at another. This is particularly true when the network is dynamic and

the underlying architecture is free to improve performance by reconfigur-

ing the virtual computational elements. Therefore, a realistic model must

assume that the arrival order of communications sent is both arbitrary

and entirely uknown. In particular, the use of the arbiter as the hard-

ware element for serialization mplies that the arrival order is physically

-HI --- I -

I'll ON 0101 wl� !" 1, -1- 1--s' , �I........

CHAPTER 2 GENERAL DESIGN DECISIONS 23

indeterminate.

2.4.1 The Guarantee of Delivery

Given that a coniniunication may be delayed for an arbitrarily long pe-

riod of tme, the question arises whether 'it 'i's reasonable to assume that a

communication sent is always delivered I a purely physical context, the

finiteness of the universe suggests that a communication sent ought to be

delivered. However, the issue is whether bffering means that the guarantee

of delivery of communications 'is impossible. There are, ralistically, no un-

bounded buffers in the physically realizable universe. Tis is similar to the

fact that there are no unbounded tacks 'in the universe, and certainly not

in our processors, and yet we parse recursive control structures 'in algolic

languages as though there were an infinite stack. The lternate to assuming

unbounded space is that we ave to assume some specific finite limit; but

each finite mit leads to a different behavior. There is, however, no general

limit on buffers: the size of any real buffer will be specific to ay particular

implementation and 'its limitations. The point of building a semantic model

is to abstract away from such details 'inherent 'in any implementation.

The guarantee of delivery of communications is, by and large, a property

of well-engineered systems that should be modeled because it has significant

consequences. If a system did not eventually deliver a communication it

was buffering, it would have to buffer the communication indefinitely. The

cost of such storage is obviously undesirable. The guarantee of delivery

does not assume tat every communication is "meaningfully" processed.

CIIA P TE R 2 G ENERAL DESIGNDECISIONS 24

For example, in the actor odel, the process'Ing of comm-unications'is de-

pendent on the behavior of individual actors, ad tere inay be classes of

actors which ignore all communications or 'Indefinitely buffer some com-

munications. In particular, the guarantee of delivery provides one with

mechanisms to reason about concurrent programs so that results --analogous

to those established by reasoning about the total correctness i sequential

programs can be derived; 'in some cases, the guarantee helps prove termi-

nation properties.

2.4.2 Fairness and the Mail System

Not all algorithms for delivering communications result in a mail system

that guarantees delivery. For instance, a mail system that always delivered

a "shorter" communication in its buffer may not deliver all communica-

tions. Consider an agent, in such a system, which sent itself a "short"

communication in response to a "short" communication. If a "long" and

a "short" communication are concurrently sent to this actor, it may never

receive the "long" communication.

The guarantee of delivery is one form of what 'is called fairness. There

are many other forms of fairness sch as fairness over arbitrary predicates,

or extreme fairness [Pnueli 83] where probabilistic considerations are used.

The guarantee of delivery of communications is perhaps the weakest form

of fairness one can define (although it is not clear to me what sort of formal

framework one would define to establish this rigorously). The question

arises 'if one sould assume a stronger form of fairness; for example, that

IF

1115111,�- ,- -� -.-I

CHAPTER2. GENERALDESIGNDECISIONS 25

the communications sent are received in an probabiflistically random order

regardless of any property they hve.

Consider a system that chooses to deliver p to three sort" commu-

nications for every "long" communication it delivers (if the shorter com-

munications are found). Such a ystem would still satisfy the requirement

of guaranteeing delivery of communications bt would not satisfy some

stronger fairness requirements, for example, the requirement that all com-

munications sent have an equal probability of being te next to be delivered.

On the other hnd, it may be very reasonable to have such an underlying

mail system for some applications. We prefer to accept the guarantee of

delivery of communications but not any form of fairness stronger than thi's

guarantee. We will study the implications and sefulness of the guarantee

later in this thesis.

Of course, given the lack of a unique order of events in a distributed

system, what the definitions of stronger forms of fairness really mean is

not altogether obvious. Our initial cognizance 'in such cases can sometimes

be isleading because our 'Intuitions are better developed for sequential

processes whose behavior is qualitatively different. In particular, the mail

system 'is itself dstributed and the delivery of communications, even ac-

cording to a given observer, may overlap in time.

CHAPTER 2 GENE RAL DESIGN DE CISIONS 26

2.5 Reconfigurability and Extensibility

The patterns of communication possible in any system of processes defines

a topology on those processes. Each process (or computational -agent) may,

at any given point in its local time, coniniunicate with some set of pro-

cesses. As he computation proceeds, a process my either communicate

only with the same processes it could communicate with at the beginning

of the computation, or it may evolve to communicate with other processes

that it could not communicate with before. In the former case, the nter-

connection topology i's said to be static; and 'in the latter, it 'is dynamic.

Any system of processes 'is somewhat easier to analyze if its 'Intercon-

nection topology is static: the graph representing the connections between

the processes is constant and hence relatively more 'Information about the

system is available at compile-time. Perhaps because of this structural

simplicity in the analysis of static topologies, many models of concurrency

assume that a process can communicate with only the sameprocesses over

its life-time. A static topology, however, has severe limitations in represent-

ing the behavior of real systems. We illustrate these limitations by means

of the following example.

2.5.1 A Resource Manager

Consider the case of a resource-manager for two printing devices We

may assume for our present purposes that the two devices are identical in

their behavior and therefore interchangeable. One would like this resource-

CIIAPTER 2 GNE RAL DE, SIGN DE CISIONS' 27

manager to

1. Send the print requests to the first vailable printing device.

2. When a print request has been processed, to send a receipt to the riser

requesting the printing.

These requirements imply that the resource-manager be able to commu-

nicate with a different device each tme. Thus a system where the conimu-

nication lnks were static and communications were sent down these links

without the resource-manager being able to choose which link ought to be

used, would either send a communication to both the devices or to nei-

ther. This 'is the situation n a dataflow graph shown 'in Fig. 24. However,

resource-manager should be able to choose were 'it wants to send a com-

munication depending on which device is free), suggesting that the edges

represent only potential communication channels and not actual ones. The

true links would be dynamically determined.

Suppose a system allowed the resource-manager to decide which of the

two printing devices it wanted to communicate, with but relied on syn-

chronous communication. The use of resources would be inefficient if the

resource-manager was "busy waiting" for one particular printing device

while the other one was idle. To get aound this'problem, suppose we re-

quired the resource-manager to keep a track of which device, if any, was

idle and to attempt to communicate only with such a device. In this case,

when a busy device becomes idle, it must inform the resource-manager that

it 'is free. Once again, if the resource-manager is required to specify which

CHAPTE, R. 2 GENE RAL DESIGN DECISIONS 28

Figure 24 A tatic graph linking the resource-manager to two devices.

particular device it will accept input from, and be "busy waiting" to do so,

the problem persists as it can not predict which one would be free first.

Requiring a receipt to the user introduces other complications. For

one, the number of users will vary with time. This variation by itself

creates the need for a dynamic graph on the processes [Brock 83]. For

another the maximum number of users need not be constant. In a system

that might evolve to 'Include more resources, the addition of the increased

capacity should be graceful and not require the redefinition of the entire

system. This implies that a solution using a fixed number of communication

IF

CIIAPTER2. CENERALDESIGNDECISIONS 29

channels is not very satisfactory in an open system which is constantly

subject to growth Hewitt and de Jong 82]. For instance, if we wanted

to add a third printing device, we sould not necessarily have to program

another resource-manager but rather should be able to define a resource-

manager which can incorporate the presence of a new printing device when

sent an ppropriate message to that effect.

A system that 'is not only reconfigurable but extensible 'is powerful

enough to handle these problems. Reconfigurability is the logical pre-

requisite of extensibility 'in a system because the aility to gracefully extend

a system is dependent on the ability to relate the extension to the elements

of the system that are already in existence. An elegant solution to this prob-

lem of resource management using an actor systein can be found in [Hewitt,

et al 841.

2.5.2 The Dynamic Allocation of Resources

Extensibility has other important consequences. -It allows a system to dy-

namically allocate resources to a problem by generating computational

agents in response to the magnitude of a computation required to solve

a problem. The precise magnitude of the problem need not be known 'in

advance: more agents can be created as the computation proceeds and the

maximal amount of concurrency can be exploited.

For example, consider a "balanced addition" problem, where the a-

dition has to be performed on a set of real numbers. If the numbers are

CHAPTER 2. GENE, RAL DESIGN DECISIONS 30

added sequentially,

(...ffla, a2) + a) + a4)+... + an)

then there is a classic problem of "propagation of errors," discussed in

[Von Neumann 58]. The problem occurs because real numbers axe imple-

mented using floating-point registers. Computational errors, instead of

being statistically averaged, become fixed as rounding errors move to more

significant bits. It i's preferable to add the numbersin pairs,

... ffla, a2)+ (a3+ a4)) + (a + a) + + ... + (an-I+ an)...

which results in the error being statistically reduced by the "law of large

numbers.'

Addition pairs 'is 'Ideal for concurrent computation because it can be

done using parallel computation in log-time, as opposed to linear time when

done sequentially. Now if we had a program to carry out this addition in

pairs, we may like the program to work even if we input a different number.

of real numbers each time. Thus we can not define'a static network to

deal with this problem [Emden and Filho 82]. Addition pairs is easily

accomplished in an actor system by creating other actors, called customer4,

and doing the evaluations concurrently. Such concurrency is the default n

actor languages.

Reconfigurability in actor systems is obtained using the mail system

abstraction. Each actor has a mat'l address which may be freely commu-

nicated to other actors, thus changing the 'Interconnection network of the

IIF

CHAPTEl 2 GENERAL DPS-IGN DE CISIONS 31

system of actors as it evolves. We will dscuss the specific mechanis-nis later

in this thesis.

er

orn u a io n n c or

s ens

In this chapter, we examine the structure of c6niputation in the actor

paradigm. The discussion here will be 'Informal and intuitive, deferring

consideration of the technical aspects to later chapters. The organization

of this chapter is as follows. In first section, we explain actors and commu-

nications. The second section outlines the constructs which suffice to define

a minimal actor language. We give some examples of actor programs to

illustrate the constructs using only structured "pseudo-code." In the final

section, kernels of two simple actor languages are defined and a program

example is expressed in each of these languages. The two languages, SAL

and Act, are both mnimal yet are sufficient for defining all possible actor

systems. SAL follows an algol-like syntax while Act uses a Lisp-like syntax.

In the next chapter, we will define some new linguistic constructs, but these

32

. lu I I

- PM- " , , , , 0 ,

CHAPTER3. COMPUTAWONINACTORSYSTEMS 33

constructs will not be foundational; they can be defined using a inimal

actor language. Such extensions to a inimal language dmonstrate the

power of the primitive actor constructs.

3A Defining an Actor Systeni

Computation in a system of actors is in response to communications sent

to the system. Communications are contained 'in tasks. As computation

proceeds, an actor system evolves to include new tasks and new actors that

are created as a result of processing tasks already 'in the system. All tasks

that hve already been processed and all actors tat are no longer seful,"

a notion we will define more precisely), may be removed i.e., garbage

collected) from the system without affecting its subsequent behavior.' The

configuration of an actor system is defined by the actors it contains as well

as the set of unprocessed tasks.

3.1.1 Tasks

In somewhat simplified terms, we can say that the unprocessed tasks in a

system of actors are the driving force behind computation in the system.

We represent a task as a three tuple consisting of:

1. a tag which dstinguishes it from' all other tasks in the system;

We refer here to the semantic euivalence of the systems with wid without "garbage."

Of course, the performance of the ystem is a different matter.

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 34

2. a target wich is te mail address to which the communication is to

be delivered; and,

3. a communication which contains iformation made available to the

actor at the target wen tat actor processes the given task.

As a sin-iplification, we will consider a communication to be a tuple of

values. The values may be mail addresses of actors 'integers, strings, or

whatever, and we may impose a suitable type discipline on such values.

There are other possible models here; perhaps the most exciting of such

models, and the one using te greatest uniformity of construction, is one

in wich the communications are themselves actors.' In such a model,

communications niay themselves be sent comniunications. For example, 'if

w wnt a communication k to print itself, we could send a communication

k2 tthe communication k, which asked k to print itself. Communications

as actors also provide an effective and simple w to implement call-by-

need using futures, where a fture 'is a communication that can be sent a

communication to evaluate itself. The semantic theory of actors is however

considerably complicated by odelling communications as actors, and we

therefore won't do so here. 3

'The bhavior of an actor is to send communications to other actors it knows about (i.e.,

its -acquaintances), wich in turn do the same until the communications are received by

pre-defined primitive actors such as numbers and primitive pre-defined operations (See

Section 44.). In the more general universe of actors model, tasks temselves are actors

which have three acquaintances, amely te tree components of the tuple given above.

-'For a discussion of the universe of actors model see 4.4.

-M

I'm

CHAPTE R I COMPUIATION IN ACTOR SYST14-.j'MS 35

The target mst be a valid ail address. In other words, before an

actor can send the target a communication, it list know tat the target

is a valid inail address [Ilewitt and Baker 77] . Tere are three ways in

which an actor a, upon accepting a comniunic-ation k, can know of a target

to which it can send a communication. These are:

• the trget was known to the actor a before 'it accepted te commu-

nication

• the target became known when 'a accepted the communication be-

cause it was contained in te communication k or

• the target is the mail address of a new actor created as a result of

accepting the communication

A tag helps us to uniquely 'Identify each task by distinguishing between

tasks which may contain dentical targets and communications. We will

make use of the uniqueness of each tag when we define an operational

semantics for actor systems. An important observation that should be

made here is that any particular representation of the tags is somewhat

arbitrary. The tags axe specified because they are useful in keeping a track

of tasks. However, the tasks themselves axe existentially distinct entities.

There are various ways of representing tags; one such representation

is a string of nonnegative 'Integers separated by "." (periods). Using this

representation, if is a tag for task t, then w.n, where n is some nonnegative

integer, can be the tag for some task created as a result of processing t.

In this way, if we start with a set of tags uniquely associated with the

CHAPTER 3 CMPUTATIONIN A CTOR SYSTE MS 36

tasks, we can guarantee tat alf tasks aways have dstinct tags (by sing a

restriction tat te last number appended is distinct for each task created

by the same actor in response to te same communication). Note that there

may be only a finite nuiriber of tasks in any given systems

3.1.2 The Behavior of an Actor

As we discussed earlier, all computation in an actor system is te result

of processing cominunications. This is somewhat shnilar to a data-driven

system like dataflow, and in contrast to systems based on processes that

either terminate or are perpetually "active." Actors are said to accept a

communication when they process a task containing that communication.

An actor may process only those tasks whose target corresponds to 'Its mail

address. When an actor accepts a communication, it may create new actors

or tasks; it must also compute a replacement behavior.

For any given actor, the order arrival of communications sent to that

actor is a linear order. In particular, this implies that the mail system must

provide suitable mechanisms for buffering and arbitration of incoming com-

munications when such communications arrive at roughly the saine time.

The mail system places the communications sent to a given target on the

mail queue corresponding to that target. For most purposes, it is appropri-

ate to consider the mail queue as part of the mail system. However, when

we wish to deal with issues related to the arrival order of communications,

such as the guarantee of mail delivery4 we have to consider the mail queue

4The, presence of commimication failures in a real system should not be considered a hin-

III

37CHAPTEM3. COMPUTATIONINACTORSYSTEMS

explicitly.

An actor may be described by specifying:

* its ail address, to wic tere corresponds a sufficiently large mail

queue 5;and,

* its behavior, which is a function of the communication accepted.

Abstractly, we iay picture an actor with a ail queue on which all

communications are placed n the order in which they arrive and an actor

machine 6 which points to a particular cell 'in the ail queue. The end of a

communication on the mail queue can be indicated by some special symbol

reserved for the purpose.' We represent this pictorially as 'in Fig. 31.

When an actor achine X accepts the nth communication in a ail

queue, it will create a new actor achine, X-4-1, which will carry out the

replacement behavior of the actor. Thi's new actor machine will point to

drance for a teoretical investigation assuming a reliable ail system. See te discussion

in Section 24.

5 The mail queue will be, considered large eough to hold -all communications sent to a

given actor. This implies tat a mail qeue is, in principle., nbounded, while only a

finite fragment of it is used at any given point in time. Tis is quite similar to a read-

only tape of a Tring Machine. However, the writing is done, indirectly, sing the mail

system.

'No assumption should be made about an actor achine being sequential, 'indeed an

actor machine, much like machines in the real world, may ave components tat function

in parallel.

7Thus te variable length of a communication is not a problem.

i 2 ... n

mail

qucuc

actor machine

Figure 31: An abstract representation of an actor. The actor machine

contains information that determines the behavior of an actor. It accepts

the current communication and can not process information from any other

communication.

the cell in the mail queue in which the n15t communication is (or will be)

placed. This can be pctorially represented as in Fig. 32.

The two actor machines X and Xj will not affect each others be-

havior: Xn processes only the nth communication. (Of course, if Xn sends

the actor itself a communication, Xn+j ay be the actor machine which

processes the same.) Specifically, each of the actor machines may create

their own tasks and actors as defined by their respective behaviors. Before

the machine Xn creates Xn+,, X,, may of course have already created some

actors and tasks- however it is also the possible that Xn may still be

CHAPTER I COMPUTATION IN ACTOR SYSTEMS 38

IF

mail 0 . .
queue

CHAPTE 3 COMPUTATION IN ACTOR SSTELVS 39

1 2 n nl

Figure 32: An abstract representation of transition.

the process of creating some more tasks and actors even as +, is doing

the same. In any event, note that the machine X wl either receive any

CHAPTER 3. COMPUTATION IN ACTOR SYSTE MS 40

further communications nor will it specify any other replacement.8

If we define an event as the creation of a new actor or tsk, or the speci-

fication of the replacement, then the order of events that are caused, at any

actor, by te aceptance of communications 'is a partial order. The replace-

ment machines at-, any ail address have a total order between them. This

linear order 'is isomorphic to the arrival order of the corresponding com-

munications which result 'in their replacement (as may be readily inferred

from the Fig. 3.2)_

An event-based picture for computation in actors ses life-lines which

are shown 'in Fg 33. Each actor has a order of acceptance of communi-

cations which is linear. The events in the life of an actor are recorded in the

order in which they occur: the further down the line, the later in local time.

Activations causal ordering of events) are indicated by the lines connecting

two different actors with the arrow on the line indicating causal direction.

Finally, each lifeline is labeled by the pending communications, i.e., the

communications that have been received but not processed. Clinger [81]

used collections, of life-lines to provide a fixed-point semantics for actors.

The resulting pctures are called the actor event diagrams.

A couple of general remarks about the 'implementation issues are n

order' here:

Remark 1. The reader may wonder about the efficiency of constructing a

new actor machine in response to each communication accepted. It should

8 We will later model functions tat require more input as a collection of these elemental

actors.

IF

,-- -- - r - --

CHAPTER 3. COMPUTATION IN ACTOR SYST EMS 41

be emphasized that this is simply a conceptual asstimption that frees us

from the details of any particular implementation. Coneurrency siniply

means potential parallelism.. Sonic implementations may find 'it useful to

generally delay constructing te replacement ntil te old machine can be

,cann'balized. However elaying the construction of te replacement is not

a universal requirement as would be the case in a sequential achine. Thus,

if there are sufficient resources available , computation in an actor system

can be speeded up by an order of agnitude, by smply proceeding with

thenext communication as soon as the ontological necessity of determining

the replacement behavior has been satisfied. The advantages of this kind

of pipelining can be 'Illustrated by the following simple example: Consider

a calculation which requires (n') sequential steps to carry out, where

0 (n) represents the sze of input. Suppose further that computing the

replacements takes only 0 (n) steps. If we had a static architecture with

(m) processes, it would take (n 2) cycles per calculation. By pipelin'M91

an actor-based. architecture could carry out m calculations in the same

time as a single calculation because 'it would initiate the next computation

as soon as the replacement for the previous one had been computed a

process taking only (n) steps.

Remark 2 It should also be pointed out that the structure of an ac-

tor machine is extremely concurrent: when any particular segment of the

computation required by the acceptance of a communication has been com-

pleted, the resources used by the corresponding fragment of the "machine"

are immediately available. It may be difficult, if one thinks 'in terms of

CHAPTER 3 COMPUTATION IN ACTOR SYSTEMS 42

?s actors

Figure 33: Actor event diagrams. Each vertical lne represents the events

occurring in the life of an actor. The arrows represent causal links.

sequential processes, to conceive of the inherent parallelism 'in the actions

of an actor. The structure of computation in a sequential process is En-

ear: typically, activations of procedures axe stacked, each activation storing

its current state. However I in an actor program, the absence of assign

ment commands permits the concurrent execution of the commands in a

I
pending
tasks

I I

I - -m- -a

CHAPTER 3. COMPUTATION IN ACTOR SYSr-l"EMS 43

specification of the behavior of an actor. We will dscuss the specific mech-

anisms for spawning concurrence, such as the se of customers to continue

computations required for a transaction, later in tis chapter.

3,2 Progranaming VVith Actors

In this section, we define the constructs necessary for the kernel of a min-

imal actor language. We also give some simple examples of actor pro-

grams. These examples illustrate, aong other things, the versatility of

message-passing as a general mechanism for implementing control struc-

tures, procedure and data abstraction in the actor construct, and the use

of mail addresses instead of pointer types in data structures. The feasibility

of representing control structures as atterns of message-passing was first

described 'in [Hewitt 771.

Despite its simplicity, the kernel of an actor language is extremely pow-

erful: it captures several important features of computation 'in the actor

paradigm; among them, the ality to distribute a computation between

concurrent elements, the ability to spawn maximal concurrency allowed by

the control structure, the unification of procedural and declarative infor-

mation, data abstraction and absolute containment, and referential trans-

parency of identifiers used m' a program.

An actor accepts a single communication as "input." Thus, 'if a com-

putation 'is a function of communications from several different actors, it

has to be defined using a system of actors. We will introduce linguistic

.. I IF

. CHAPTER3. COMPUTATIONINACTORSYSTEMS 44

constructs to smplify expressing some multi-input fnctions in a trans-

parent manner. All such constructs cn be deflined in terms of the actors

definable in a mininial actor language, and we therefore confine our present

discussion to te constructs necessary for a kernel language.

3.2.1 The Basic Constructs

To define the initial configuration of an actor system we need to create

some actors and to send them some communications. However, we also

promote modularity by specifying the actors that may communicate with

the "outside i.e., with actors not defined wthin the configuration A

program in an actor language consist of

o behavior definitions which simply associate a behavior schema with

an identifier (without actually creating any actor)-

* new expressions which create actors.

o send com mands which are used to create tasks.

9 receptionist declaration which lists actors that may receive communi-

cations from the outside.

external declaration which lists actors that.are not part of the popu-

lation defined by the program but to whom coi-ximunications may be

OSuch behavior schemes are not considered to be actors in te simple odel we are

currently sing. In another language, such definitions can be used to create ators that

axe "descriptions" of actor behaviors. Te behavior of such description actors would be

to create actors of te given description when sent an appropriate communication.

CHAPTE I COMPUTATION IN ACTOR YST143MS 45

sent from within the configuration.

We discuss the syntax and intended meaning for each of the expressions

which can be used in a minimal language. For some smple expressions, we

also show what a feasible syntax might be.

Defining Behaviors

Each te IM actor accepts a communication, it computes a replacement

behavior. Since each of the replacement behaviors will also have a replace-

ment behavior, in order to specify the behavior of an actor, we need to

spec y a potentially infinite definition. Obviously one can not write an _

finite string to define each replacement. Fortunately, we have the principle

of recursive (or inductive) definition so familiar from mathematics. Essen-

tially, we parameterize each expressible behavior by some identifier which

HI be a free riable in the definition. Whenever a behavior is spec'fied

using the behavior definition, we ust specify specific values for the iden-

tifiers parameterizing the behavior definition. For example, the behavior

of a bank-account depends on the balance in the account. We therefore

speciffy the behavior of every account as a function of the balance When-

ever a particular account is created, or a replacement behavior specified,

which uses the behavior definition of a bank-account, a specific value for

the balance in the account must be given.

There are also an infinite number of possible values for the 'Incoming

communication. Therefore a behavior definition is expressed as a function

of the ncoming ommunication.

........ ---l-�-

CHAPTE R 3 CMPMATION -N ACTOR SYSTEMS 46

Two lists of identifiers are used in a behavior definition. Te first 1st

corresponds to parameters for wbich values must be, specified wen the actor

is created. Tis list is called te acquaintance list. Te second list of pa-

ranieters, called the communication list, gets 'Its bindiiigs from the icoming

communication. When an actor is created and it accepts a communication,

it executes commands in the environment defined by the bindings of the

'Identifiers.

Creating Actors

Actors are created using new expressions which return the mail address of

a newly created actor. The mail address should be bound to an identifier or

communicated; otherwise, it would not be useful to have created the actor.

The syntax of new expressions would be something corresponding to the

following:

(new expression) iiew (beh name) (expr { expr

The (beh name) corresponds to an identifier bound to a behavior given

by a declaration using a behavior definition. A new actor is created with

the behavior implied by the behavior definition and its parameters are

instantiated to the values of the expressions in the parenthesis. In actor

jargon, we have defined the acquaintances of an actor. The value of the

expression is the ail address of the actor created and it can be bound to

an identifier called an actor name by a let command). An actor name may

be used as the target of any communication, including communications sent

in the 'Initial configuration.

IR

CIIAI--'I"F-4,n 3. COMPUTATION IN ACTOR SYSTEMS 47

Actors created concurrently by an actor my kow each others ail

addresses. This is a forni of utually recursive definition permissible in

actors. However, all te newly created ctor 'knows is te mil address of

the other actor: It does not hve any other irect access to the 'internal

structure of that actor.

Creating Tasks

A task is created by specifying a target and a communication. Communi-

cations my be sent to actors that already existed, or to actors that have

been newly created by the sender. The target 'is the mail. address of the

actor to which the communication is sent. The syntax of a command that

would create tasks is something like the one given below:

(send command) send (communication) to (target)

where a communication is a sequence of expressions (perhaps epty). The

expressions may be identifiers constants or te appropriate functions of

these. The expressions are evaluated and the corresponding values are sent

in the communication. The target is an 'Identifier bound to the mail address

of an actor.

Declaring Receptionists

Although creating actors and tasks is sufficient to specify an actor system,

simply doing so does not provide a echanism for abstracting away the

internal details of a system and concentrating on the behavior as 'it relates

I

CHAPTER3. COMPU7AI"IONINAC7"OIIS-YST-r4jMS 48

to outside the actor systein specified by the, program. In order to simplify

reasoning aout the composition of independently deftned and debugged

systems ad to pernlit greater odularity in a system, we allow the pro-

granimer' to specify te iitial set of receptionists for any systeni; The

receptionists are the only actors tat are free to receive communications

from outside te system. Since actor systems are dynamically evolving and

open in nature, te set of receptionists may also be constantly changing.

Whenever a communication containing a nail address is sent to an actor

outside the systein, the actor residing at tat mail address can receive com-

munications from the outside and therefore become a receptionist. The set

of receptionists increases as the system evolves.

If no receptionists are declared, the system can not 'Initially receive

communications from actors outside the system. Hlowever, the mail address

of an actor may subsequently be delivered to an external actor, so that the

actor system may evolve to include some receptionists. This illustrates the

potentially dynamic nature of the set of receptionists.

Declaring External Actors

Communications may be sent to actors outside an actor system. Typically,

an actor may get the mail address of another actor which is not in the

system in a communication from the outside. It would then be able to send

communications to this actor. However even when an actor system is being

defined, it may be intended that it be a part of a larger system composed

of idependently developed modules. Therefore, we allow the ability to

CHAP"TE4113 CMPUTATIONINACTORSYSTEMS 49

declare a sequence of dentifiers as external. The compiler ssociates these

'dentifiers with actors wose behavior is to buffer te conti-nuiiications they

accept. Whenever given actor system is composed with another 'in which

the external actors are actually specified, the bffered ail cn be frwarded

to te mail address of te actual actor which, was hitherto unknown) . We

will show ow the compositionality can be actually iplemented in an open,

evolving system using rnessage-passing.

There need be no external declaration in an programs In this case, no

communication can initially be sent o mail ddresses otside the actor

system defined by the program. However, as the system receives commu.-

nications from the outside, the set of external actors will "grow." Notice

that it is useless to have an actor system which has no receptionists and no

external actors because suchim autistic system will never affect the outside

world!

Commands

The purpose of commands 'is to specify the actions to be carried out. We

have already discussed most of the basic commands which would create new

actors and new tasks. We also need a command to specify a replacement.

The syntax of the become command in SAL is:

become (expression)

where the expression is bound to a mail address. The actor simply forwards

all its mail to the actor at the specified mail address. If the expression is

a new expression, then there is no need to assign a new mail address to

CHAPTER3. COMPUTATIONINACTORSYSTEMS 50

the created actor since that ail address would be equivalent to the ail.

address of the actor it is replacing Tus te picture in Fig. 32 is concep-

tually correct. If te expression is the ail address of an already existing

ctor then operationally the actor becomes a forwarding actor to the exist-

ing ator. In this case, the picture in Fig. 32, although literally correct,

does not express te equivalence of te two inail queues. Denotationally,

the replacement behavior is the same as the behavior of the actor to which

the communication is forwarded. This denotational equivalence would not

be vafid in a model wich did not assume arrival order non-determm'ism

and the guarantee of delivery.

There is one other kind of command which is necessary: a conditional

which determines which branch is taken. Conditional or branching com-

mands are of the usual if-then or case form. It is also useful to allow let

bindings so that identifiers may serve as a shorthand for expressions in a

particular context. We have already shown the use of let bindings in the

recording of the ail addresses of newly created actors.

Default Behaviors

Since all actors must specify a replacement behavior, we use the default

that whenever there is no executable become command in the code of an

actor in response to some communication, then we replace that actor with

an identically behaving actor. Since the behavior of an actor is determined

by a finite length script involving only conditional commands for control

flowIit is can be thought of as a finite depth tree one, of whose branches is

IF ------ - - --- - -- --- - -- -

CHAPTER3. COMPUTATIONINACTORSYSTEMS 51

executed. Te particular branch executed depends on te conimunication.10

Thus it is (easily) decidable if no replacement has been specified for a given

acquaintance and communication list.

3.2.2 Examples

We define several examples of programs written using actors. These ex-

amples illustrate the relative ease with which various data structures and

control structures can be iplemented 'in an actor language. Specifically,

we will gve the plementation of a stack as a "linked list" of actors.

This smple example also illustrates how the acquaintance structure makes

the need for pointer types superfluous 'in an actor language. Other data

structures can be defined in a similar manner.

The second example we present 'is that of the recursive factorial func-

tion. This is a classic example used i almost) any work on actors. An

iterative control structure can also be easily defined Hewitt. 771; we leave

'it as an exercise for the interested reader. The technique for a iterative

factorial is similar to the standard accumulation of parameters in functional

programming. The final example in this section is an mplementation for

an actor specified by an external declaration. Thi's example should clarify

the use of external declarations to bind actors that are the population of

some independent module. The independent module can be later composed

with the module presently being specified. We will deal with some more

"The tree ned not be fmitely branching because the commimications can be one of an

arbitrary countable set.

CHAPTER I COMI"UTATION IN ACTOR SYSTENIS 52

complex examples]in the ext, capter.

Example 32.1 A Stack. We iniplement a stack as a collection of actors

with niform behavior. Tese actors will represent total containment of

data as well s te oerations valid on such data. Assunie tat te linked

list consists of a collection of nodes which store a value nd kow the mail

address of the "next" actor in the link. Te code for defining a stack element

is given below. We skip all error handling code because such details will

siinply detract from te basic. behavior being expressed. We assume that

there is a pre-defined value NIL and use it as a bottom of te stack marker.

Two kinds of operations ay be requested of a stack-node: a push or a pop.

In te first case the new content to be pushed ust be given and in the

second, the custonier to which the value stored 'in the tack-node can be

sent.

a stack-node with acquaintances content and link

if operation requested is a pop A content :/ NIL then

become link

send content to customer

if operation requested s push then

let P new stack-node with current acquaintances

become new stack-node with acquaintances new-content and P

The top of the stack is the only receptionist in the stack system and was

the only actor of the stack system created externally. It is created with a

NIL content which is assumed to be the bottom of the stack marker. Notice

IF , - -- -- ---- --- � .- -- -- -

CIIAPTER3. COMPUTATIONINACTORSYSTEMS 53

that no ail address 'is ever communicated by any node to ny external

actor. Terefore no actor otside te configuration defined above can af-

fect any of the actors 'Inside the stack except by sending the receptionist

a communication. When a pop oeration 'is done, the actor on top of the

stack simply becomes the next actor in the link. This means that all com-

munications received by the, top of the stack are now forwarded to te next

element.

For those concerned about plementation efficiency, notice that the

underlying architect-tire can splice through any cain of forwarding actors

since their mail address would no longer be known to any actor, and in due

course, will not be the target of any tasks. The user is entirely free from

considering the details of such optimizations.

Example 32.2 A Recursive Factorial. We gve this classic example

of a recursive control structure to 'Illustrate the use of customers in im-

plementing continuations. The example is adapted from [Hewitt 77 wich

provided the original insight exploited here. In a sequential language, a re-

cursive formula is implemented using a stack of activations. In particular,

the use of a stack 'Implies that a factorial can accept only one communica-

tion from some other actor and 'is busy until it has computed the factorial

of the given number. There 'is no mechanism the sequential structure for

distributing the work of computing the factorial or concurrently processing

more than one request.

Our 'Implementation of the factorial actor relies on creating a customer

which waits for the appropriate reply, in this case fom the factorial itself,

.IF -------- - - -- ,

CHAPTER 3 COMPUTATION IN ACTOR SYSTEMS 54

so that t fctorial is concurrently free to process the next communication.

We assunie that a communication to a fctorial 'ncludes a ail address to

which the vue of te fctorial is to be sent. The code for a recursive

factorial! is given below. Note tat we use elf as the mail address -of the

actor itself. This inail address will be instantiated when an actor is actually

created using the behavior definition and serves as shorthand by eliminating

the need for a parameter in the definition.

Rec-Factorial with acquaintances self

let communication have n integer n and a customer

become new Rec-Factorial

if n 0

then send [11 to customer

else let c be a Rec-Customer created which will accept an integer k

and send n*k to the customer'

send n - the mail address of c to self

in response to a communication with a non-zero integer, n, the actor

with the above behavior will do the following:

• Create an actor whose behavior will be to multiply the n with an

integer it receives and send the reply to the mail address to which the

factorial of n was to be sent.

• Send itself the "request" to evaluate the factorial of n - and send

the value to the customer it created.

. I - I I It-l- 1-10-- m 'i , 1

CHAPTER3. COMPUTATIONINACTORSYSTEMS 55

One can intuitively see why te fctorial actor behaves correctly, and

can use induction to prove that it does so. Provided the customer is sent the

correct value of the factorial of n - 1 te customer will correctly evaluate

the fctorial of n. What's iore, the evaluation of oe factorial doesn't

have to be completed before the next request is processed; i.e., the fctorial

actor can be a shared resource concurrently evaluating several requests.

The behavior of the factorial actor 'in response to a sngle 'Initial request is

shown in Fig. 34.

This particular function is not very complicated wth the consequence

that the behavior of the customer 'is also quite simple. In general, the

behavior of the customer can be arbitrarily complex. Te actor originally

receiving te request delegates most of the processing required by the re-

quest to a large umber of actors, each of whom is dynamically created.

Furthermore, the number of such actors created is in drect proportion to

the magnitude of the computation required.

There 'is nothing inherently concurrent in the recursive algorithm to

evaluate a factorial. Using the above algorithm, computation of a single

factorial would not be any faster if 'it were done using a sequential language

as opposed to an actor language. All we have achieved is a representation

of the stack for recursion as a chain of customers. However iven a network

of processors, an actor-based language could process a large number of re-

quests much faster by simply distributing the actors it creates among these

processors. The factorial actor itself would not be the bottleneck for such

computations. (Of course, it would be useful to have fast communication

II '. 1 4 .

CIIAPTE I COMPUTATION IN ACTOR SYSTEMS 56

factorial

ver

I

6 <---

to customer

Figure 34: The computation in response to a request to evaluate the facto-

rial of . The s represent dynamically created customers (See text).

links between the processors)-

In gneral, there.are also more parallel algorithms for evaluating func-

tions, and these algorithms can be exploited 'in an actor-based language.

For example, a more parallel way of evaluating a factorial treats the prob-

lem as that of multiplying the range of numbers from ... n. The problem is

recursively subdivided into multiplying two subranges. Such an algorithm

results 'in the possibility of computing a single factorial 'in log n parallel

IF

CHAPTER3. COMPUTATIO.,NINACTORSYSI"rAIS 57

time.

Example 32.3 External Ators. An actor prograrn defines an initial

configuration with 'Its external actors defined by an external declaration).

To promote coinposition of independently prograninied odules, the exter-

nal actors are compiled in a specific anner. This example simply illus-

trates how one nil'ght implement external actors. The desired behavior of

an external actor is to as follows:

* simply hold all communications sent to it until the system is composed

with another that contains the actor in question.

* respond to a communication telling 'it to forward all 'Its ail to the

actual actor when the composition is carried out.

In response to an external declaration, we actually create an actor which

wiHI exhibit the above behavior.

The code for an implementation can be given as follows. Assume that

an actor called buffer is simultaneously created and, appropriately enough,

buffers all communications until 'it accepts a communication telling it to

forward them to a given mail address. Such a buffer could be specified as

a queue using a linked list in a manner analogous to the implementation

of the stack given above. One could also be a bit perverse and specify the

buffer as a stack wthout changing the correctness of its behavior (recall

the arrival order nondetermini�m of the communications). As a stack, the

behavior of the buffer would be given as below:

I ---F

CHAPTER 3. COMPUTATION IN ACTOR SYSTEWS 58

Buffer wth acquaintances content and link

if operation requested 'is release A content : NIL then

send content to customer

send release request wth customer to link

become cstomer

if operation requested is hold then

let be a ew buffer wth acquaintances content and link

become new buffer wth acquaintances new-content and

Assume for te purposes of smplification that a protocol for specifying

a communication to become the actor at the mail address exists and

that such a communication has the form become m, where m is the mail,

address of the actor to which the mail should be forwarded. The behavior

of -an external actor is specified as below:

extern with acquaintances buffer

if the communication is become customer

then become customer

send release request with customer to buffer

else send hold request with customer to buffer

3,3 lWiniinal Actor Languages

In this section, we give the syntax for two minimal languages, SAL and

Act. Te programming language SAL has been developed for pedagogical

reasons ad follows an. algol like yntax. Act is related to the languages im-

plemented by te Message-Passing Semantics Group at MI.T. and follows

I , I ... I,-

CHAPTER3. COMPUTATIONINACTORSYSTEMS 59

a lisp-like syntax. Act can be considered as a kernel for the Act3 language

[Hewitt, et al 841 Oe basic difference between SAL and Act is n how they

bind identifiers ad would provide for their authentication. SAL would use

conventional type-checking whereas Act uses an elaborate description sys-

tem based on a lattice structure for reasoning with the descriptions. For

the rest of the thesis we wll use expressions whose syntax we have already

given in the previous section. For smple examples we wll use SAL's syn-

tax. However, it is not necessary to look at the details of the syntax in this

section: the only feature of SAL's syntax that the reader needs to know is

that the acquaintance list is enclosed in while the communication lst

is enclosed 'in

Notation. The usual Backus-Naur form is used. In particular, en-

closes nonterminal symbols. We use darker letters for the terminals and id

for identifiers. ... j is used to enclose optional strings, and a superscripted

* indicates or more repetitions of the string are permissible. When a

reserved symbol, such as , is underlined, it stands for 'Itself and not for 'its

usual 'Interpretation.

3.3.1 A Simple Actor Language

We give the syntax for the kernel of SAL. Behavior definitions in a SAL

program axe declarative in the the same sense as procedure declarations 'in

an algol-like language: behavior definitions do not create any actors but

simply identify a 'Identifier with a behavior template. Actors are created by

new expresszons whose syntax is the same as that given in the last section.

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 60

The syntax of behavior definitions is as follows:

�behavior definition) ::=

def (beh name) (acquaintance list) [(communication ist)]

(command)*

end def

Quite often the identifiers to be bound depend on the kind of commu-

nication or acquaintance list: For example, if the communication sent to a

bank is a withdrawal request then the communication must also specify the

aniount to be withdrawn; but if the communication is a request to show

the balance, then 'it should not specify any aount. We follow the variant

record structure of Pascal [Wirth 72] to deal, with the ariability of the

identifier bindings. Basically, we branch on the value of an identifier called

the tag-field and depending on the value of the tag-field, different 'Identifier

bindings are expected. The value of tag-field is called a case label.

The syntax of the parameter lists 'is as follows:

(parameter list) lid I var list) I I id I (var list) c:

(var list) case (tag-field) of variant)+ end case

(variant) (case label) arameter l'st)

where id is an identifier, 1E 'is an empty string (in case the parameter lst

is empty), the tag field 'is a identifier, and the case label is a constant

(data-value). The example below illustrates the use of parameter lists. A

communication list in the behavior definition of a bank account is given.

IF

CHAPTER3. COMI-1[JTA7'IONINACTO]ISYSTL4",WS 61

case request of

deposit customer amount

withdrawal customer amount

balance customer

end case

Thus a communication [deposit Joe $50.001, where Joe is the inail ad-

dress of some actor, would be an appropriate cominunication to send to a

bank account created using the above behavior definition.

We avoid specifying any type structure in or programming language

for the sake of simplicity. It is not difficult to specify one: All we would

have to do is use type declarations with the every 'dentifier. Static type

checking could be performed wen the code is compiled to make sure that

the identifiers are sed correctly in the commands (with respect to their

types). For example, identifiers used as targets ust have the type mail

address. Dynamic type-checking can be used whenever a new actor is ac-

tually created: it would ceck 'if te parameters are correctly instantiated.

Dynamic type-checking would also have to be used when a communication

is accepted.

(command) if (logical expression) then (command)

I else (command)} f'

become (expression) I

(send command) I (let bindings) command}

(behavior definition) I (command)*

The syntax 'is for te ost part quite obvious. We have already defined

behavior definitions above. Note that the scope of an identifier bound by

I --lu- ---

CHAPTER 3 COMPUTATION IN ACTOR SYSTEMS 62

a behavior dfinition 'is lexical. Te syntax for send command was gven in

the last section. It is smply:

(.send command) send (communication) to target)

let bindings llow one to se an abbreviation for an expression. There is

110 Mutual recursion 11ess new expressions are eing bound; 'in the latter

case, the actors created can kow each others mail addresses. The syntax

for let bindings is as follows:

(let bindings) let id = (expression)

and id = expression)

We give only one example of a behavior definition in SAL to illustrate the

flavor of the syntax. The de below 'is for an actor wich behaves like a

stack-node discussed 'in example 32.3 (§3.2).

def stack-node (contentlink

case operation of

pop (customer)

push (new-content)

end case]

if operation = pop A content 4 NIL then

become link

send content to customer

fi

if operation = push then

let P new stack-node (contentlink)

become new stack-node (new-content P}

fi end def

CHAPTER3. COMPUTATIONINACTORSYSTEMS 63

Note that we assume NIL is a predefined value ad SINK is the ail address

of sorne actor. A node can be created by a new conimand of te form gven

below.

let. p new stack-node (NILSINK)

The -node created wll subsequently serve as the receptionist for the stack

since the ail -,address bound to p will always represent the ail address of

the top ost node of the stack.

3.3.2 A t

The language Act is a sufficient kernel for the A03 language which is

a descendant of Act2 [Theriault 83]. One basic distinction between Act

and SAL is tat the former uses a keyword-based notation while the latter

uses a positional notation. The acquaintance lst in Act is specified by

using identifiers hich match a pattern. The pattern provides for freedom

frorn positional correspondence when new actors are created. Patterns are

used in pattern atching to bind identifiers, and authenticate and extract

information from data structures. The simplest pattern is a bind pattern

which lterally binds the value of an dentifier to the value of a expression in

the current environment. The syntax of pattern matcbing is quite involved

and not directly relevant to the our purposes here. We therefore skip it.

When an actor accepts a communication it is pattern-matched with the

communication handlers in the actor's code and dispatched to the handler

of the pattern it satisfies. The bdings for the communication lst are

-- IF ------- --- --,- � --- ---I- ----- -

CHAPTER 3 COMPUTATION IN ACTOR SYSTEMS 64

extracted by the pattern matching as well. We do not provide the syntax

for expressions except to note that the new expressions have the same

syntax as n 3.2 naniely the keyword new followed by an expression. The

syntax of behavior definitions in Act programs 'is given below.

(behavior definition)

(Def ine (new d _jth identif ier (pattern))

(communication handler)*)

(communication handler)

(Is-Communication (pattern) do (command)*)

The syntax of commands to create actors and send communications is

the same in actor definitions as their syntax at -the program level. The

syntax of the send-to command is the keyword send-to followed by two

expressions. The two expressions are evaluated- the first expression must

evaluate to a mail address while the second ay have an arbitrary value.

The result of the send-to command is to send the value of the second

expression to the target specified by the first expression.

(command) (let command) I (conditional command)

(send cmmand) Ibecome command)

(let command) (jet ((let binding)*) do (command)*)

(conditional command) (if expression)

(then do (command)*)

(else do command)*))

CIIAPTER3. COMPUTATIONINACTORSYSTEMS 65

(send command) : = (send-to (expression) expression))

(become command) (become (expression))

The example of a stack-node definition from 32 is repeated below.

For simplicity, we skip all error handling code. Note te keywords in the

acquaintance and commun'cat'on lists. Tese keywords allow a free order

of attributions when the actors are created or when communications are

sent. All the bdings we gve axe simple; in general the bindings can be

restricted to complex patterns which llow authentication of the data by

pattern atching.

(define (new stack-node (with content =c)

(with next-node -- next))

(Is-Communication (a pop wth customer -- m) do

(if (NOT = c empty-stack))

(become next)

(send-to (m) (a popped-top (with value c))))))

(Is-Communication (a push wth new-content v) do

x = new stack-node (with content c)

(with next-node next)),

do (become new stack-node (with content v)

(with next-node x)))))

a er

ore ressive an ua e

In this chapter, we will define some higher-level constructs tat make the

expression of programs somewhat simpler. The purpose of this exercise 'is

two-fold: firstly, we wish to build a somewhat richer language, and secondly,

we iustrate the versatility of the constructs 'in a inimal actor language.

For purposes of brevity, we will use SAL in simple examples. Tn ore in-

volved examples, we simply use pseudo-code. Te issues dcussed in thi's

chapter include: developing a notation to represent fnctions whose ar-

guments are supplied by communications from several different actors; te

question of delegation wich arises when determining the replacement actor

requires coininunicating with other actors; the meaning and representation

of -sequential composition in the context of actor system- and lastly, the

implementation of delayed and eager evaluation for arbitrary expressions.

The interest in suc ealuation strategies stenis in part because they a-re

interesting wys to dnionstrate the tility of Piping values lke numbers

6 6

IF ------ --- - --- - I- -- -.- ---- -

I - - -- I ---
i � - I

CIIAPTFjR 4 A MORE EXPR -SSIVE LANGUAGE 67

into a corresponding set of actors.

4A Several Incorning Communications

One of te simplest questions one can ask is what the representation of

functions of several different iputs is going to be. If aH the values needed

to valuate a fnction are to be received froin the sme actor, and at the

same time, then there is no issue because communications in the kernel

language are defined as a list. of'values. In general, however, carrying out

Some omputation may require values froni different actors. An ctor need

not know wo the sender of the communication it i's crrently processing is.

Modelling the above stuation requires using soine special protocols. The

specifics of the construction are dependent on the type of scenario 'in which

the ultiple 'Inputs are required.

4.1-1 A Static Topology

There are two distinct possible scenarios for an actor rel.-)resenting a func-

tion of several arguments. If the sender is irrelevant, then the actor simply

becomes an actor wich responds appropriately to the next ncoming com-

inunication. If the senders are relevant but static, as in dataflow languages,

then we can represent the fnction as a system of actors: one actor as

the receptionist for each sender and one actor that does te final function

evaluation. Each receptionist buffers communications until it receives a

ready communication from the function-apply actor, and then it sends the

CHAPTER 4 A MORE BXPRESSIVE LANGUAGE 68

function-apply actor anotlier coniinu-nication together with its own mail ad-

dress. The inail addresses serve to identify the sender. A concrete pture

for such a function-apply is an agent on an assembly line which is putting

"nuts" and "bolts" together ad eeAs one of eacli to arrive in order to

fasten thern before passing the result on. Te receptionists act to bffer

the uts" and "bolts."

Consider te smple case of a function-apply actor wich eed to

inputs and sends the result to a actor at te ail address m, as shown

in Fig. 41. We assume actors at inail addresses Ml andM2 act to buffer

incoming arguments and are te receptionists for this system of tree actors.

The actor at m is an external actor. Te program for te actor to evaluate

the function f can be given as below.

We gve two nuitually recursive definitions. Only one actor need be

created using the two-inputs-needed definition. Te behavior of this actor

will be alternately specified by one or the other of the definitions. One

observation that can be niade is that the utual recursion. in the defilaitions

is simply to make it easier to nderstand the code: It would be entirely

possible to write a single definition to achieve the same purpose. The

alternate definition would use an acquaintance and branch on its value to

the two possible behaviors.

def two-inputs-needed (ml M2 , M) [sender arg

if. sender ml

then become new one-input-needed mlM2, second, arg)

else become new one-input-needed m,,M2, jars t, arg)

fi end def

IF'

CIIAPTER4. AMOREEXPRESSIVELANGUAGE 69

Figure 4 . A fixed topology for a two input function.

def one-input-needed m,,M2, , new-arg-position, old-arg)

I sender arg I
let k if new-arg-position = second then f (old-arg , new-arg)

else f (new arg , old- arg) fi

{ send [k] to m

send ready to ml

send ready toM2

become new two-inputs-needed (ml M2)

end def

CHAPTER 4 A MORE EXPRESSIVE, LANGUAGE 70

The function-apply actor which needs twoinputs from actors ml andM2 can

be created by te expression new two-inputs-needed (Ml, 7rt2)- We assume

that the actor . is defined in the lexical scope of the new expression.

4.1.2 A Dynamic Topology

A more interesting case of a many argument function is one in wich the

senders can vary. One frequently useful form occurs when more input to

complete some computation M(ay depend on the segment of the cornputa-

tion that has been carried out so far. Such a situation represents a dynamic

topology of the 'Interconnection network of actors. For example, an interac-

tive program may need more input to continue with some transaction. The

source of the input may vary: the program may sometimes get the 'input

off some place on a disk, or perhaps from. a inagnetic tape, or a, user. A

static topology where all te communications are received from the same

senders before the computation starts, or even during it, will not work

this case.

The general forin for implementing requests for input from some par-

ticular actor is a call expression, which has the syntax:

call g[k]

where k is a communication and g is an identifier bound to a mail address.

The value of the call expression is the communication sent by g as the reply

when it accepts the.prese-nt communication k. One way to picture the flow

of the computation 'is given i Fig. 42. However, the figure is somewhat

IF

j

CHAPTE, 4 A MORE EXPRESSIVE LANGUAGE 71

misleading as a representation of wat ctually occurs in CM actor system.

The actor f does not (necessarily) have to wait for the reply from the actor

g: a cstomer can be created which will continue processing when the reply

froin the actor g arrives. While the cstomer is waiting" for the reply

from g, the actor f may ccept any conimunications pending in its queue.

i

9

Figure 42: The behavior of actor f in response to a communication may be

a function of a communication from the actor g.

The use of customers to implement continuations is more accurately

portrayed in Fig. 43. This figure ay be compared to the example of the

recursive factorial 'in 32. There 'is some sequentiality, modeled by the

causality ordering of the events, in the course of the computation triggered

by a conimunication to the actor f. There is a degree of concurrency as

CHAPTER 4 A. MORE EXPR143SSI'VFj LANGUAGE 72

well. If the call expression occurs in the following context i the code for f

St let x call g [k I SI SH

then the actions plied by and S" can be executed concurrentl wth

the request to g. Moreover, as discussed above, we do not. force the actor f

to wait util the reply from te actor g is received. The actor f would be

free to accept the next communication on its ail queue, provided it can

compute its replacement.' The customer created to carry out the actions

implied by te command will wait for the reply from the actor g.

Notice that, the general scheme for representing requests is analogous to

our erlier mplementation of the factorial actor. Using a call expression,

the program for a recursive factorial ay be written as below:

def exp Ree-Factorial n

became new Rec-Factorial

if =

then reply Ill
else reply I n (call self n -]

fi end def

We use def exp 'Instead of def so that it is clear that the actor will return

a reply to a ustomer that 'is implicit 'in all communications accepted. The

incoming communication will have the form:

We wiU discuss the case where anactor can not compute its re0aceinent without further

input ill the next section.

lu

i i

CHAPTER 4 A MORE EXPRESSIVE LANGUAGE 73

r

SO

customer

Figure 43: The behavior Of actor f is defined by program with a call ex-

pression which requests more input. Some the events are activated by the

reply to a customer.

M k... kj

but our syntax explicitly shows only kl,..., kj]. The mail address m 'is

bound when the expressional actor gets a communication. A translator can

insert the customer and subsequently map the command reply I X I into the

equivalent command:

send x to m

The actor at w be the customer which will continue the transaction

initiated at the time of its creation. Comparing the above code with that

IF -,- --- -- -- --

�CIIAPTER 4 A ORE EXPRE4SSIVFa LANGUAGE 74

of factorial in the previous chapter (see Fg 34) should make it clear how

the behavior of te appropriate customer can be deduced: essentially, the

segment of the environment which 'is relevant to the behavior of the cus-

tomer has to preserved; a dynamically created customer can do this A

SAL co inpiler whose target language is the kernel of SAL can translate the

above code to one in which the customer creation is explicit. Also note that

only one reply command may be executed (in response to a single request).

Thus a purely expression oriented language can be embedded in SAL

(or equivalently in Act). The concurrency in such a language is inherent

and the programmer does not have to worry about the details related to

creating customers for 'Implementing continuations. Another advantage to

the automatic" creation of customers 'is that it provides protection against

improper use by the programmer, since the programmer has o drect access

to te mail address of the customer created.

There is- one aspect of the expression oriented language that may be dis-

turbin to the functional programming acionados: namely, the presence

of side-effects implicit in the become command. Recall that the ability to

spec'fy a replacement behavior is necessary to model objects with changing

local states. The become command provides a mechanism to do so. The

become command is actually somewhat analogous to recursive feedback in

a dat�flow language. This similarity (and the differences) will be discussed

in greater detail chapter 6.

CHAPTER 4 AMORE EXPRESSIVE LANGUAGE 75

4.2 Insensitive Actors

When an actor accepts a communication and proceeds to carry out its

computations, other. communications t may have received must be buffered

until'the replacement behavior is computed. When such a replacement

actor is known I it processes the buffered communications as well as any

new ones received. The precise length of time 'it tkes for an actor to

respond to a communication is not significant because no assumption is

2made about the arrival order of communications in the first place.

However, the desired replacement for an actor ay depend on com-

munication with other actors. For example, suppose a checking account

Ias overdraft protection from a corresponding svings account. When a

withdrawal request results 'in an overdraft, the balance 'in the checking ac-

count after processing the withdrawal would depend on the balance in the

savings account. Thus the checking account actor would have to commu-

nicate with the savings account actor, and more significantly the savings

account must communicate with the checking account, before te new bal-

ance (and hence the replacement behavior) is determined. The relevant

communication from the savings account can not terefore be bffered un-

ti'l a replacement is specified!

We deal with this problem simply by defining the concept of an in-

sensitive actor which processes a type of communication called a become

communtcation. A become communication tells an -actor its replacement

'Communication delays axe an important performance ssue for a particular ealization

of the abstract actor achitecture. Our focus here is restricted to seniwitic questions.

CHAPT, 4 A MORE EXPRESSIVE LANGUAGE 76

Behavior. The behavior of an]insensitive actor is to bffer all con-ijutinica-

tions until it rceives a coninitinication telling it what to become. Recall

that external declarations were similarly iniplemented in Example 32.3.

First consider wat we would like te bebavior of a checking account

to be: 'if the rquest it is processing result i n overdraft, the cecking

account sholild ruest a withdrawal from 'Its savings account. When a

reply to the request 'is received by the checking account, the account wll

do the following:

* Reply to the customer of the (original) request which resulted 'in the

overdraft; and,

a Process requests it subsequently received wth either a zero balance

or an unchanged balance.

Using a call expression, we can express the fragment of the code relevant

to processing overdrafts as follows:

let r = (call my-sav�ngs [withdrawal, balance - amount

if r = withdrawn

then become new checking-acc(O, my-savings)

else become new checking-acc (balance, my-savings)

fi

reply [r]

To show how a call expression of the above sort can be expressed

terms of our kernel we give the code for a bank account actor with overdraft

IF

CHAPTER4. AMOREEXPRESSIVELANGUAGE, 77

protection. Again the code for the customers and te insensitive actors need

not be explicitly written by the progranimer but can 'Instead be gnerated

by a translator wenever a call expression of te above sort 'is used. That

is to say, 'if abecome coined is in the lexical sope of a let expression

that gets bndings using a call expression, then te translator should do the

work explicitly given in the example below. Not requiring the programmer

to specify the behavior of the various actors created, sch as te nsensitive

bank account and the customer to process the overdraft, protects against

erroneous communications being sent to these actors. It aso frees the

programmer frorn having to decide her own protocols.

A bank account with an overdraft protection is mplemented using a

system of four actors. Two of these are the actors corresponding to the

checking'and savings accounts. Two other actors re created to handle

requests to the checking account that result in an overdraft. One of the

actors created 'is simply a buffer for the requests that come in the checking

account wile the checking account is insensitive. The other actor created,

an overdraft process, is a customer which computes the replacement be-,

havior of the checking account and sends te reply to the customer of the

withdrawal request. We assume that the code for the savings account is

almost identical to the code for the checking account and therefore do not

specify it here. The structure of the computation 'is illustrated by Fig. 44

which gives the actor event diagrain corresponding to a withdrawal request

causing an overdraft.

The behavior of the checking account, when it is not processing an over-

CHAPTE4114. A M.IIEEXl-'Il.l-�'SSIVE.LANG[JACE 78

checking-acc savings-acc

<'request>

<re

Figure 44: Insensitive actors. During the dashed segment the nsensitive

checking account buffers any communications it receives.

draft, is given below. When the checking account accepts a communication

which results in an overdraft, it becomes an insensitive account.

IF

%1I-lIl.l'A.PTE4R 4 A MORE EXPRESSIVE LANGUAGE 79

checking-acc (balance my-savings) [request)]

if (deposit request)

dien'become new (checking-acc with pdated balance)

send 'receipt) to customer

if (show-balance request)

send [balance] to customer

if (withdrawal request) Own

if balance > withdrawal-amount

Own become new (checking-ace with updated balance)

send (receipt) to cusiomer

else let b = new buffer

and p new overdraft-proc

lbecome new insens-acc (bp)

send (withdrawal request with customer p to my-savings}

0The ehavior f an "'nsensitive" bank account, called insens-acc is

quite simple to specify. t 'is given below. The insensitive account forwards

all 'Incoming communications to a bffer unless the communications 'is from

3the overdraft process it has created. The behavior of a buffer is similar

to that described in Example 32.3. The buffer can create a lst of com-

munications, until it receives a communication to forward them. It then

forwards the buffered communications and becomes a forwarding actor so

that any communications in transit will also get forwarded appropriately.

3Due to considerations such as deadlock, one would program an insensitive actor to

be somewhat more "active" see 6.1). Good programming practice in a distributed

environment require that a Factor be continuotisly available. In particular, it should be

possible to query an insensitive actor about its current status.

III

CHAPTER 4 AMORE EXPRESSIVIiiLANGUAGE 80

znsens-acc (buffer, proxy) [request sender]

if request = become and sender = proxy

then become replacement specifed)

else snd cornmunication) to buffer

Finally, we specify te code for a cstomer to process overdrafts. This

customer, called overdraft-process receives te reply to te withdrawal re-

quest sent to the svings account as a result of the overdraft. The identifier

self is bound, as always, to te mail address of the actor 'Itself -C.,

whose behavior has been defined using the given behavior definition). The

response from te savings account may be a wthdrawn, deposited, or com-

plaint message. The 'Identifier proxy in the code of the isensitive account

represents the mail address of te over-draft process. Te proxy is used to

authenticate the sender of any become message targeted to the insensitive

actor.

overdraft-proc (customer my-checking my-savings

checking-balance) [avings-response)]

send [become self] to my-checking

send [savings-response)] to customer

if (savings response is withdrawn)

then become new checking-acc (0 , my-savings)

else become new checking-ace(checking-balance , my-savings)

IF

I

CHAPTER 4 A MORE EXPRESSIVE LANGUAGE 81

4.3 - Sequential Composition

In the syntax of our kernel language, we (lid not provide any notation for

sequential composition of cominands. The oinission ws quite itentional.

Although sequential composition 'is rimitive to sequential inachines in

the context of actors it is generally unnecessary. Recall that the primitive

actor carries out only three sorts of actions: namely, sending colliniunica-

tions, creating actors, and specifying a replacement behavior. The order

of these actions is immaterial becaus e tere is no changing local state af-

fecting these actions Frthermore, the order in which two conimunications

are sent is irrelevant becanse, ven if such an order was specified, it would

not necessarily correspond to the order in which the communications were

4subsequently received.

There re some contexts in which the order of evaluation of expressions

seems sequential even in the kernel of SAL. The two obvious places are

conditional expressions and let expressions. A conditional expression must

be evaluated before any of the commands in the body can be executed.

Such evaluation can not be done at conipile tme. However, the entire con-

ditional. command can be executed concurrently wth any other commands

at the same level. One can think of each command as an actor to which

a communication is sent wth the crrent bindings of the identifiers. The

"command actor" in turn executes 'Itself in the environment provided by

the communication.

'Unless the two communications axe sent to the same target, there may not be a unique

ordering to teir arrival Se te iscussion in Section 22.

C.IAPTER4. AMOREEXPRESSIVELANGUAGE 82

A let command, nless it is bnding a new expression, is othing more

tha a abbreviation that cn be removed by the coinpiler if desired. A

translator can sbstitute the expression for te identifier wbereever the

identifieris used (in te scope of te let inding).

A more 'teresting case is that of let commands binding new expressions.

New expression indings serve as abreviations for behaviors instead of val-

ues. However, the behavior associated with an identifier 'is not ecessarily

constant. In an abstract sense, the identifier (in its scope of use) always

denotes the same object. For example a bank ccount refers to the. same

bank account even though the behavior of the bank account is a function

of the balance in it.

Let bindings have another characteristic: They inay be utually re-

cursive since concurrently created actors may know of each other. The

question arises in what sense the behavior of an actor depends upon the

other actors. The only requirement is that concurrently created actors may

know each others ail address. This 'in turn ineans tat the ail addresses

of each of the actors should be known before any of the actors are actu-

ally created (since the behavior of each is dependent on other actors' mail

addresses). The operational sgnificance of this is quite straightforward.

Not withstanding their absence in the kernel of our actor language,

sequential composition of commands can be meaningful as a structural

representation of certain patterns of computations. Sequential composition

in these cases is a result of causal relations between events. For example,

consider the commands Si and S2 below:

IH

CHAPTER 4 A MORE EXPRESSIVE LANGUAGE 83

Si send call g [XI I to f

S2 send call g 1YI I to f

then the sequential composition of SI with S2 has a very different ineaning

than the concurrent composition of the two commands because the effect of

accepting communication I ay be to cange te ctor g's subsequent be-

havior. Thus sequential composition can result in oly some of te possible

order-of events inherent 'in te concurrent composition.

Sequential composition of the above kind is also implemented sing

customers. The command SI; S2 is executed concurrently wth other

commands at the same level. To execute S, the actions iplied by the

command Sj are executed, including the creation of a customer to handle

the reply from . When this cstomer receives the reply from g, it carries

out the other actions plied by SI as well executing S2.

Notice however that if SI and S2 were commands to simply send com-

munications to 9, then -no mechanism for any sequential composition of the

two actions 'implied would be definable in or kernel language. Nothing

signals the end of any action at an actor other than the causal relations

in the events. For example, causality requires that the actions of an actor

must follow the event that creates it. The conclusion to be drawn is that

concurrent composition is intrinsic in a fundamental and elemental fashion

to actor systems. Any sequentiality is built out of the nderlying concur-

rency and is an eergent property of the causal dependencies of events in

the course of the evolution of an actor system.

III

CHAPTEM 4. A MOR.1_�j EXPRESS.IVE LANGUAGE 84

4.4 Delayed and Eager Evaluation

In this section, we will develop the odel of actors i which all expressions,

coniniands and communications are themselves considered to be actors. We

will call tis odel of ctors te niverse Of actors odel. Te Universe

of actors inodel is usefid for defining language that is te actor equiva-

lent of a prely expressional language. Specifically, the -universe of actors

model permits an easy (and efficient) iplementation of the various expres-

sion evaluation mechanisms, such as delayed and eager evaluation, sing

message-passing.

Computation in actor systems is initiated by sending communications to

actors that are receptionists. A single ehavior definition in fact represents

a specification of a system of actors with one of tem as the receptionist

for the system; the behavior of this receptionist is to execute a sequence of

commands concurrently. We can consider each coinniand to be an actor and

the receptionist, pon accepting a communication, sends each command a

message to execute itself with the current environment specified by the

communication sent. The command will in turn send communications to

expressions and create customers to process the re lies. This process must,

naturally, be bottomed out at some point by actors which do not send any

C(requests" to other actors but simply produce "replies." Hence, we need a

special knd of actor, called a primitive actor, with the characteristic that

some of these primitive actors need not (always) rely on more message-

passing to process an ncoming ommunication. Furthermore, primitive

actors have a pre-defined behavior which never changes (i.e., te behavior

-Iff- --- - - I � I --

CHAPTER 4 A MORE EXPRESSIVE LANGUAGE 85

is unserialized). Which actors are defined as primitive depends on the

particular actor system.

4.4.1 Primitive Actors

Primitive actors are used in order to "bottom-out" a computation.' Hence,

the set of primitive actors must 'Include te primitive data values and the

basic operations on them. In particular, simple data objects such as Mte-

gers booleans and strings ust be considered primitive. When an integer

is sent a message to "evaluate" itself, it simply replies with itself To

carry out any computation, primitive operations, such as addition, must be

pre-defined. There are various mechanisins by wich a consistent model,

incorporating pimitive operations, can be developed: one such scheme is

to also define operations such as addition to be primitive actors.

Our bias, however, is to encapsulate data values and the operations valid

on the data into niform objects. Hence, we define each 'Integer as an actor

which may be sent a request to add itself to another integer. The integer

would then reply with the sum of the two integers. In fact an integer, n may

be sent a request to add itself an arbitrary integer expression, e. in this

case one must also send the local environment (which provides the bindings

for the identifiers 'in e). The bindings of the identifiers will, of course, be

primitive actors. One way to understand this notion is to notice that the

expression e is really equivalent to call e [env] where env 'is the environment

Tlieriaiilt 83] used te term rock-bottom actors to describe tese actors and the material

on primitive actors closely follows is implementation in Act2.

-- I 19

III

CIIAPTER 4 A MORE EXPRE4SSIVE4 LANGUAGE 86

in which the valuation of the expression is to be performed. If e is an

integer constant, 'it will reply with 'Itself nd, subsequently, n wll reply

with te correct suni. Specifically, te behavior of the expressio e + n in

response to a request to ad itself to te expression e 'in te evironment

env, can be described as:

let x call e env

reply n + x

If e is not an 'Integer but an 'integer expression, a call to it must result in an

integer. Thus te meta-circular behavior of the expression, e el + e2 is

to send evaluate messages to each of the expressions el and e ad to then

send a message to the first expression (which would now have evaluated to

the primitive actor that corresponds to the value of el) to add itself to the

actor the second expression evaluates to.

Notic tat we se integers, and expressions, as though they were iden-

tifiers bound to mail addresses, and, indeed, as actors they are. To under-

stand this concept, consider the relation between te numeral 3 and the

number 3 For our purposes, in the universe of actors odel, the identi er

3 is bound to the mail address of the actor . Since is a primitive actor,

its behavior 'is pre-defined. Frthermore, the behavior of the actor 3 never

changes (such a behavior is called an unserialized).

There may be more than one actor 3 in a program: the identifier 3 is

completely local to the scope of its use. However, the identifier 3 has been

reserved for a particular fnctional (unserialized) behavior and may not be

used dfferently by te programmer. One useful implication of the fixed

CIIA.P7ER 4 A MORE EXPRESSIVF, LANGUAG14 87

behavior of an 'Integer like 3 is that it does not really matter ow many 3's

there are in a given actor system, or whether two 3's in an actor system

refer to the same actor or derent ones. Ergo, when a communication

contains the actor it 'is an implementation decision whether to '.'copy"

the ail address of the actor 3 or whether to copy the actor itself: the latter

possibility is useful for aintaining locality of reference in inessage-passing

for efficiency reasonss To put it another wy, the unserialized nature of

primitive actors implies that there 'is no theoretical reason to differentiate,

between the expression new 3 and simply 3.

4.4.2 Delayed Evaluation

In fnctional programming, delayed evaluation is useful for processing infi-

nite structures by exploring at any gven time, some finite segments of the

structure. Using delayed expressions, the evaluation of a fnction is explic-

itly delayed until another function "resumes" 'It. Thus, delayed evaluation

is the functional equivalent of co-routines [Henderson 80].

In actor systems, it is not necessary to define delayed evaluation as a

primitive: Since an actor becomes another actor as a result of processing

a task, an actor already represents an 'Infinite structure which unfolds one

step at a time (in response to each communication accepted). Similarly,

co-routines are one particular case of a concurrent control structure; actors

allow one to define arbitrary concurrent control structures. Each control

6There is no notion of copying actors in te actor model. What we mean is create a new

actor with te behavior identical to the current behavior of the (old) ator,

CHAPTER 4 A MORE EXPRESSIVE LANGUAGE 88

structure defines a graph of activations of processes and, as sch, every

control structure can be represented as a pattern of niessage-passing [Ile-

w'tt 77]. Te ator nodel allows dynamically evolving patterns of message-

passing. Static control structures sch as co-routines are a special (de-

generate) case of the dynamic structures.

As the above discussion suggests, dlayed evaluation is a syntactic ex-

tension to an actor language and not a semantic one. We define, delayed

expressions in order to ake our purely expression oriented extension of

SAL more expressive. The construct does not add any expressive power to

the language.

The expression delay e denotes the mail address of the expression e as

opposed to the actual value of e. Recall that the expression e is equivalent

to call e [env] where an expression denotes the mail address at which the

expression resides (see the discussion about the universe of actors model in

the previous section).

For purposes of the discussion below, we assume that the environment

is sent to any expression receiving a request. Now we have to decide what is

me ant by expressions which contain delayed expressions as subexpressions.

For example, the expression:

el = e2 delay 3

is a product of an arithmetic expressio.n and a delayed arithmetic) expres-

sion. When e hs been evaluated it receives the request *, delay e3 , where

delay e3 represents the mail address of the expression e3- Assume e2 has

evaluated to some integer n. Te oly feasible way of andling the expres-

ID

I

'CIIAPTE4 R 4 A MORE EXPRESSIVE LANGUAGE 89

sion el then 'is to return" (i.e., to reply with) its current local state, which

will be euivalent to the expression n * e3. That is exactly wat is done,

except that the ail address of the expression el is returned. el has now

become an actor behaviorally equivalent to the expression n * e3, an d not

the lue of the expression.

4.4.3 Representing Infinite Structures

The delayed expressions we have defined so far do not really represent

potentially infinite structures, because te expressions they define are not

recursive. However our def exp behavior definitions already provide for

such recursive structures. In this section we explore this analogy with the

help of a detailed example. We wll present an example using a functional
ing no d using actors. Two different actor systems are

progranim tatio an

defined with equivalent observable behavior- the second system uses actors

that change their behavior. Furthermore, the second actor system does

not use the, lst construction and separation operators. Thus the flavor

of the two actor systems is quite different even though they have similar

behaviors.

The Example in Functional Programming

The purpose of the following example is to define some functions which

evaluate a given number of nitial elements of an infinite list. The notation

uses a functional form for the cons operation but not for the car or cdr. All

functions axe taken from Henderson [80]. Consider, the delayed expression

-, --- --- -----------

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 90

in the function inte ersfrom(n blow:

integersfrom(n = cons(n , delay integersfrom(n + 1))

integersfrom(n) is an example of such an infinite st, namely the list of

all the integers greater than n. This list of may be evaluated only partially

at any given point 'in tme. The function first (i, x) defined below ges the

first k arguments for hfinite list x whose cdr has been delayed. (In the

functional program, one has to explicitly force te evaluation of a delayed

list.)

first (,T x) =_ 'if i=O then NIL

else cons (car x , first (- I force cdr x)

Now we define two ore functions which can be used to return the curan-

lative sum of all the elements of a list up to some Lth eleinent. The function

sums(a, x) returns a list whose LO element is the sm of te first i elements

of the list x and the'integer a. Finally, the fnction firstsinis(k) uses te

functions defined so far to return the lst of initial sums of te first i positive

integers.

sums (a, x) = cons (a + carx, delay(sums (a + carx force cdr x)

firstsums (k) first (k , sums(Ointegersfrom(l)))

A System of Unserialized Actors

Let us now dfine an actor system which produces the same behavior We

will do this in two different ways. First, we define a system of actors all

lp

I

CHAPTER 4 A MREEXPRIPiSSIVE, LANGUAGE 91

of whom have unserialized behaviors (i.e., they are always replaced by an

identically behaving actor). We terefore give teir definitions without any

become comi-mands 'in tem. (Recall the default that an actor 'is replaced

by an identically Reliving actor if no become is found in its code). We will

subsequently define a system of actors wbich.uses serialized behaviors when

appropriate. The idea behind defining two systems is to show the relation

between actor creation and actor replacement. Te systems also show the

relation btween delay ad actor creation.

Assui-ne that the operations cons', car and cdr exist and are defined

on actors representing lists. cons is sent the mail address of two actors

and returns a list of te two mail addresses. It i's iniportant to note the

equivalence of the ail address of a primitive actor and the actor itself.

There are two possibilities for a st x: it may consist of a primitive actor

(equivalently the mail address of a primitive actor) or it can be the mail

address of an arbitrary lst. car x equals x if x is a primitive actor, or

equivalently the mail address of a primitive actor, otherwise car x is the

mail address of the first element of the list. cdr x is NIL if x is a primitive

actor, and otherwise returns a mail address corresponding to the rest of the

list.

All the actors whose behavior is given by code below are expressions.

We, will not bother to enclose the definitions in def exp ... end def since the

definitions are all rather brief. There is no need delay or force operators:

a delayed ist 'is represented by the mail address of an actor representing

that list.

92CHAPTER 4 A MORE EXPRESSIVE LANGUAGE

.The first function we define 'is integersfrom(n). The behavior of an

integersfrom(n) actor 'is that it responds to an evaluate request (i.e., a

request of the form by replying wit a ist whose car is te integer n and

whose cdr is the niail address of an actor wth the behavior integersfrom(n+

integersfrom(n) reply [cons (n, new integersfrom(n +))

The behavior of an actor whose behavior 'is given by first (- is as follows:

when it 'is sent a request [i, x], where i is an non-negative integer nd x is

an arbitrary list, 'it replies with the first It' elements of the list. We assume

that the list x 'is sufficiently long to have i elements.

first() [ix] = if i ten reply NIL

else reply [cons (car x call self. [i - .1, cdr x]

Finally, we give the behavior definitions for the two remaining actors.

firstsumso defines an actor whose behavior' is to give a finite -list whose th

element 'is te sum of the first non-negative integers. The length of the list

of sums in the reply is specified in the communication received. In order

to create a system which returns the list of itial sums of non-negative

integers, we need to create only a firstsums() actor; all the other actors

will be created by this actor. The actor created will always be the sole

receptionist for such a system since no mail address is ever communicated

to the outside.

sums(a, x) let b = a carx

I reply I cons (bnew sums(bcdr x))

lu

CHAPTER 4 A MORE EXPRESSIV4 LANGUAGE 93

firstsums(k let p = new integersfrom(l)

and s = new sums(O, p)

and f new firsto

I reply [call f [k, s]

The fact that all te behaviors are unserialized implies that it is possible

to use the same actors for different requests Tus 'if an actor wth behavior

first(exists, it doesn't niatter 'if a communication is sent to the same

actor or to a new actor created wth the behavior firsto. The converse

of this property is that an actor with userialized behavior can never be a

history-sensitive shared object. This same limitation is applicable to purely

functional programs.

A System With Serialized Actors

We now attack the same problem with actors that may cange their local

state: 'i.e., actors that may be replaced by actors whose behavior is different

than their own. The point of defining this system 'is to show the relation

between actor creation and replacement. The example also illustrates the

similarity between a delayed expression and a serialized actor.

It should be noted that actors are fact more general than expres-

sions in functional programming. For one, actors, unlike expressions, may

represent (history-sensitive) shared objects. For example, a bank account

written as a function which returns a partly delayed expression will have

returned an argument purely local to the caller. This means that such a

III

CIIAPTEM 4. A MORE EXPRESSIVE LAN'GUAGE 94

bank account can -not be sared between different users (or even between

the bank anager and te account owner!). In dataflow architectures,

the problem of saring 'is addressed by assuming a special merge element.

However datallow elements have a static topology (see the discussion in

chapter 2).

The definitions below do not use cons, car, and dr operations. Instead

we simply construct ad bind te communication lists. The behavior def-

inition of integersfrom(n) is that it accepts a smple evaluate essage,

and replies with the integer n. However, the actor presently becomes an

actor with te behavior integersfrom(n+1). An actor wth its behavior de-

fined by sums(ax) has two acquaintances, namely a and x. a 'is the sum

of the first umpteen elements and x is the mail address of an actor which

replies with the umpteen+1 element of the lst." The sums actor calls x

and replies with the next sum each tme it is called.

The behavior definitions of first is similar to the previous section ex-

cept that we use explicit call's. Note that the definition of firstsums(is

'Identical to the one given above, and is therefore ot repeated.

integers-from(n) reply n

become new integers-from(n + 1)

first([i, x] if iO then reply

else reply [call x call self [- 1, x]

sums(a, x) let b = a call x

freply [b

become new sums(b, x)

Ill � -- -______._ -

CHAPTER 4 A MORE EXPRESSIVi LANGUAGE 95

6The concept of replacement provides us with te bility to define lazy

evaluation so that same expression would not be ealuated twice if 'it was

passed communicated) unevaluated (i.e., if erely 'Its mail address was

sent). If lazy evaluation was desired, one could send communications con-

taining te mail addresses of expressions, instead of te primitive actors the

expressions would evaluate to. In this scheme the niessage-passing disci-

pline is equivalent to a call-by-need parameter passing mechanism, instead

of a call-by-value wich is the default in our definition of SAL.

However, the point of actor architectures is not so much to merely

conserve computational resources but rather to provide for teir greedy

exploitation- 'in other words to spread the computation cross. a extremely

large-scale distributed network so that the overall parallel computation time

is reduced. At the same time I it would be nadvisable to repeat the same

computation simply because of te lack of the ability to store it- a seri-

ous Problem purely functional systems [Backus 771. In the next section

we provide a strategy for evaluation of expressions which satisfies these

requirements.

4.4.4 Eager Evaluation

The inherent parallelism in actors provides many options for a greedy strat-

egy in carrying out computations. The idea is to dynamically spawn nu-

merous actors which will carry out their computations concurrently. These

actors can exploit all the available resources 'in a distributed systems. We

have already seen pipelining of the replacement actors as a mechanism for

I I

e

-- -Iff -------

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 96

increasing the speed of execution o a parallel architecture. In an actor

language, the pipelining 'is inade possible by the se of customers by which

continuations are incorporated as first-class objects.

I
II

IaIp

Figure 45: ager evaluation. The dotted ne shows the acquaintance rela-

tion. X creates Y and tells it about e while concurrently sending an evaluate

message to

Another echanism by which the available parallelism in an actor lan-

guage can be exploited is by schemes for eager evaluation. To speed up the

computation to its logical limits, or at least to the linlit of the number of

available processes in a particular network, one c'an create an actor with

the mail addresses of some expressions (which have not necessarily been

evaluated) as its acquaintances. So far, this is similar to how one would

implement call-by-need. However, for eager evaluation we concurrently send

the expression, whose ail address is known to the actor created, a request

CHAPTER 4 A MORE EXPRESSIVE LANGUAGE 97

to evaluate itself. Fig. 45 shows tis pictorially. The net effect 'is that a.

actor Y which has been created my accept a communication even as the

expression e which is its acquaintance is being evaluated concurrently. The

expression subsequently becomes the primitive actor it evaluates to. Thus

the evaluation of te same expression need not be repeated.

a er

0 e .c o S e iLs

A model for any collection of objects provides a map from the objects into

equivalence classes that contain elements which are considered to be indis-

tinguishable from each other. In other words, a model provides an abstract

perspective in which the "irrelevant" details are ignored in establishing the

equivalence of systems. A denotational model is one 'in which. te meaning

of a system can be derived from the meanings of its constituent parts. We

wHI refer to this property as compositionahty.

The semantics of sequential programming languages has been rather

successful 'in building denotational models of programs which abstract away

the operational details of the sequential systerns defined by the programs. In

the case of concurrent systems, however, the requirements of compositional-

ity have resulted in proposed denotational models which retain substantial

operational iformation. The reason for this is as follows. Composition in

concurrent systems is achieved by interleaving the actions of the systems

98

ID

.- m- 9t --ft" -- I . --

CHAPTER 5. A MDEM FOR ACTOR SYSTEMS 99

that are composed: thus the denotations for a system require the reten-

tion of information about the intermediate actions of the system (see, for

exaniple, Milner 801 or [de Bakker and Zucker 83]).

In this chapter we will develop a odel for actor systems based on

semantics by reduction'. Te ctor semantics follows a structured opera-

tional style long advocated by Plotkin. In particular, we define transition

relations which represent the evolution of an actor system as the coniputa-

tions it is carrying out are nfolded. Two transition relations are necessary

to capture te behavior of an actor system. The first of these, called a

possible transition, represents the possible orders in which the tasks may

be processed. The possible transition relation is however insufficient to

capture the guarantee of mail delivery. We therefore define a second tran-

s'tion relation called subsequent transition, which expresses just such a

guarantee.

The plan of this chapter 'is as follows. The first section specifies a

formal definition for the configuration of an actor system and states the

requirements relevant to defining an operational semantics of actors. In

the second section we map actor programs to the initial configurations they

define. The last section discusses two knds of transition relations between

configurations. These transition relations provide.an operational meaning

to actor programs.

CHAPTER 5. A MDEL FOR ACTOR SYSTEMS 100

5A Describing Actor Systeins

The configuration of an actor system is described by the actors and tasks

it contains. There i's no 'Implied uniqueness in the configuration of n actor

system: different observers my consider the system to be in ite different

configurations. This 'Issue is discussed in greater detail in Section 53 To

describe the actors in a system, we have to define their behaviors and their

topology. Descriptions of actor systems are ebodied in configurations and

therefore we will first develop some notation to represent configurations.

The definitions below assume that actor behaviors are well-defined a

topic we will discuss in 5.2.

5.1.1 Configurations

There are two components in a configuration: namely, the actors and the

tasks. The tasks represent communications which are still pending- in other

words, communications that have been sent but not yet accepted by the

target. These communications may or may not have been delivered; they

axe simply yet to be processed. We keep equivalent tasks (i.e., those with

the same communication and target) distinct by specifying a unique tag for

each task in a configuration.

Definition 5.1 Tasks. The set of all possible tasks, T, is given by

T - xMxK

where I Z's the set of all possible tags, is the set of all possible mail

addresses, and K is the set of all possible communications. We represent

IE

CHAPTER 5. A MODEM FOR ACTOR SYSTEMS 101

tags and mail addresses as finite sequences of natural numbers, separated

by periods,- and communications as a tuple of values. If is a task and

T (t, m, k) then we call t the tag for the taskT and m the target.

We define a local states function to represent the behaviors of the actors

from some viewpoint. Since'there are only fi nitely many actors 'in any given

configuration, this 'is really a partial function on the set of all possible

mail addresses. However, when appropriate, one can treat the local states

function as a total function by defining an undefined behavior, called I and

mapping all undefined elements to I For our imediate purposes, defining

a total function is not necessary. In the definition below, we assume that a

set of possible actor behaviors 3 eists.

Definition 52 Local States Function. A local states function I is a

mapping from the mail addresses of the actors in a system to their respective

behaviors i. e.,

I M 13

where M is a finite set of mail addresses (M M), and is the set of

all possible behaviors, respectively. We represent the set of all local states

functions by

A configuration is defined as follows. A restriction on the tags of a config-

uration specified in the definition belo w) is necessary to ensure that there

always exist transitions from a given configuration with unprocessed tasks.

We wish to avoid any tag conflicts as an actor system evolves.

III

CHA-PT ER 5. A MODEL FOR ACTOR SYSTEMS 102

Definition 53 Configurations. A configuration is a two tuple (1, T))

where I is a local states function and T is a finite set of tasks such that no

task has a tag which is the prefix of another tag or mail address.1

Note that the set T in fct represents a function from the a finite set

of tags to the cross product of ail addresses and communications. The

degenerate case of the prefix relation is equality and thus no two tasks in

a configuration may hve the same tag.

5.1.2 Requirements for a Transition Relation

What any behavior definition gives us is a map from a finite list of -variables

to a "behavior." These variables are given specific values whenever any

actor is created in the system. An actor's behavior specifies the creation

of new tasks and actors as a function of a communication accepted. Newly

created actors niust have mail addresses that are unique and the different

tasks 'in a system need to be kept distinct.

A global scheme for assigning niail addresses to newly created actors is

not a faithful representation of the concurrency inherent in an actor system

although such a scheme would provide a smple mechanism for generating

new mail addresses in much the same way as the semantics of block decla-

rations in Pascal provides for the creation of new variables [de Bakker 801.

We will 'instead provide a distributed scheme for generating mail addresses.

One can maintain the uiqueness of tasks by providing distinct tags

for each and every task in an actor system. In fact, one purpose of mail

' The prefix relation 'is defined ising te usual definition for strings.

, o �

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 103

addresses is quite similar to that of tags: mail addresses provide a way

of differentiating between identically behaving actors. Mail addresses also

specify a network topology on actors by allowing one to define a directed

graph on them (the nodes in such a graph denote the actors). We will use

the unique tags of a task to define ore unique tags and mail addresses

for the new tasks and actors created. Having defined a scheme which guar-

antees the uniqueness of tags and mail addresses, we can transform the

instantiations, of the behavior definition ito a transition relation from each

actor and task to a system of actors and tasks. This transition relation can

be extended meaningfully to a system of actors ad tasks as long as mail

addresses and tags can be generated in a distributed fashion and maintain

their uniqueness as the system evolves.

5,2 Initial Configurations

Our goal is to map actor programs to the initial configurations they define.

To do so we have to specify how the meaning of the various constructs 'in an

actor program. We confine our consideration to minimal actor languages

such as the kernel of SAL and Act defined in Section 32. Snce all the

extended constructs are definable in such mnimal languages, and since

the kernel is much smpler than any expressive extension, such a restricted

focus is not only pragmatically desirable but theoretically sufficient

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 104

5.2.1 Formalizing Actor Behaviors

The behavior of an actor was described informally in Section 21.3. In a

nutshell, we can represent the behavior of an actor as a function from the

possible incoming communications to a 3-tuple of new tasks, new actors,

and the replacement behavior for the actor. We give a domain for actors

below. Since the gven domain of actor behaviors 'is recursive 'it is not

immediately obvious that the ehavior of an actor is well-defined: We can

deduce from a simple cardinality argument (following Cantor) that not all

functions of the form in definition 5.5 will be meaningful.

There.are two ways to resolve the domain problem for actors. The first

solution is to use Scott's theory of reflexive domains [Scott 72] to map actor

behaviors into an abstract, mathematically well-defined space of functions.

Applying Scott's theory each actor program denob�� a value in the specified

abstract space. Such valuations, however, may or may not suggest a means

of iplementing an actor language. In fact, one can show that computation

paths defined using the transition relation specify information system a's

defined in [Scott 821.

In the denotational semantics of sequential programs, a major advan-

tage of the fixed-point approach has been the ability to abstract away from

the operational details of the particular transitions representing the inter-

mediate steps in the computation. The sequential composition of functions

representing the meaning of programs corresponds nicely to the meaning of

the sequential composition of programs themselves. This also implies that

the meaning (value) of a program is defined in terms of the meaning of

IP

.1 I �,,, 1 i � ; . I 4 - I � I - �,' I,,I i , - -

CHAPTER 5. A MODEL FOR ACTOR SYSTE MS 105

its subcomponents [Stoy 771. Furthermore, since sequential composition is

the only operator usually considered in the case of deterministic, sequential

programs, the fixed-point method is fully extensional [de Bakker 80].

Unfortunately, fixed point theory has not been s successful i providing

extensional valuations of concurrent programs. The problem rises because

of the requirements of parallel composition'ality: Specifically, the history of

a computation is not as easily ignored. We will return to tis topic in

Chapter 7.

What we propose to do 'in this chapter 'is to provide a fnctional form

for the behavior of an actor 'in a given program. Specifying the eaning

of a program in these terms does not abstract all the operational details

related to the execution of the code. These functions will 'in trn be used to

define the initial configuration and the transitions between configurations.

The representations are entirely intentional 'in character and thus provide

constructive intuitions about the nature of computation in actor systems.

Note that the semantics of actor programs developed in this section is

denotational because the meaning of a program is built from te eaning

of its constituent parts. We begin by defining actors and their behaviors.

Definit'on 54 Actors. The set of all possible actors, .4, I's given by

. = X '8

where is the set of all possible mail addresses (as above), and -is the

set of all possible behaviors.

I The tag of the task processed by an actor a is used to define new tags

� I

CIIAPT14311 5. A MODEL FOR ACTOR SYSITMS 106

for the tasks, and new inail addresses for te actors, that fire created by

a in processing the tsk. Notice that there are only a finite umber of

tags ad niail addresses possible. A recursive domain for actor behaviors

is given below.

Definiflon 5.5 Behaviors. The behavior of an actor, with the mail ad-

dres,,� - i. s an element of , where

B I x {m I x K F,(T) x F,(A) x A

where (T) is the et of all finite subsets of T and F.,(A) is the set of finite

subsets of A. Furthermore, let be a behavior for an actor at mail address

M, and t be the tag and k be the communication of the task processed, such

that (k = Tj Al where

T In rn

A la,, ... I Yni}

then the following conditions hold:

1. The tag t of the task processed is a prefix of all the tags of the tasks

created:

Vi (1 < i < n >. :�mj C M :� ki c K IM I ,ri t , mi , ki)))

i i

2. The tag t of the task processed s a prefix of all the mail addresses of

the new actors created:

Vi (1 < i < n' =�-]pi Elt' (ai - t-t') pi)))i i

IE -

� M-- I

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 107

3. Let I be the set of tags of newly created tasks and M be the set of

mail addresses of newly created actors. Then no element of I U M is

the prefix of any other element of the same set.

4. There isL always replacement behavior.

30' C (-y -- Mj

The example below is for 'Illustrative purposes. Te maning developed

in- 5.2-2 will allow s to derive froni the code the fnctional formIgiven.

Example 52.1 Recursive Factorial. The recursive fctorial discussed

in section 2 is an example of an unserialized actor. Te code for such an

actor is given in Section 33. Te behavior of a recursive fctorial actor at

the ail address m, (M p), can be described as follows:

IP(tm,[kjk2])

(I (t. 1 k2 [1]) 0, (M, if k =

�J(t.l, m, [k - 1 t.21) I (t.2) Ok, (M P) otherwise
k2

where m 'is the mail address of the factorial actor t is the tag of the task

processed. The behavior of the newly created customer can be described

as

Okj(tt.2,[nj = ff(t'.11k
k2 2, [n * kll)} 0 (t.21/3,

where t.2 is the mail address of the newly created actor, and t' is the tag

of the task it processes. #I is bottom'behavior, which is equivalent to an

infinite sink. Note that it can be shown in any actor system that this newly

created actor wl receive at most one communication thus the behavior of

its replacement 'is actually irrelevant.

IT ---- -- --, -- -- - --

III

XCIIHAPTEM 5. A MODEL FOR ACTOR SYSTr_4,MS 108

5.2.2 The Meaning of Behavior Definitions

Recall that an actor achine einbodies te crrent behavior of an actor.

Conceptually, an actor inachine is replaced wit aother, erhaps identi-

cal actorii-iachiirieeachtiiiicacoiiiiiiiinication'is;tcceptcdl)yanactor. The

behavior of an actor achine 'is quite sitnple: 'it nvolves no iteration, recur-

sion, synchronization, or state change. Te behavior is smply a function

of the incoming communication and involves sending more communications

to specified targets, creating new actors, and specifying a replacement ac-

tor machine.' We will use' the syntactic default in an actor prograin that

whenever there 'is no become command in the code of an ator, then the

replacement behavior 'is simply an identically behaving actor. One can now

safely assert that all actors definable in an actor language like SAL specify a

replacement behavior. Alternately, we could have decided that a behavior

definition wich dd not provide a replacement in some case was simply

meaningless.

In this section, we closely follow the relevant otation and terminology

from [de Bakker 80]. Each actor program consists of a finite number of

behavior definitions which will form templates for all the behaviors of actors

that may be created in the course of program execution. We will define the

meaning of a behavior definition as a map from:

e The mail address self, of the actor whose behavior has been defined

using te template; and

2The rest of this section is a technical jstification for a well formed interpretation of

actor behaviors and may be skipped without loss of continuity.

I I '' 4 � , ��-
- 'I pf� 0�. m -I

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 109

0 The variables n the acquaintance list of the behavior definition.

And map into a function mapping a task wth target self into a tree

tuple consisting of

* A set of tasks;

0 A set of three tuples consisting of a rilail adress a behavior definition,

and a list of values; and,

* A three tuples consisting of te mail address self, a behavior defini-

tion) zmd a list of values.

We carry ot the construction formally. We first define the syntax for

the class of primitive expressions. There are three kinds of primitive ex-

pressions: integer, boolean and mail address expressions. Tese expressions

will occur in derent commands. The class Icon typically corresponds to

identifiers such as 3 4 11. .. , while the class Ivar corresponds to the iden-

tifiers used for ntegers in a program. Note that there 'is no class of mail

address constants in the expressions of our language because the program-

mer has no direct access to mail addresses. The primitive expressions given

below are purely syntactic objects which will be mapped into mathematical

objects by a valuation function.

Definition 56 Syntax of Primitive Expressions.

1. Let Ivar, with typical elements Y ... be a given subset of the class

of identifiers, and Icon be a gven set of symbols with typical elements

CHAPTER 5. A MODEL FOR ACTOR SYSTTMS 110

n,. ... The class Iexp, with typical elements . is defined by

5 I n I SI 82

(Expressions such as SI'- 82may be added.)

2. Let Mvar, with typical elements a',.. be a given subset of the class

of identifiers, E be an element of Dvar (defined later) and el, ... ei

be arbitrary expressions, then the class Mexp, with typical elements

hi... is defined by

h a new Eel,... ei)

3. Let Bvar, with typical elements b,.. . , be a given subset of the class

of identifiers, and Bcon be the set of symbols f alsel. The

class Bexp, with typical elements b ... is defined by

b ::= true I f alse I 1 32 hi = 2

We now assume the existence of three classes of athematical objects:

namely, a class of integers, V a class of mail addresses, M, and a class of

truth values, W - Itt, ff The integers and the truth values have the

usual operations associated with tem, such as addition for integers. We

assume that the concatenation operator works for the mathematical objects

called mail addresses since te class of mail addresses will be identical to

the class of tags and the latter will be suffixed to define new mail addresses.

Let the set of primitive variables, Pvar, be the separated sum of integer,

CHAPTER 5. A MODEL FOR ACT01? SYSTE MS ill

boolean, and inail address variables.' Smilarly, let P be te st of primitive

values representing te separated sum of te]integers, the truth values and

the ail addresses. A local environment 'is defined as a element of

E : Pvar --+ Pval

There are three smantic functions that need to be defined to give a meaning

to the primitive expressions. Given a local environment tese fnctions map

primitive expressions to primitive values. These functions are:

V Iexp E V

W Bexp E W

M Mexp E M

The definitions of the first two functions are by 'Induction on the com-

plexity of the arguments and have nothing to do with actor semantics in

particular. We therefore skip them. We will define te eaning function

below which will provide the valuation for new expressions. Essentially,

new expressions evaluate to a new mail address. We will assurne a single

function 7r representing the separated sum of above three functions such

that -7r maps each expression into its corresponding value given a particular

local environment, a.

We now gve the syntax of commands, and using commands, the syntax

of behavior definitions. The syntactic classes defined are called mnd and

3Strictly speaking the set Bvar is superfluous since boolean expressions can be defined

without it. However, we will assume tat all three kinds of variables exist and axe

distinct.

-

III

CHAPTE.W 5. A MODEL FOR ACTOR SYSTEMS 112

Bdef. The syntax below i's a slightlyabbreviated form of te syntax used in

SAL. The two noteworthy differences between SAL and the syntax below

ar e as follows. First, we allow let bdings only for new expressions. The

sellittntics of let bindings in other cases is qite standard, and 'in ay case

not absolutely essential to our actor programs. Second, w use new expres-

sions, as opposed to arbitrary expressions, in all become commands. The

semantic iterpretation of becoming an arbitrary actor 'is simply to acquire

a forwarding bhavior to tat actor (see 3.2.1). The behaviour can thus be

expressed as a new expression using a predefined forwarding behavior and

specifying its acquaintance as the expression. The only reason for these

simplifications is brevity.

Definition 57 Syntax of Behavior Definitions.

1. The class Cmnd with typical elements S, given by

S :: SIS2 I if b then SI else 2

send [el, ej] to a I become new E(el, ej)

let a, = new El(el,...,ej,) and ...

and aj =new Ej (el . .. , ei, I

where the use of the identifiers corresponds to their reserved status

above. The identifiers E ... are used as defined below.

2. Let Dvar be set of pre-definedsymbols. The class Bdef with typical

elements is given by

D .:- def Epl,-.-,pj)1PI,..., P� S enddef

III

CHAPTER 5 A MOD-EL FOR ACTOR SYSTE MS 113

The seinantics of the class Cinnd I's dfined below. he sei-iiantics Tnaps

a gven local evironment into a 3-tuple representing tasks ceated, ctors

created nd a replacement actor, respectively. Note that actors are simply

denoted by a mail address, n lement of Dvar ad a list of 1)riaiitive values

which wl map nto the primitive vriables used in te behavior definition

using the leinent of Dvar. We also assume tat two primitive variables

namely self and curr, of te class Mvar are defined by the local environment.

self represents the mail address of te actor wose code contains the given

command and curr represents te tag of the tsk bing currently processed.

The meaning function is defined on the complexity of the commands We

will not bother to define a complexity measure for the commands but will

simply follow the syntactic definition. The details re trivial. Note that

or represents the local environment ad aja1xj represents te environment

which is equal to a except that 'it has te primitive value a for the primitive

variable x. The operation represents a component-wise uion (i.e.,

three CM.ponents are union independently).

The eaning function maps each command in a given local environ-

ment to a tree tuple representing the communications sent, actors created

and the replacement actor. The meaning of concurrent commands is the

component-wise union of the commands themselves, 'i.e., the communica-

tions sent are te communications sent by each and the actors created axe

the union of the actors created by xecuting each of the commands. Recall

that there ay be only one executable become command in the code of an

actor for ay given local environment. If te uion ends up wth more than

CHAPTER 5. A MDEM FORACTOR SYSTEMS 114

one replacement actor than it does not efine a ator bel-mvior. The ain

point of interest in concurrent composition 'is te siiffixing of the crrent

tags. Tis inechanisin ensures tat the ew ctors ad tasks created y the

acto will satisfy te, prefix cotidition n definition 5.5. Asslinle tat Curr is

initially bound to t on the left hand side of all the euations given below.

F(Sl S2 (a [t/currj) -- F(SI) (o, t I /curr�) W Y(S2) (or t.2/currj)

The meaning of the conditional command and the send command is straight-

forward. The become command specifies the replacement behavior by Spec-

ifying an identifier which will denote a behavior definition and a list of

vallies which will prtially determine the local environment in wich the

command 'in te definition is executed.

F(S)(or) if 7r (b) t t
jr (if b then Si else S2) (a) =

Y'(S2 (a) otherwise

Y'(send le, ej] to a (a it/currj)

-7 (a) (or), (el) (or), -7r (ei (or)] 0 0)

F(become new Eel,...,ej))(orjm/selfj)

(0, 0 I m, E (7r (el) (a) -7r (ei) (or))

The creation of new actors is accomplished by new expressions and let

bindings. We have to specify the new ail addresses for all concurrently

created actors which may know each others mail address. Te command in

the scope of te bindings 'is also executed in an local environment where all

ju

�OM

CHAPTER 5. A MODEL FOR ACTOR SYSTE MS 115

the identifiers for the actors are bound to the mail addresses of the newly

created actors.

,T(Iet at = new Ei(ej ... eil) and and

aj = ew Ej(el,..., e, -) SJ)(ajt/curr�) F(S)(a' Utj

(0, la,, VI < n < (an (t.nEn(7r(ej)(cr'),... 7r(ejn)(u'))},O)

where a' u�aj/t.i,... a jlt-j�

Now t meaning of a behavior definition is simply to modify the pro-

gram environment by mapping each Dvar into the eaning of the com-

mand. We skip the simple) proof that a behavior definition defines be-

haviors that satisfy the requirements of definition 55. The tag nd ail

address generation schemes we used were intended to satisfy these require-

ments. The only other constraint of interest is that there be at most one

executable become command. The behavior definition is simply ot well-

4defined if its meaning volates this constraint.

5.2.3 Mapping Actor Programs

The basic syntax of a SAL program consists of behavior definitions and

commands. The commands ae used to create actors and to send them

communications.' Now a program environment associates the identifiers

Dvar with the meaning of commands for each behavior definition 'in the

4In an implementation, we would generate an error message.

'We axe ignoring for the present te receptionist and external actor declarations; although

such declarations are useful for imposing a odular structure on the programs, they do

not directly affect te transitions internal to the system.

- -,- IF -- -- --- -,

CHAPTER 5. A MODELFOR ACTOR SYSTEMS 116

program. All other mmbers of Dvar are undefined and nlay not be used

in the commands of a syntactically correct program. The program itself

is a single coinniand (recall that concurrent composition of commands is a

command) and its eaning is given sing te function defined above with

the local environment as the program environment. Te technique used

here is similar to tat in used 'in [de Bakker 80] where procedure variables

are defined in the denotational semantics of recursion. Te syntax of a

program can be given as follows:

P D D.,,

where the Di's represent behavior definitions and represents a command

(which may, of course, be the concurrent composition of other commands).

The variable curr is initially bound to .

Note that none of the to level commands can be a become command be-

cause te commands are -not being executed by a given actor. Thus an actor

program is mapped 'Into a two tuple representing the initial configuration.

A transition relation tells us how to proceed from a given configuration

by, nondeterministically, 6 removing a task from the system and adding the

effects of processing that task. The effects of processing a task axe given by'

the behavior of its target, namely the actors and tasks the target creates

and the replacement it specifies.

6We will return to the issue of the guaranteeing mail delivery in Section 53.

CTIA P TER 5. A MODE L FOR A C TOR S YS TE MS 117

5,3 Transitions Between Configurations

In a sequential achine model, the intuition behind transitions 'is that

they specify what actions ight occur "next" in a system. However 'in the

context of concurrent systems, there is generally no uniquely identifiable

transition representing the "next" action since events occurring far apart

may have no unique order to them (as the discussion in 5.2 indicated).

Our epistemological 'Interpretation of a transition is not that there really is

a nique transition which occurs albeit nondeterministically), but rather

that any particular order of transitions depends on te frame of reference,

or the view-point, in which the observations are carried out. This difference

in the iterpretation is perhaps te ost significant difference between a

nondeterministic sequential process and the model of a truly concurrent ys-

tem: In te nondeterministic, sequential process a nique transition in fact

occurs, while in a concurrent system, many transition paths, rpresent-

ing different viewpoints, may be consistent representations'of the actual

evolution.

Our justification for using a transition system 'is provided by the work

of Clinger [811 which showed that one can always define a I-que)

global time to represent the order of events. Events in Clinger's work were

assumed to take infinitesimal time and the combined order of events was

mapped into a linearly ordered'set representing a global tme. A global time

corresponds to events as recorded by some (purely conceptual) observer.

Remark. Transitions, unlike events, may take a specific finite duration

and may therefore overlap in time. This is not a problem in actor systems

CIIAPTER5. AMODELFORACTORSYSTEMS 118

because of the following:

1. All transitions 'Involve only the acceptance of a cominunication.

2. There is arrival order nondetern-iinism in the order 'in which com-

munications Sent re accepted ad this arbitrary delay subsumes the

precise duration of a transition. Specifically:

(a) When a particular communication is sent because, of a transition

need not be, explicitlymodeled: Although a communication may

not hve been sent before aother transition occurs this-possi-

bility is accounted for 'by the fct that the communication may

not cause the "next" transition.

(b) When te replacement accepts the next communication targeted

to the actor 'is indeterminate: Thus the time it takes to designate

the replacement need not be explicitly considered.

(c) The.above reasoning holds for creation of new actors as well.

Global time' in any concurrent system is a retrospective construct: it

may be reconstructed (although not as a unique linear order) after the fact

by studying the relations on the events in a parallel system. Information

about the order of events in a circumscribed system 'is often useful. In

implementations supporting actor systems, such information is useful in

delimiting transactions. Transactions are defined by the events affecting

the reply to a given request (in particular, the events ordered between

7By global time, we mean any linear order on te events in the universe.

I

I I I -I LI . If-1--,-.---- "

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 119

the request and its corresponding reply). Transactions are useful tools for

debugging a system or allocating resources to sponsor activity. The deter-

mination of n order of events (the so-called combined order as it combines

the arrival order with the order of cusal activations) in an iniplementa-

tion is achieved by running the actor system in a special niode where each

actor records events occurring at that actor and reconstructing the causal

activations by following te communications sent.

The possible ways in which a conceptual observer records events i.e., the

behavior of such an observer cor responds to that of some nondeterministic

sequential process. This correspondence is the reason why nondeterminism

is used in athematical models to capture the parallelism. owever, the

character of the correspondence is representationalistic, not etaphysical.

In particular, the behavior of a parallel system may be represented by

(consistent) nondeterministic sequential processes corresponding to

different observers.

5.3.1 Possible Transitions

In this section, we dcuss how actor systems may evolve in terms of their

descriptions. A transition relation specifies how a configuration may be

replaced by another which is the result of processing some task in the

former.

Notation. Let states and tasks be'two functions defined on configurations

that extract the first and second coinponent of a configuration. Thus the

range of states is the set of local states functions and the range of tasks is

1.0 ... mmoo-- -F - -- --I'---

CHAPTER A MODEL FOR ACTOR SYSTEMS 120

the power set of tasks, where the set of tasks may be treated as functions

from tags to the target and communication pairs.

The definition for the possible transition relation essentially shows how

an interpreter for zw actor language would, in.theory, work. It thus specifies

an operational semantics for an abstract actor language. Note that defining

a language in this manner aniounts to 'ecifying its smantics by eduction

We will first define te possible transition relation and then show that sch

transitions do indeed exist for any arbitrary configuration.

Definition 5.8 Possible Transition. Let cl andC2 be two configurations.

cl is said to have a possible transition to C2 by processing a task - t7 M k))

symbolically,

C1 C2

if r tasks(cl), and furthermore, if states(cl)(m) where

P(t, m, k) (Tj A7 -y)

and the following hold

tasks(C2) (tasks(cl - T}) U T

states(C2) (States (el) - I m Offl U A U

In order to show that there ests a possible transition from some gven

configuration, as a result of processing ay given task in tat configuration,

we need to show tat a valid configuration can always be specified using

the above equations for its tasks and states. The proof of this proposition

uses the conditions on the tags for tasks in -a given configuration to assure

� ... � -& W 1 -� z

C-IAPTE4R,5. A MODELFOR'ACTOR SYSTEMS 1.21

the, fnctional forin for the tasks and states of te configuration resulting

froni the transition.

Lemma 5.1 If el and C2 are configurations such that l C2 then no

task inC2 has a tag which is the prefix of the tag of any other task inC2-

Proof. (By Contradiction) Let tj and t2 be the tags of two tasks and

,r2 in the configurationC2 such that t= t2-Wfor some string of integers w

separated by periods. We examine the four ossible cases of whether each

of the tasks belongs to the configuration cl.

If 71, -r2 G tasks(ci) then since l is a valid configuration we immedi-

ately have a contradiction. On the other hand, if neither of the two tasks

axe in l, then by Definition 5.5 the the pre x relation i's not valid either.

We can therefore ass-Lime that one of te tasks belongs to the tasks of cl

and the other does not. Suppose r, tasks(cj) and 2V tasks(cl). Since

,r2V tasks(cj), 2 Cz T were T is the set of tasks created i the transition.
z - ies

Thus](t2 - Li wich together with the hypothesis that tj = t2-W inlPh

that tj = t.i.w. But since r,,r z task.5(cl) we have a contradiction to the

prefix condition in the tasks of configuration cl.

� The only remaining case is that of 2 G tasks(cl) and r tasks(cl).

Now tl = ti = t2-W- If w is an empty string then t is a prefix0f t2 and

both are elements of tasks(ci) a contradiction. If w = i then t- t2 and

thus t2 V tasks(C2). But if w 'is longer than a single nun-iber than t is a

PrCfiX Of t2 which also contradicts the condition that they are both tasks 'in

el. -d

CHAl"TER 5. A MODFL FOR ACTOR SYSTEMS 122

Lemma 52 The set states(C2) in the above definition represents a local

states function.

Proof. We need to show that the none of the newly created actors have

the same mail addresses as the actors tat already existed in el. Suppose

(MI, 1Y) is a newly created actor as a result of processing the task r. If t is

the tag for the task r then ' Li for some nonnegative integer i. Now if

there 'is aother actor with te, same niail address in the configurationC2,

froin lemma 52 we know that it, can not be a newly created actor. Thus

it 'is in the omain of states(ci). Then m' Li contradicts the assumption

that the tags of tasks 'in l are not prefixes to any.mail addresses in cl. -1

Lemma 53 The tags of tasks inC2 are not prefixes to any mail addresses

inC2-

Proof. Also straightforward skipped). -1

The above three lemmas 'imply the following theorem.

Theorem 5.1 If l is a configuration andr tasks(cj) then there exists

a configurationC2 such that el C2-

5.3.2 Subsequent Transitions

Of articular interest in actor systems is the fact that all communications

sent are subsequently delivered. This guarantee of delivery is a particular

form of fairness, and there are many other forms of fairness, such as fairness

over arbitrary predicates. We will not go into the mrits of the different

ju - -

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 123

forms ere but will consider te implications of guaranteeing te delivery

of any particular coinninnication even when there is a possible infinite se-

quence of transitions which does ot involve the delivery of a articular

conininnication sent. To deal wt tis guarantee of mail delivery, it is ot

sufficient to consider the transition relation we defined in te last section.

We will instead develop a second kind of transition ratio wich we call

the subsequent transition. The sbsequent transition relation was developed

8in [Agha 84]. We first define a possibility relation as the transitive closure

of the possible transition and then use t to define subsequent transition.

Suppose the initial" configuration of an actor system ad a factorial

actor and two requests with the ni and n2 respectively, where nj and 2

are some nonnegative integers. Since 'in this configuration, there are two

tasks to be processed, there are two possible transitions from it. Thus

there two possible configurations that can follow "next." Each of these has

several possible transitions, and so on. This otivates the definition of

a fundamental -relation between configurations which can be used to give

actors a fixed-point semantics.0

Definition 5.0 Possibility Relation. A configuration is said to pos-

sibly evolve into a configuration c', symbolically, CI, if there exists

a sequence of tasks, t1, tn, and a sequence of configurations, co,... I Cni

8Mil.ner brought to or attentio tat the'relation we dfine here is similar to tat

developed independently in [Costa and Sterling 84] for a fair Calculus of Communicating

Systems

OSuch a domain does ot respect fairness.

...... -- lu

III

CHAPTEiR 5. A MODEM FOR A CT011 SYSTE4MS 124

for some n a non-negative inte er such that,

t2 tn
C CO el I n C

Remark, 1. If n - above we simply inean the identity relation.

One could show, by straight forward iduction, tat te "initial" con-

figuration, cf,,,t, with te fctorial actor possibly goes to one in which a n!

communication is sent to the mail address of the customer in the request to

evaluate the fctorial of n. When te factorial actor is sent two requests, to

evaluate te fctorials of the onnegative integers nj and n2, one can make

a stronger statement than the one above: Considering that the computa-

tion structure is finite, one can show that there is a set of configurations, C

that ef,,,t necessarily goes to such that both the fctorial of nj and n2have

been evaluated. The configurations i C have te iteresting property that

no further evolution is possible from them without communications being

sent by some external actor. We call such a configuration quiescent (cf.

termination of a computation)-

Consider the following example which requires concurrent processing of

two requests. Sup pose the factorial actor (as we defined it in Examples 32.2

and 52.1) was sent two communications, one of which was to evaluate the

factorial of - and the other was to evaluate the factorial of n, where n is

some nonnegative integer. The behavior of the factorial actor implies that

it would embark on the equivalent of a non-terminating computation. More

precisely it would send itself a communication with -k in response to a

communication with -k - and so on, and therefore it will not possibly

evolve to any configuration which is quiescent.

%-3fl.lyAPTER 5. A MDE L FOR ACTOR SYSTE MS 125

Recall that in the ctor model the delivery of all communications sent is

guaranteed. This implies that despite the continual presence of a commu-

nication wit a egative number 'in every configuration this configuration

possibly goes to, 'it ninst at son-te point process te task with the request to

evaluate the factorial of n.10 We can express, this sort of a result, by defining

the following relation on sets of configurations.

Defin-tion 5.10 Subsequent Transition Relation. We say a configu-
7 Iration, subsequently goes to ' with respect to , symbolically, C

if
r cz tasks (c A C A r V tasks(c' A

,IC" (r V tasks(c" A c O* C A C" el)

Basically, the subsequent transition represents the first configuration

which does not contain the task 'in question. If we defined the set of con-

figurations, C as follows

t
C = V IC C 11

then the guarantee of mail delivery implies that the configuration must

pass through C. We can define a necessity relation based on the subsequent

relation but will not digress here to do so. The subsequent transition thus

provides a way of defining a fair semantics by derivation for an actor model.

1OThis in turn results in the request to evaluate the factorial of n - 1. Thus by induction

we can establish that at some point in its life, this factorial actor win (indirectly)

activate a communication [n!] to the mail address of te customer i te corresponding

communication.

- 0 .w -m -i

CHAPTER 5. AMODEL FOR ACTOR SYSTEMS 126

The odel is assumed to hve tese two transition relations as primitives.

Remark. Te subsequent relation dfines wat nay b considered locally

infinite transitions. This- is due to ffie ature of nondeterminism in the

actor odel. The relation captures the unbounded nondeterminisin in-

herent 'in the actor paradigni. For a discussion of this phenomenon see

[Clinger 81]. Some uthors have found unbounded nondeterminisni to be

rather distressing. In particular, it has been claimed that unbounded non-

determinism could never occur in a real system [Dijkstra 77]. Actually

unbounded nondeterminism is biquitous de to the quantum physical na-

ture of our universe. For example, it is found in meta-stables states in VLSI

[Mead and Conway 80].

a er

oncurrenc ssues

In this chapter, we discuss how the actor model deals with some of the

conimon problems in the theory of concurrent systems. Te first section

discusses the plications of the actor odel for divergence, deadlock and

mutual exclusion. The problem of divergence 'is severely contained by the

guarantee of delivery of communications. Deadlock, in a strict syntactic

sense, can not exist 'in an actor system. In a hgher level smantic sense

of the term, deadlock can occur a system of actors. Fortunately, even

in the case of a semantic deadlock, the structure of actor systems implies

that the "run-time" detection of deadlock, and hence its removal, is quite

feasible.

In the second section, we discuss issues related to functionality in a

system and the 'imposition of a merge structure on communications. With

respect to functionality, we show that the concept of side-effect free history

sensitive functional computation in streams is similar in at least one ab-

127

CHAPTER 6 CONCURTIENCY ISSUES 128

stract wy to t secification of replacement behavior in actors. In both

cases history-sensitivity is achieved by similar fnctional echanisms. Fi-

nally, despite, theitilierent arrival oder nondeterminis-n-1, we show te abil-

ity to dfine cominunication cannels in actors which in effect preserve the

order of conimunications between actors.

6.1 Problerns in Distributed Computing

There are some problems which'are peculiar to dstributed systems and

cause oe to require a great deal of caution 'Ila exploiting distributed com-

puting. 'We will discuss three such problems as they relate to actors:

namely, divergence, deadlock, and mutual exclusion. In each instance, we

will show how te actor model provides the mechanisms to limit and per-

haps to eliminate these problem' S.

6. 1.1 Divergence

A divergence corresponds to what 'is Commonly called an "'Infinite loop."

In some cases, such as a process corresponding to a clock or an operating

system, an infinitely extending computation is quite reasonable and term'-

nation may be incorrect (indeed, aggravating!). At the same time, one may

wish to have the ability to stop a clock in order to reset 'it, or bring down an

operating system gracefully in order to modify 'it [Hoare 77]. Thus we would

like to program potentially ifinite computations that can nevertheless be

affected or terminated.

lu

� - I I .� - --- 1 ;;

CHAPTE, R 6. CONCURRENCY ISSUES 129

If one looked at the computation tree defined by te possibility transi-

tion then the execution ethod of an actor program would seem to be mod-

elled as choice-point nondeterminism [Clinger 811 or depth search [Harel 79].

In this execution scheme, arbitrary pending communication is nonde-

terministically accepted by 'Its target causing a transition to the next level

in a tree. Usingchoice-point nondeterminism, it is impossible to guarantee

the termination" of a process which has the potential to extend for an

arbitrarily long period of time.

Consider the following smple program. We define the behavior of a

stop-watch to be a perpetual loop which can be reset by sending it an ap-

propriate communication (an actor with such behavior may even be useful

as a real stop watch, if we had some additional knowledge about the time

it took for such an actor to receive and accept the "next" communication

it sends itself).

stop-watch(n)

if message = (go)
then become new stop-watch(n + 1)

send (go) to self

else become new stop-watch(O)

send [n] to customer

Suppose x is created with the behavior stop-watch (0). If x is sent a "go"

message, then x will embark on a nonterminating computation. If we wsh

to "reset" x we can send it another communication, such as [customer,

i4reset"], where customer is the mail address of some actor. If and when

- - ------

CHAPTE R 6 CONCURRE NCY ISSUE S 130

this message is processed, x will be "reset." Without te guarantee of

delivery of communication, however, te "reset" essage nay never be

received by x nd there would be no mechanism to (gracefully) reset the

stop-watch. Since the actor inodel garantees delivery of con1111--tinications,

x will at some point be "reset." It will si.ibsequently continue to "tick."

[21 [n]

Figure 6: When a reset message is processed, one of an infinite number

of messages may be ent to the customer. The stop-watch will subsequently

continue to tick.

In the case of the stop-watch te potentially perpetual activity affects

subsequent behavior. This need not always be the case. A nontermL

nating" computation can sometimes be "infinite chatter." Indeed, this is

the definition of divergence 'in [Brookes 83]. We have seen an example of

this kind of divergence in the case of our factorial actor when 'it was sent

'th -1. In a language where the factorial s defined using a

looping construct, the factorial could be rendered useless once it accepted

a message containing -1. This is because it would ebark on a nonter-

minating computation and therefore never exit the loop 'in order to accept

the next communication. The nontermination of a computation i a Ian-

III

I -- .11.1111.1.1-� � .

CHAPTER 6 CONCURRENCY ISSUE S 131

guage using loops inside a process 'is a serious robleni in te context of

a dstributed system. The process wth an infinite loop may be a shared

resource, as would most processes in a network. Since the process is never

"done any other process wshing to communicate with 'it ay not do so

and one ca hv a doinino effect on te ability of the system to carry out

other computations.

One solution to this problem is to use multiple activations of a process.

In this framework, each communication to the factorial would activate a

process of its own. Activations solve te problem for unserialized behavior,

as is the case with the factorial. However, when we re 'Interested in a

shared object which may actually change its behavior, as is the case in a

stop-watch, multiple activations are not a solution.

The actor model deals with the problem of divergence whether or not

the behavior of actors 'Involved is serialized. Dvergence, defined as end-

less chatter, does not affect other activity in the constructive sense that all

pending communications are nevertheless eventually processed. The pres-

ence of such divergence smply degrades the performance of the system.1

The guarantee of mail delivery also fruitfully interacts with divergence as

the term is used 'in the broader sense of any (potentially) nonterminating

computation.

'Using resource management techniques, one can terminate computations which continue

beyond allocated time. The actor always has a well-defined behavior and would be

available for other transactions even if some concurrently executing transactions run

out of resources.

III

CHAPTER 6. C0NCU1?RF_4jNCY ISSUES 132

6.1.2 Deadlock

One of the classic problems in concurrent systems wich involve resource

sharing is that of deadlock. A deadlock or deadly embrace results in a

situation where o frther (,revolution is possible. A classic scenario for

a deadlock is as follows. Each process uses a shared resource which it

will not yield until another resource it needs is also available. The other

resource, however, is smilarly locked up by another process'. An example

of te deadlock problem 'is the dining philosophers problem [Dijkstra 71].

The problem ay be described as follows. Five independent philosophers-

alternately eat -and pilosophize. They share a common round table on

which each of them as a fixed place. In order to eat, each philosopher

requires two chopsticks A hilosopher shares the chopstick to his right

with the neighbor to the right and like-wise for the chopstick to his left. It

is possible for all the philosophers to enter, pick iip their right chopsticks

and attempt to pick up the left. In this case, none of the philosophers can

eat because there are no free chopsticks.

The behavior of a philosopher ad that of a chopstick is described as

follows:3

2 The usual version is two forks. However, it as never been clear to me why anyone,

even a pilosopher, would require two forks to eat!

3Since we axe using expressions, if we were n SAL or Act, we would have to specify the

behavior in case the reply from the copstick was not free. However, te problem of

deadlock has been formulated with no (efined behavior 'in such cases.

I

CHAPTE R 6 CONCURRENCY ISSUES 133

C) looo�

Figure 62: The scenario for the Dining Philosphers problem. Shared re-

sources can lead to deadlock in systems using synchronous communication.

phil (left-chop right-chop)

let x call right-chop pick

and y call left-chop pick

if x = free and y = free then (eat)

chopstick(state) [k]

if k pick and if state = Yree'

then reply [free]

become new chopstick (busy)

A solution to this problem is to define a waiter who acts as a recep-

tionist to the dining area: The waiter can make sure that no more than

CHA.PTE R 6. CONCURRE NCY ISSUES 134

four philosophers attempt to eat simultaneously. In tis case, at least one

philosopher will be able to pick up two chopsticks ad proceed to eat. Sub-

sequently, this philosopher would relinquish hs copstick allowing another

philosopher to eat [Brookes 83].

The "waiter" olution 'is a particular example of the strategy of access

to a shared resource in order to avoid the possibility of deadlock. The

difficulty wth this solution is that the mechanisms for avoiding deadlock

have to be tailored using advance knowledge about how the system might

deadlock. Furthermore the waiter is a bottleneck which may drastically

reduce the throughput in a large system. However, this is the only sort

of solution 'in systems relying on synchronously communicating sequential

processes. In fact the philosopher who pcks up his right chopstick can not

communicate with his left chopstick as the left cho stick 'is "busy" with the

philosopher to that chopstick's left. Furthermore, even if a philosopher,

phill, knew that he shared his left chopstick with another philosopher, say

phi12 uless phil2was already ready to communicate with phill, the latter

could not send a message to the former. In such a system, not only 'is

there a deadlock, but there is no mechanism for detecting one. In fact

languages using synchronous communication, deadlock has been defined as

a condition where no process 'is capable of communicating with another

[Brookes 83).

Two areas of Computer Science where the problem of deadlock arises n

practice are operating systems and database systems. In operating systems,

deadlock avoidance protocols are often used. However, n database systems

-m-

CHAPTER 6. CONCURRENCY ISSUE S 135

it as ben found tat deadlock aoidance is unrealistic [Date 831. The

reasons why deadlock -,avoidance is not feasible 'in concurrent databases can

be summarized as follows:

• Te set of lockable objects (cf. copsticks 'in the dining philosophers

example) is very large- possibly 'in the millions.

• The set of lockable objects varies dynamically as new objects axe

continually created.

• Te particular objects needed for a transaction (cf. "eating" in our

example) ust be determined dynamically- i.e., the objects can be

known only as the transaction proceeds.

The above considerations are equally applicable to the large-scale con-

currency inherent i actor systems. The actor actor model addresses this

problern in two ways. Frst, there 'is no syntactic (or low-level) deadlock

possible in any actor system, 'in the sense of it being 'impossible to com-

municate (as 'in the Brookes' definition above). The copstick, even when

"in use must esignate a replacement and that replacement can reply to

the philosopher's query. What sort of information is contained in the reply,

and what the philosopher chooses to do with the reply depends on the pro-

gram. If each philosopher is programmed to simply keep trying to use the

chopstick then, indeed, in a semantic sense, the system can be deadlocked.

However notice tat one can specify the behavior of the chopstick so that

the replacement replies with]information about who 'is using it even while

it is "busy." Thus, phill can query phi12 about ph'I 's use of the chopstick

CHAPTER 6.. CONC[,TR.[?,11,-'NCY ISSUES 136

shared between tbeni. In te end I it would be apparent to the inquisitive

philosopher tat he was waiting for hiniself wch is te condition for

deadlock.

The ost ivolved aspect of a eadlock is detectz'ng it. Since i te

actor odels every ator nust specify a replacement, and inail addresses

may be communicated it is possible to detect deadlock. An actor 'is free

and able to figure out a deadlock situation by querying other actors as to

their local states. Thus an actor need not be prescient about the behavior

of another actor. For example, the ability to communicate mail ddresses

means that a pilosopher need not know in -advance wbich other philosopher

or philosophers may be using the copstick of 'Interest. These philosophers,

while they inay be "busy" eating or looking for a chopstick, evertheless

are in turn guaranteed to accept communications snt to them and thus a

system can continue to evolve.

Our solution is i line with that proposed for concurrent database svs-

tems were "wait-for" graphs are constructed and any cycles detected in

the graphs are removed Kng nd Collineyer 731. We would carry out the

process of break-ing the deadlock in a completely distributed fashion. A

concern about deadlock detection is the cost of removing deadlocks. Expe-

rience with concurrent databases suguests tat deadlocks in large systems

occur very infrequently [Gray'1980]. The cost of reinoving deadlocks is tus

likely to be uch lower than the cost of ay attempt to avoid them.

A system of actors is best thought of as a community Hewitt and

de Jong 83]. Message-passing viewed in thi's manner provides a founda-

R - ---- -I

- � -

CHAPTER 6 CONCURRENCY ISSUES 137

tion for reasoning 'in open, evolving systems Ddlock detection is one

particular application of using niessage-passing for reasoning in an actor

system-. Any actor programmed to be sufficiently clever can figure out wy

the resource it needs is navailable, and without rmedial action, about

to stay that wy. To solve thi's sort of a problem, negotiation between in-

dependent agents becomes iportant. In open ad evolving systems, new

situations will arise and thus te iportance of tis kind of flexibility is

enormous.

Another consequence of "reasoning" actors is that systems cn be easily

prograninied to learn: A philosopher may become one that hs learned to

query some particular philosopher who is a frequent user of the chopstick

it needs instead of first querying te copstick. Or the actor may become

one which avoids eating at certain times by first qerying a clock.

6.1.3 Mutual Exclusion

The mutual exclusion problem arises when two processes should -never si-

multaneously access a sared resource. An actor represents total contain-

ment, and can be "accessed" only by sending it a communication. Fur-

thermore an actor accepts only a single communication and specifies a

replacement which will accept te next communication in its mail queue.,

The actor ay specify a replacement wich smply buffers the communi-

cations received until the resource is free. We have seen an example of

this strategy with insensitive actors. Although a single receptionist may

control access to a resource, the resource itself can still be modelled as a

- lu-

III

(3-1.1APTE R 6 CONCUTIME NCY ISSUES 138

system of actors so that there ay be concurrency in the use of the re-

source. I'here can ;also be imiltiple receptionists in a system, whe tis 'is

appropriate. The mutual exclusion problem, it can be safely asserted, 'is

not really'a problem for actors.

6.2 Graphic Representations

In this section, we deal with soine of the grapbical aspects of te communi-

cation patterns. First, we discuss the analogy between the ability to snd

oneself communications in dataflow and the replacement inodel. in actors.

We establish the fnctionality i the behavior of actors by dfining nodes

in the spirit of dataflow graphs to illustrate the smilarity. Second, we treat

the problem of communication channels and the ability, in actors, to con-

strain te effects of universal nondeterministic merges without defining any

new construct.

6.2.1 Streams

A streamis a sequence of values passing through a graph link in the course of

a dataflow computation [Weng 75]. Streai Ins were introduced for 'side-effect

free history-sensitive computation'. In this section, we show by analogy to

streams, that actors are also side-effect free in the same sense of the term.

To see the equivalence, consider each node as containing a sngle behavior

definition which 'is equivalent to all the behavior definitions which may be

used by the replacements. The fact that there may be a sequence of def-

I

CHAPTER 6 CONCURRENCY ISSUES 139

initions in a SAL program is a matter expressive convenience. Actually,

having more tan oe, behavior definition does ot really change anything.

The identifier sed 'in anew expression is simply a selector of which behav-

ior definition. to use and tis fact can be comillunicated 'ust s well. There

are ily a finite umber of definitions, and -the entifier corresponding to

each one is simply a selector. A single behavior definition which receives

an identifier and branches on it to the code corresponding to the behavior

would have -m equivalent effect. The become command in te program is

equivalent to sending oneself a communication with the, values of acquain-

tances including the identifier corresponding to the definition to be used in

order to determine the replacement behavior.

There is an apparent ifference between actors and nodes in dataflow

graphs; in dataflow the values "output" form a sngle stream. So the corre-

spondence can be visualized more closely using the picture Fig. 63 which

uses appropriate filters on the stream to separate the message intended for

the actor itself ad that intended for "output."

Of course actors, unlike the elements of dataflow, do more than pass

streams- they may change their acquaintances and they may create other

actors. Furthermore actors themselves are not sequential in character and

the replacement 'is concurrently executed. One consequence of this is the

ability to use recursive control structrures which can not be used in static

dataflow. One variation of the dataflow model allows for fully re-entrant

code by tagging the "tokens" (messages) [Gurd et al 85]. This, however,

results in forcing the computation through a possible bottleneck instead of

- III

CHAPTER 6 CONCURRE NCY ISSUES 140

v

Figure 63: The replacement of an actor can be computed using streams

which feed the value the requisite identifiers for the new behavior. Actors

can separate the values needed for replacement from those "output.

distributing it as 'is onceptually feasible. The cause of this limitation is

the static nature of inter-node topology. Although the actor model allows

for dynamic creation, the behavior of an actor is nevertheless functionally

determined.

6.2.2 Message Channels

Many systems preserve the order of messages between processes. A stream

in dataflow is defined as a sequence of values, and thus by definition 'is

CHAPTE 6 CONCURRE NCY ISSUES 141

ordered. This creates the interesting poblem 'In dataflow when the order

of input from two sources can ot be predetermined. A spccl',-,tl lement for

non-deterministic merge as to be assurtied and siicb an element can not

be dfined in terms of te other constructs in te dittaflow model.

The preservation of te order of essages between processes is some-

times simply a fnction of te hardware configuration. For example in

point-to-point communication between two processors the message chan-

nel preserves the order of communications. Sometimes this property can

be sefully exploited in computation'. An example of this kind of se is

found i [Seitz 85] which describes as architecture based on 64 processors,

called the Cosmic Cube. In Seitz's system, multi le processes may reside

on a single processor but processes are never migrated. The processes axe

asynchronous and use message-passing to interact. However, unlike actors

the messages are sent along fixed channels so that (coupled with the lack

of migration of processes) the order in which messages are sent by a pro-

cess A to a process is the same order 'in which receives those messages

(although other messages may be nterleaved).

There are two problems with the strong hardware-based order preserva-

tion of message. First, the failure of a single processor would be dsastrous

since one couldn't re-route a message and necessarily preserve its order in

transmission with respect to other messages already sent. Secondly, this

scheine creates difficulties in load balancing which requires variable routing

of essages and mgration of processes. It is for these reasons that the

actor odel assumes nondeterminism in the relation between the order

CIIAPTtjR 6 CONCURR4 NCY ISSUES 142

process message
chatitiel

Vk-i

proces 2

Figure 64: A communication channel preserves the order of communica-

tions between two processes. Such channels can be readily defined in actor

systems.

which communications are sent and the order in which they are received.

Such nondeterminism i's termed arrival order nondeterminism.

It is nevertheless possible to define actors whith preserve te oder

which they, in effect, process communications from each other. Suppose

we wished that an actor f "processed" communications from an actor

the same order as they were sent by g. What the actor g needs to do is

tag each message it sends to f with a reference number and increment that

number each time. The actor f 'in turn remembers the number of messages

'it has so far processed from . If it has processed two, and message number

4 from g arrives next, f simply buffers that communication until it has

accepted message number 3 from g. Since the delivery of communications.

is guaranteed, the communication enclosing message number 3 will also

arrive. Subsequently, the actor f will check its buffer for message number

4 and proceed to process the same. The details can be easily written out

ID

PM.5 _- , I

CHAPTER 6 CONC(JR-Rr4,NCY ISSUES 143

in SAL. We have sown that it s not necessary to add any new constructs

in order to define order-preserving communication cannels in an actor

language.

The scherne w use to show the definability of cha-i-inels is sinifla to

that used 'in Coinputer Network Arcliitectures where equence numbers are

used i packet switched networks to carry out sequence checking [Meijer

and Peeters 831. However, unlike network architectures, we do not make

ubiquitous use of virtual network channels because doing so would generally

have te effect of slowing the speed with wich parallel con'iputations were

actually carried out.

a r

s rac 'ion n

0 0 0
osi iona i

The aility to write and debug large software systems is strongly depen-

dent pon how successfully the system can be partitioned ito independent

modules. Two mod-tiles are independent if we can ignore the internal details

and treat them as black-boxes with certain input-output behavior. Concur-

rency involves a nondeterministic interleaving of events; one consequence of

such nterleaving is that when systems are composed, events 'in one system

are interleaved with the events of the other. Unfortunately, the behavior of

the composed system is not necessarily deducible from the abstract repre-

sentations of the behaviors of the odules composed. In this chapter, we

address these issues as they relate to concurrency in general and our actor

language in particular.

144

III

- , . i
- I I - _ I 1- 0, i .4� I -11 -- -- -

CHAPTE R 7 ABSTRACTION AND COMPOSITIONALITY 145

7A Abstraction

A classic problem in concurrent systems is the difficulty abstracting away

from the operational behavior of system. Consider a prograninling lan-

guage with the assigninent command. Let be the function wich aps

commands in this programming language to teir eanings. Let SI x

x + be a command in this language. If n is any given integer, the state

u�n/xj stands for a state where n is the value of x. Now the eaning of ,

can be expressed as-,

7(SI) : or[n/x� crIn + 11xj

Similarly, if S2-- X :=- 2 x then the eaning of S2 'is gven by

Y'(S2) : r n/x] � or 2 t/xi

If we were to compose the commands SI and S squentially, then their

meaning functions would also be composed sequentially. However, if we

axe going to compose the two commands concurrently then the situation

is not so simple. Suppose that the command represents the concurrent
composition of the and S2, i.e., S S. presen

?, where 11 re ts con-

current composition. The meaning of'S is not obvious: If we started in

a state where x = 2 then two of the possibilities axe that SI precedes

S2 or the other way round. In each case, we can deduce the meaning of

S by sequentially composing the meanings of SI and S2: Thus after the

execution of both commands x ay be 6 or it may be 5. However, it is

also possible that the execution overlaps time. For example, to execute

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 146

SI we ay FETCH the value of x, but before SI has finished execution, x

may be fetched by S2. In this case, te "final" state could be u[3/x or

o,�41x�, neither of which is obvious from a composition of the denotational

meanings of the two commands.1

7. 1.1 Atomicity

The solution to this problem is usually given by specifying which commands

are atomic, i.e., by specifying that the execution of certain commAnds may

not be interrupted [de Bakker 80]. For example, if the assignment com-

mand is defined to be "atomic," then one would need to interleave only the

meanings of assignment commands.

The problem with the atomicity solution 'is that it fixes the level of

granularity or detail which must be retained by te meaning function. Thus

if the assignment command is atomic, one must retain information about

each and every transformation caused by an assignment in a program. This

necessarily means that one can not abstract away the operational details

to any higher degree. If, for example, one 'is defining the abstract meaning

of an 'Iterative loop, all the transitions involved 'in the 'iterative loop must

be retained by the meaning function.

The approach to abstraction in actor systems is somewhat different.

It may appear that

1-(Sl 11 S2) = (SI; S2) U F(S2; SI) U F(Sl) U YA)

but one can construct a slightly more complex example where this relation does not

hold either.

ID

� i I

CHAPTE R 7 ABSTRACTION AND COMPOSITIONALITY 147

The concept of a receptionist is defined to limit the interface of a system to

the outside. The use of he receptionist concept is illustrated 'in te context

of the assignment example. We define two systems wose behavior differs

partly because the receptionist in each is used to attain a different level of

abstraction. Consider te first system: x is the receptionist in this system

and the behavior of x 'is as follows:

x(n) [(request)]

if (request) FETCH then reply n]

if (request) = STORE i then become new x(i)

This system has the a level of granularity where the behavior of the con-

figuration must be considered 'in terms of interleaving FETCH and STORE

messages. However, in a larger system x may no longer be a receptionist

and it may be possible to avoid this level of detail. Vor example, let r be the

receptionist for an actor system and the behavior of r be given as follows:

r(n) [request)]

if (request is to assign value f(x))

then let a=f (n I become new r(a)

if (request is to show alue)

then reply In]

Note that the nesting of the become command inside the let expression

creates a sequentiality in the execution (see the discussion about the let

construct in 4.3). In this larger configuration, one need no longer consider

the FETCH or STORE events. The level of granularity i's comparable to the

C4 atomicity" of assignment commands. owever, we can define yet larger

III

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 148

systems with other rceptionists so tat these operational details can be

ignored as well. We illustrate tis concept by means of another example.

7.1.2 Nesting Transactions

Consider a bank a ceount which may be ccessed trough different money

machines. Suppose further that tis bank account 'is shared between several

users. The behavior for such a bank account ay be something like that in

El xaniple 33. Now one ay want that once the ccount is accessed through

a money machine Iit should complete the transactions with the user at that

machine before accepting requests for transactions from other users. The

definition of the bank account as given in example 33 implies that the bank

account processes one request at a tinie but that 'it niay 'Interleave requests

jroin dfferent "users" and "motley machines." To create a system where

transactions at each oney machine are completed before other transac-

tions are acceptable, we define a larger configuration where the receptionist

for the system is some actor called account-receptionist. All communica-

tions to the account must be sent through this receptionist and the trans-

actions of the account-receptionist consist of several sub-transactions with

the users. The behavior of the receptionist may be described as follows:

10

, -, I � A

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 149

a-free-account

become (a-busy-account with the current customer)

(process the request)

a-busy-account

if ustomer :� (current customer)

then send (request) to buffer

if ustomer = (current customer)

then if (request release)

then send (release) to buffer

become a-free-account

else (process the request)

What the receptionist does 'is to prevent the interleaving of requests

to the account from different users. An analysis of the behavior of this

system can thus be done by considering te overall results of transactions

from each machine wthout having to consider all the possible orders in

which the requests from different machines may be recieved. We need to

consider the possible order in which entire sets of sub-transactions may

occur (since the order in which the first request from a user is received is

still indeterminate)-

One can construct arbitrarily complex systems so that their behavior

is increasingly abstract. There is no pre-determined level of "atomicity"

for all actor systems. Instead, it 'is the programmer who determines the

degree of abstraction- the concept of receptionists is smply a mechanism

to permit greater odularity and hence procedural and data abstraction.

7

CIIAPTER 7 ABSTRACTION AND COMPOSITIONALITY 150

7.2 Compositionality

One of the desirable features about Milner's Calculus of Communicating

Sy3terns (CCS) is that'it odels compositionality rather effectively. Mil-

nerls notion of composition is based on mutual experimentation by two

machines: a achine offers experiments which may combine with exper-

iments of another machine T to yield an iteraction." Both achines

as a result of the 'Interaction, change their local states Mner's -motion of

interaction is based on intuitions of how achines my be plu gged together

physically, a notion that relates very well to synchronous communication.

0 7

Figure 71: Synchronous composition: In CCS, composition of sy3tem-5 is

analogous to plugging machines together. Figure from [Milner 801.

When an interaction between two niachines occurs in Milner's system,

one simply links the ports on the two achines. Ports which ay be linIked

axe considered complimentary ports. Oe can hide a port provided one also

bides its complement. Thus, upon composition, one can abstract away from

lp

" %--�--mo"i-M-t -- ------ ------

CIIAPTER 7 ABSTnACTION AND COMPOSITIONALITY 151

the ports by an operation called restriction.

7.2.1 Actors and Ports

,rhe notion of iding ports using te restriction operator as somewhat

different iinplications in CCS than its intuitive interpretation sems to be

when tinking in terins of actors. When a port and its coinpleinent have

been restricted, its the interaction between the two tat has been hidden.

The port as a result of the 'Interaction, wll subsequently unfold its behavior

and this behavior will not be hidden. Thus to use actor jargon, te port

may "become" another port which my even have the same label as the

one tat is idden. In terms of actors, the restriction Operator is equivalent

to hiding the acceptance of a single communication- it is not equivalent to

biding all the communications that may be received by the given actor.

A system of actors 'is best tought of as a community of agents. The

agents retain teir identity even as their behavior changes. Actors have

mail addresses whic prmanently identify thein. The "behavior objects"

in CCS do not necessarily maintain any "identity" as they interact with

the other objects. For example, in CCS, once an agent accepts an 'Input it

may never accept another input on the same port, as it ay no longer have

the same port as a result of processing the communication. Besides, the

ports do not uiquely 'identify an agent since different agents may use the

same report" name and thus different complimentary ports may be linked.

In contrast, communications 'in actors are sent to a specific unique target

actors.

�-Iff

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 152

There are other differences between the behavior of a agent in CCS

and tat of an actor. One of these is that agents in CCS are themselves

sequential in character: only one experiment may be perforined. at a time.

The jstifications Milner provides for this sequentiality are:

1. Tractability of te odel; and,

2. The desire to hve a "behavior object" represent the system according

to an observer capable of only one experiment at a time.

We gave a similar rgument bout the iport of usina nondeterminism

to model concurrency (§5.2). Te fct remains that concurrency 'Includes

the potential for overlap in time in both odels. There is, owever a fun-

damental difference between Milner's "behavior objects" and the behavior

of an actor: the actor itself is a concurrent agent. Te difference is reflected

in the language defined by Milner to 'Illustrate CCS and actor languages:

in the former, sequentiality is ntrinsic; 'in the latter, it 'is present only due

to causal iteractions 4.2).

7.2.2 Encapsulation in Actors

Any system ust have receptionists which can accept information from the

"outside and any' system must know of agents that are external to the

system. The designation of receptionists and -external actors provides for

structuring the input-output behavior (or, what in other fields would be

called te stirn-ulus-response or sensori-motor aspects) of a system. There

a

CHAPTER7. A.13STR.AC7"IONANDCOAII-IOSITIONALIT'Y 153

are several observations to be made hre which are relevant to actor sys-

tenis:

A

i T

r
2

0
p
2 p

--,-�p

e
23

e
I

Figure 72: Communications ent by p t 2 are'not observable in an en-

capsulated system, just as those sent by r, to p are "internal."

• An actor which serves as a receptionist inay also be known to other

actors within te system. Coniniunications. between such "internal"

actors and a receptionist will not be observable. Thus it is not so much

an actor that is visible or bidden, but rather it is corninunications

between a given sender-target pair that are observable when either

the sender or the target is external. (See Fig. 72.)

• As a system evolves, new receptionists may be added and new external

actors may become known. The niecbanism for tis change is simply

-- ---l---.i ---- --l-I -1--- ------ --- -

CIIA PTE R 7 A BSTRA CTION AND CMPOSITIONALITY 154

the ability to send essages containing mail addresses.

One can not arbitrarily restrict receptionists: Once a mail adress has

been communicated to the outside, it is available for use by external

actors. However 7 if mail address is nknown to the otside or

becomes nknown, tben the actor is no longer a receptionist.

7.2.3 Composition Using Message-Passing

Compositioliality in actors is achieved by message-passing. Independent

systems re connected by sending some external actors 'in ach odule a

communication to become forwarding actors which simply send teir mail

to some receptionists in the other module. The justification for the term

"become" in. te specification of replacement actors is the same as the

reason why te external actors and receptionists they forward their mail to

are equivalent. We observe the following:

Proposition-. If the behavior of an actor x is unserialized, and its behavior

is to forward all the communications it accepts to an actor y, then sending

a communication to x 'is equivalent to sending the communication to y.

The proposition is seen to be true because of the arrival order nonde-

terminism in the actor model. A communication sent to the actor x will

be eventually recieved by the actor y. Since the rrival of a communica-

tion 'is always subject to an arbitrarily delay, even if the communication

was originally targetted to y, it would have arrived at some ideterminate

time at y. Note that the garantee of delivery is essential in establishing

this proposition because otherwise it would be possible for x to recieve the

4-

CHAPTE R 7 ABSTRA CTION AND COMPOSITIONALITY 155

con-imunication and yet y to never receive it.

The rigorous proof of te above proposition would require s to show

that given a configuration wth a forwarding actor, we can construct an

equivalent configuration without the forwarding actor replacing the actor's

niail address in te acquaintance lists of ll ctors and tasks]in the config-

uration defined with the mail. address of the actor to which it forwards the

communications it receives. The two configurations must be shown to be

equivalent in soine smantic sense. When an actor, , acquires the unseri-

alized behavior to forward all communications it receives to an actor y, the

actor x is said to become y. Using the above proposition as justification we

will assume that two such actors are one and te same.

The rul es to compose configurations are developed and these may be

used to compose systems by composing configurations tey may be in. All

composition will be done using niessage-passing, and as a consequence there

is no need to assmne niqueness in the configuration at the "time" of com-

position of a system: Te ipact of the composition is nondeterministic

because of te arrival order nondeterminism in te communications which

are forwarded. Since there is arrival order nondeterminisin for all ines-

sages in actors, no special construction 'is necessary to the represent the

compos'tion of two systems.

7.2.4 Rules for Composition

In this section we develop te constraints that ust be satisfied by aiiy

scheme which arries out the composition of two systems. We provide

--TTF------ ---

CHAPT E R 7 ABSTRACTION AND COMPOSITIONALITY 156

the, constraints in terms of configurations and assert their realizability by

showing a definition of composition wbich would satisfy the conditions. To

compose actor programs, one would ap thein to the iitial configurations

they define and compose these configurations using te rules of con-1position

given.

Constraints on Interface Actors

We first define all the applicable rules for constraining the actors that 'in-

terrace with the outside- i.e., set of receptionists and external actors for

a composed system.

Let extern(cl) represent the actors wich are external to a configuration

cl, and recep(C2) represents actors wich serve as receptionists in some

configurationC2, hen there may be some actor x sch that x G extern(ci) n
recep(C2)- It is also possible (but not necessary) tat when cl nd C2 are

composed, such an actor x is no longer a receptionist of the composed'

systein because the only actors x may have been a receptionist for are in

the other system composed. In any case, x will not be external to the

composed system. Let c cl 1 C2, Where represents the composition

operator. We can assert the following properties about the receptionists

and external actors of :

1. All receptionists 'in the composed system must be receptionists 'in one

of the two configurations:

recep(c) c recep(cl) recep(C2)

0 ---o

CHAPTER 7 A BSTRACTION AND COM-POSITIONALITY 157

2. The only actors which may no longer be the receptionists are actors

that are external to one of the configurations composed:

(recep(cj) U recep(C2)) - recep(c) c extern(cl) U extern(c')2

I All external actors in a composed configuration must be external to

one of the two configurations:

extern(c) c extern(cl) U extern(C2)

4. The only actors which may no longer be external are actors that are

receptionists for one of the configurations composed:

(extern(cj) extern(C2))- extern(c) c recep(cj) recep(C2)

since we wish to have the identifiers in an actor program (and corre-

spondingly mail addresses in a configuration) be local to the module (or

to the configuration), we have to provide a means of "relabeling" the same

so as to link receptionists and external actors. Thus when two program

modules are composed, we may have a declaration of the form:

let id, = d2 and id = d4 ...

where id, is the identifier for an external actor in the first module, and ZW2

is an identifier for a receptionist 'in the second, or vice-versa. Similarly for

4, and so on. The intended nterpretation of the above declaration

is that n order to compose two modules, we simply send an appropriate

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 158

communication te external actors in each of the modules telling them

which receptionist in the other module hey should become.

One can not necessarily deduce the receptionists of a composed system

froni the receptionists of its constituents: Soine receptionists may hve been

so esignated only because they were supposed to represent external actors

in the 'other' inodule. Thus a new receptionist declaration may be given

for a composed system, provided tat such a declaration satisfies properties

1 an d 2 above.

Formalizing Composition

We ow turn to developing a detailed definition for composing two config-

urations. To be precise, assume a configuration is a four tuple with the

functions .states tasks recep, and extern extracting each component. (We

are expanding the definition of a configuration used in chapter which was

concerned more specifically with the internal evolution of an actor system

and thus took into account only the first two components.) The population

of a configuration c. op(c), consists of mail addresses that are i c but are

not elements of extern(c). Suppose cl and C2 are two configurations To

CoMpose el and C2, we need to specify the new receptionists and external

actors. Notice that if el andC2 are arbitrary configurations and we assume

mail addresses re local to a configuration (recall that niail addresses are

merely ways of labeling actors to specify topological properties of a sys-

tell-I), then there is no guarantee that pop(cl) n POP(C2) 0- S'm'larly,

if tags(c) 'is the set of tags used 'in the tasks(c), then it is possible that

I

--- - . �

CHAPTE, R 7 ABSTRACTION AND CMPOSITIONALITY 159

tags(ci) n tags(C2) j� 0-

In fct, even if the populations ad tags of two configurations are dis-

joint, the states and the tasks can not be simply combined ushig te union

operation. To� see wy, recall the prefix condition in the definition- of a

configuration Definition 53) and its -use in Theorem 5A: The condition

states tat o tag be the prefix of any other tag or mil ddress 'in a con-

figuration. This roperty is necessary to aintaining the uniqueness of all

tags ad inail addresses of tasks created.

Tags and mail addresses have no rality of their own. They are merely

labels we define to keep a track of computation in an actor system. So we

will rovide a map to new tags and mail addresses in a composed system

so that the new tags aintain the structure iplied by the original tags

and at te same tme satisfy the requisite constraints. Providing a map to

carry out the composition has no intrinsic value bt smply demonstrates

the ability to carry out composition.

Definition 71 Composition. Suppose that , l and C2 are configura-

tions such that c = el 11DR C2. Where D is a declaration equating external
actors and rece tionists and R is a receptionist f

p -declaration satisfying the

constraints given above. Let the declarations in D be equivalences of the

form i.e j.r where i, j E 1 2, e C extern(ci) and r recep(cj).

Then the following conditions hold:

1. The tags and mail address are simply prefixed by the configuration

they came from. Thus,

task-s(c = (i.t, i.m k I (t, m, k) tasks(ci A k - ki.tltl ... I

%C11-1-11APTER 7. ABSTRACTION AND COMPOSITIONALITY 160

2. The states of all actors not in the declaration D are unchanged ex-

cept of the transformation on the mail addresses. Let jorwardingM

represent the behavior of an actor which sends all communications it

accepts or has buffered on to x, then

forwarding(j,.r) if i.m j.r in D

state.s(c)('-M) b otherwise given (M b) cz ci

3. The external actors are those who have not been declared to be equiv-

alent to some receptionist in the composed system.

extern(C) (extern(cl - Ix I Ir c recep(C2) (1 X- 2.r E D) U

(extern(C2 - {X 13r recep(C2)(2.x = Lr G D)

4. The receptiontsts of c are given by the declaration R.

Note that our definition can be easily extended to composition of an

arbitrary number of configurations. Parallel composition should of course

be commutative and associative. In our definition, the configurations them-

selves would be different depending on the order of composition. However,

there is a strong equivalence relation between them, namely a direct rela-

beling equivalence. Since there are only a finite number of tags and mail

addresses the problem of determining the equivalence of any two configu-

rations is decidable.

To compose already existing systems, we need to compose all the con-

figurations, the systems may be in. If we use the C + C2 to represent the

fact that a system may be in configuration cl or in configurationC2 then:

(c + 2) 11 (C3 + C4) (Cl 11 C3) + (C-1' 11 C4) + (C2 11 C3) + (C2 1 C4)

III

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY' 161

where any declarations in the composition on the left hand side of the

equation are carried out to each of the terms in te right hand side.

7.3 The Brock-Ackerman Anomaly

An algebra of concurrent processes 'is defined over equivalence classes of

the processes.' The canonical members of each equivalence class provide

a a�tract representation for all the processes 'in the class. There are two

considerations in defining equivalence relations. On the one and, the ab-

stract representation of processes ust discriminate between systems which

when operated on or composed with other systeins lead to behaviors we

wish to distinguish from each other. On the other band, the representa-

tion mst not dscriminate between systerns that behave identically in all

contexts. A context is determined by the degree of encapsulation and the

"environment" of other processes it interacts with.

In the case of sequential programs, the history relation which maps in-

puts to outputs is sufficient to provide an abstract characterization of a

program. In te context of concurrent systems, the history relation 'is the

weakest equivalence relation which may be used to model systems. In other

words it contains the minimal formation necessary to differentiate be-

tween systems. Unfortunately, as [Keller 77] and [Brock and Ackerman 81]

have shown, it i's not sfficient to discriminate between systerns that are

observably different. Of the two cases cited, te Brock-Ackerman anomaly

211, this section we se tlie trm process to inipart a gneral flavor to the discussion In

particillar, systciris of actors are processcs.'

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 162

represents a more serious problem. We dcuss it In the context of actor

systems.

The Brock-Ackerinan anomaly shows tat when each of two systems

with the same history relations is composed wth ati 'Identical systein, the

two resulting combined systems kave distinct Iiistory relations. Let be a

function mapping a process to the history relation it defines. We convert

the relation into a function by rising the standard technique of collecting all

the terms representing te possible elements wich are related to each given

element of the domain. We first define two victor systems Si and S2 such

that they have an Y(SI) = N(S2)- We then define a system U and show

that (Si II U) 7� N (S2 11 U) where 11 represents a parallel compositioll.

The receptionist in both systems SI and S2 is an actor whose behavior

is described by:

D(a) [k)

send [k] to Pi

send [k] to Pi

In other words D accepts a communication and sends two copies of 'it to

an acquaintance a. Its behavior is unserialized. The external actor in

both systems SI and S_ is called extern-acq. In SI the behavior of the

acquaintance a is to store the first communication it accepts and to send it

and the second communication accepted to extern-acq. It can be described

as

-- ---- I -� I -- T--

CHAPTEW. 7. ABSTRACTION AND COMPOS17IONALITY 163

Pj(inputs-so-far, external-acq, first-input) [k]

'if inputs-so-far__ ten become new P(1, external-acq, k)

if inputs-so-far-1 then

become SINK

send [first-input] to external-acq

send [k] to external-acq

where the behavior of a SINK is simply to burn" all communications it

accepts.

Now a system whose population -is fdp}, with behaviors D(Pi) and

Pi (0) el 0) respectively, and whose external actor is e has the history rela,

tion which maps:

0 0

1X1} lyl Y I

{XI X2} f Y1 Y1 , Y1 Y2 , Y2 Y21

where xi is the communication ki s ent to the target d, and yi is the com-

munication ki sent to the target e. Recall the arrival order nondeterminism

in actors. Thus I X2 is the same as X2 XI since te communications may

arrive in either order at the target d. Internally, when d accepts [ki] 'it will

send two ki messages to pi and similarly for k2. However, these four com-

munications to p, ay be interleaved in an arbitrary manner. In general,

the history relation can be represented as:

XI ... X�-- 1i j 1 1 < i j n}

Now consider an actor system S2 with a receptionist d which has an ac-

quaintance P2. The 'Initial bhavior Of P2 is described y P2(0, e were:

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 164

P2(inputs-so-far, external-acq) [k]

send [k] to external-acq

if inputs-so-far-O then become new P(1, external-acq)

if inputs-so-far-1 then become SINK

The difference between the (initial) behavior of p zwd P2 is that p, waits

for two inputs before forwarding them both but P2 forwards two inputs as

they are received. Ilowever, as the reader may readily convince themselves,

because of arrival order nondeterminisin the history relation on the system

S2 is identical to that on system S.

Suppose that each of the actor systems Si axe composed with another

actor system U where el is the receptionist and has the (unserialized) be-

havior E(el, e2) where E is as follows:

E(external-acql , external-acq2) [k]

send [k] to external-acq2

send [k] to external-acq1

send [5 * k] to external-acq1

,In U both el ad e2 are external. When we compose Si with U, d 'is the

only receptionist and e2 the only external actor in the composed system.

The external actor a in U is declared to be the receptionist d (see fig 7.3).

The history relation on T which is the composition of SI and U maps

X17-+ YJ YJ

where y is te message k, to . Note that pi has accepted both commu-

nications before forwarding thein to e2. However, te history relation on 2

I

- -� � � - --

CHAPTER 7 - ABSTRACTION AND COMPOSITIONALITY 165

T.1

L-

I

II d
I I

I
i
I

k

r
I

I

s

i
i

i

p ,
i

i

i

e iII .I

F ii

F -i
r--j

e-
2

Figure 73: The Brock-Ackerman anomaly. When the systems SI and S2 are

composed with a system U which has the population el, the history relations

of the two composed systems are quite different.

maps

where y' is the message 5 * ki sent to e2 This appens because the second k,I

sent t P2 may arrive .after the 5 * k, message sent by el as been forwarded

and accepted by pl.

The Brock-Ackerman aomaly demonstrates the insufficiency of the his-

tory relation in representing the behavior of actor systems (in fact, in any

XI--+ {yI yl , yl Y'll

i -. -------

CHAPTER 7 ABSTRACTION AND COMPOSITIONALITY 166

processes which have a nondeterministic merge in them.). The problem

with the history relation is that it ignores te open, nteractive nature of

syste-n-is which may accept communications froni te outside and send com-

inunications ot at any stage. Having sent a communication, the system

is in a dfferent set of possible configurations than it was efore it did so,

and provided we have a odel for the behavior of a system, we can deduce

that the nmber of possible configurations it ay be in as been reduced.

Thus the two systems, SI and 2 are different to begin with because after

having sent a cominunication to he outside, their response to subsequent

communications from the outside 'is distinct.

7A Observation Equivalence

We have seen two equivalence relations on configurations i the previous

sections. The first of these was a direct relabeling equivalence an the second

was the equivalence induced by a history relation. Neither of these equiv-

alences is satisfactory. The history relation was shown to be too weak; 'it

collapses too many configurations into the same equivalence class.

The euivalence relation induced by direct relabeling is not satisfactory

in an admittedly direct sense. For example, suppose two configurations were

identical except that at one ail address te actors 'in their respective

states- differed in that only the tags and mail addresses created by them

were unequal. (This could happen using our definition of the behavior

function if, for example, the order of new expressions was different). sing

I

I -� I I -� - I

CHAPTE R 7 ABSTRACTION AND COMPOSITIONALITY 167

direct equivalence, these configurations would not be apped to the same

equivalence class Wat we would like to do is to consider configurations

that have transitions to equivalent configurations equivalent Fortunately

an inductive definition, establishing equivalences to depth n for an arbitrary

depth, is not necessary for this purpose: Since tere are oly a finite number

of behavior definitions, their equivalence under relabeling can be directly

established as well.

U46rtunately, tis weaker relabeling equivalence is ot satisfactory ei-

ther. Consider two configurations which are identical except that one of

them has an actor x such that.-

1. x is not a receptionist;

2. x is not te target of any task in the configuration; and

3 te ail address of x is not known to any other actor and is not in

any of the communications pending 'in the configuration.

It can be safely asserted that the two configurations, with and without the

actor x, are equivalent (see 3.1.1). In implementation terms, the actor x

would be a suitable candidate for garbage collection. However, these two

configurations are clearly not equivalent under relabeling.

We therefore need to define a notion of observation equivalence between

configurations (following Mlner 80]). The only events "observable" in a

encapsulated system axe of two kinds:

e Communications sent from the outside to some receptionist; and

III

CIIAPTE 7 ABSTIZACTION AND COMPOSITIONALITY 168

e Communications sent by an actor in the population to an external

actor.

This suggests three kinds of transitions from each configuration--tran-

sitions ivolving the cceptance of a communication sent froin the outside

to a receptionist iut) a transition ivolving the snding of a conimuni-

cation to an external actor (output), and an internal action corresponding

to processing a task in the configuration which 'is internal to th- config-

uration). The first kind of transition leads to a configuration from a

given configuration c such that tasks(c') = tasks(c) -Jr where T -is the task

accepted from-the outside. The other two kinds transitions are the ones

already defined in chapter 5, except that we 'ignore the labels on all tran-

sitions that are not targeted to an external actor. We can now identify

computation in actor systems as a tree with these hree kinds of labels on

its branches (see Appendix).

How does the composition of trees work in this framework? In CCS,

when two trees are combined, the inputs and outputs are inatched 'in a syn-

chronous manner and constitute a silent transition. Rather surprisingly no

change in the technical aspect of this definition 'is necessary to accommo-

date composition 'in actor systems despite the fact that communication is

asynchronous in actor system. The reason is simply as follows: Only the ac-

ceptance of a communication constitutes a transition from a configuration,

thus when two configurations are composed all we are doing is reconciling

the acceptance of a communication by an external actor, with the subse-

quent behavior of that actor. The latter is given by the actions 'In the tree

lu

�4-4-� lt'� m

CHAPTE R 7 ABSTRACTION AND COMPOSITIONALITY 169

corresponding to the configuration where the actor is a receptionist. Be-

cause of arrival order nondetcrminism, the arrival of the communication 'is

delayed arbitrarily long 'in the first configuration, thus the compositio is

in effect, synchronous.

A configuration can be extensionally defined sing the tree of events

'fied above. The definition s iductive- two configurations are ob-

servation euivalent to degree n if they have have the same observable

transitions at the n-th level of the tree. This notion dfferentiates between

all the configurations one would want to dfferentiate between. After all, if

'it is impossible to observe the difference between two configurations despite

any interaction one may have wth t6 systems involved, then there 'is no

point dscriminating between the two systems.

Brock 83] has proposed a model using senarios which relate the inputs

and the outpu ts of a system using a causal order between them. The niodel

however has several limitations, such as fixed 'Input and output "ports," and

it does not support compositionality. The first of these two deficiencies is

related to the lack of a labelling scheme such as is afforded by the mail

address abstraction in actors.

Philosophically, what we understand to be causality may be nothing

more than necessary sequentiality: After all, the ragmatic significance of

imputed causal inference in the pysical world is simply an expectation of

sequentiality in the spatio-temporal order between events considered to be

the cause and those considered to be the effect. The inference of all causal

relations 'is am open-ended, undecidable problem sce the observation of a

(31". I A P TER 7 ABSTRACTION AND COMPOSITIONALITY 170

cause my be separated from the observation of an effect by n arbitrary

number of events. The same arbitrary delay property is true of the guar-

antee of mail delivery. Both of these properties ay only be deduced from

a proposed odel of the 'Internal workings of a system rather than from

observations on a ystem. In contradistinction, te notion of observation
1 3equivalence is based on te testability of euivalence to an arbitrary depth.

The problem with te history relation is that it ignored the open, in-

teractive nature of systems. Any system inay accept a communicatio at

any time, and gven that it has 'roduced a prticular communication its

response to a subsequent input is different because of te transitions it has

undergone to produce that prticular communication. The communication

produced is of course simply symptomatic of the change in the system. In-

ternally, the change has already occurred, whether or not we have observed

its external manifestation- i.e., whether or not the communication sent

has been received. On, the one hand., until we observe the effects of the

change, there is uncertainty, from the external perspective, as to whether

the change has already occurred. On the other hand, after we have ob-

served the effects of a transition, we have at best a model for how the

system was at the time the transition occurred rather than a model of its

3 Admittedly, a crious proposition since we can test only one path of possible evolutions

Of a' system. Te usual solution to this ifficulty is laving a abitrary number of

systems pre-determined to be, equivalent, presumably in some stronger physical sense.

The idea is to experiment on these systenis i different ways to determine their behavior

to any desired degree.

IT

Cccurrent" status.4 However if we have any understanding of te mechanics

of a system, given a conin-i-tinication from that system, we cn prune the

tree of possible transitions that the system i-nay hve taken.

'Compare te reasoning ehind the old Heisenberg Uncertainty Principle to the stuation

here. An interestinng discussion of quantum physics ad te computational metaphor"

caii be found in [Manthey and Morey 831.

CIIAPTF-4jR 7 ABSTRACTION AND COMPOSITIONALITY 171

a er

onc usions

We have developed a foundational odel of concurrency. The model uses

very few primitive constructs but can nevertheless accommodate the re-

quirements for a general model of concurrent computation in distributed

systems. The flavor of transitions in actors is one of a pure calculus for

concurrency; it differs from Milner's Calculus of Concurrent Systems pri-

marily 'in two respects-. it does not assume synchronous communication,

and, it explicitly provides for dynamic creation of agents.

Actors integrate useful features of functional Programming and object-

oriented Programming. While other functional systems have some measure

of dfficulty dealing with history-sensitive shared objects, actors do so quite

easily. At the same time, actors avoid sequential bottlenecks caused by

assignments to a store. The concept of a store, in the context of parallel

processin has been the nemesis of the von-Neuman architectures.

Actors are inherently parallel and exploit maximal concurrence by using

172

-1 1 , I � -- 1. - --- ID

- ---- - I ---- - I .-

CHAPTER 8. CONCLUSIONS 173

the dynamic creation of customers and by ptpelining te replacement pro-

cess. The seinantics of replacement is fundamentally different from changes

to a local store. Replacements may exist concurrently. This knd of pipelin-

ing can be a owerful tool 'in the exploitation of parallel processors. In fact

pipelining (specifically, instruction pre-fetching), has been an extremely

successful tool in speeding up the computation on many processors cur-

rently in use. Ufortunately, te degree to wich pipelining can be carried

out in the current generation of processors is restricted by the ubiquitous

assignments to a store, and the use 'of global states implicit in the pro-

gram counter. Actors allow pipelinm'g to be carried out to its logical lmits

as constrained by the structure of the computation and by the hardware

resources available.

Perhaps the inost attractive featureabout actors i's that the programmer

is lberated from explicitly coding details such as when and where to force

parallelism and can concentrate on thinking about the parallel complexity

of the algorithm used. If one is to eploit massive parallelism using parallel

processors on the order of tens, perhaps hundreds, of millions of processors,

it will not be feasible to require the programmer to explicitly create every

process which may be executed concurrently. It 'is our conjecture that

actors will provide the most suitable means for exploiting parallelism made

feasible by the advent of distributed systems based on VLSI.

Message-passing is elemental to computation in actors. The time com-

plexity of communication thus becomes the dominant factor program

execution. More tme 'is likely to be spent on communication lags than

I -, Z- -- -z � --- u -- Z------

CHAPTER 8. CONCLUSIONS 174

on the primitive transformation on the data. Architectural considerations

such as load balancing, locality of reference, process migration nd so forth

acquire a pivotal role i the efficient implenientation of actor languages.

The information provided by a transitional n-iodel of actor systems is

too detailed to be of "practical" use. Te structure of transactions and

transaction-based reasoning for the verification of actor programs eeds to

be studied. The semantics developed ere wl smply provide the justifi-

cation for such axiomatic treatment. The open nd interactive nature of

actors implies that any description of actor behavior will necessarily in-

volve a conibinatorial explosion the exact configurations possible in a

system. However, by establishing invariants in the behavior of a actor, we

can satisfy our self as to its correctness. The importance of proving pro-

grant correctness in concurrent systems is underscored by the fact that it is

not possible to adequately test such systems 'in practice. In particular, ax-

rival order nondeterminism implies that any particular sequence of message

delivery need never be repeated regardless of the number of tests carried

out.

Another critical problem for computer architectures to support actors

is controlling computational activity. Since actors may be shared objects,

one can not simply assign them a fixed amount of computational resources

upon creation. If transactions involving the same actors are concurrently

executed, the resources used by each transaction need to be assessed sepa-

rately. Furthermore, concurrent sub-transactions are spawned dynamically

in actor system as many messages may be sent 'in response to a single mes-

i6�, - -- -1 -, - z - - I -

CHAPTE R 8. CONCLUSIONS 175

sage. These sub-transactions must be allocated resources dynamically as

well. Since it is impossible to correctly assess the computational resources

needed, the allocation has to be constantly onitored. Te proble of

transactions 'is in general intractable if te transactions are not properly

nested.

We have addressed a umber of general problems that plague compu-

tation. in distributed systems Aong these problems are deadlock, diver-

gence, abstraction ad compositionality. The problem of deadlock is dealt
'th by the universal replacement ' ement. The effects of d'

wi requtr ivergence

on the semantics of a computation are contained by the guarantee of mail

delivery. The problem of abstraction 'is addressed by the concepts of recep-

tionists and transactions and, at the niodel-theoretic level, by the notion

of observation equivalence. And finally we support coinpositionality using

pure message-passing.

A simple inimal actor language is shown to be sufficient to accom-

modate extremely expressive structures, including potentially infinite ones.

The denotational semantics of actor behaviors is defined and a transition

relation for configuration follows simply from the semantics. Finally, we

have dealt with equivalence relations between actors and provided some

connections with other models of concurrency.

0

en

I LS ne ronous ornn-lunica ion

ees

Milner 80] has developed an elegant calculus for synchronously commu-

nicating agents called CCS). As an aid to visualizing computation in a

system of such agents, Milner has proposed Communication Trees (CTS)

as a model for CCS. As Mlner has observed, CTs are actually more pow-

erful than CCS; 'in other words, there are large classes of CTs which can

not be expressed as programs in CCS. For example, the topology implied

by CCS is static whereas there 'is no such restriction on CTs. We develop

Asynchronous Communication Trees T's) as a model to ad in visualizing

comp utation in actors and a means by which we can define composition,

direct equivalence, observation equivalence, etc., in actor systems. The in-

triguing feature of T's is that they capture the open, interactive nature of

computation in actors. It is recommended that the reader crefully study

176

IH

APPENDIXA. ASYNCI-IRONOUSCOMMUNICA7'IONTREtE4S 177

-Milner's work, in particular Chapters and 6 before trying to figure out

the aterial here in any depth.

There are three fndamental differences between actors ad CCS:

• Communication is synchronous in CCS while t is asynchronous in

actors.

• The topology on CCS agents is static while coinniunications 'in actors

may contain mail addresses.

• There is no dynamic creation of agents in CCS while actors may be

created dynamically.

Rather surprisingly, the algebra used to define T's is almost identical to

that used 'in CTs- the primary difference i's in the concrete interpretations

associated with each. We interpret only the acceptance of a communication

as a transition (what Milner calls "action"): Sending a communication is

siniply represented by the fact that every branch of te tree ha's a transition

corresponding to the acceptance of the communication by its target. This

fact follows from the guarantee of mail delivery.

We represent each configuration as an T. A few simplifying assumptions

will be made. First, we assume that there are no mail address conflicts be-

tween different configurations (since we provide a relabeling operator, this

is wthout loss of generality). Second, we assume that the external mail

addresses represent the true mail address of the external actor. When two

configurations are composed, this will be a useful simplification. The jus-

tification for this assumption is two-fold: firstly, using message-passing the

- �

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 178

.external actor forwards all mail it has received to the actor it is supposed

to become; and secondly, the communications it sent to the external ac-

tor can arrive in any order in the first place. Thirdly, we assume that

there are a countable number of con-imunications, which niay be enumer-

ated as k6,ki,... Any communication may be sent to any actor, if the

communication sent is inappropriate (such as having the wrong number of

"parameters"), then we assume there is a default behavior. We can assume

that the tags of tasks are part of the enumeration of communications and

used to create new ail addresses.' However, tagging tasks is not useful 'in

defining observation equivalence; furthermore, it is also possible to specify

a different mechanism to create ail addresses -ising other mail addresses.

The technical development remains quite smilar.

A typical T consists looks like Fig A.1

I i

. Figure AJ A typical Asynchronous Communication Tree

The three kds of potential transitions (or in Milner's terminology,

. 'Recall that a union of all finite collections of a countable set is still countable.'

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 179

actions) hve the following intuition:

(i) Corresponding to each current receptionist in the configuration is a

potential transition labeled by its mail address (these axe the posi ive

labels, a,. , in te figure) and the communication it may accept.

The Ah tree it doininates represents the behavior of the configuration

'if the receptionist accepts a communication ki.

(ii F all communications accepted by an external actor, there is a tran-

sition to the tree corresponding to the behavior of a configuration

without the pending communication. These transitions are labeled by

the mail address of the external actor (using negative labels -a,... O.

(iii) For all communications accepted by an actor in the population, there

is an internal transition (labeled by p).'

The relation between configurations and T's should be intuitively clear

from the above description. If each node were marked by the configu-

ration it represented, then (i) would correspond to a transition from a

configuration to a configuration such that states(c = states(c') and

tasks(c') = tasks(c) U r where 'is the task accepted from the outside;

(ii) is the acceptance of a communication by an external actor, and (ii' is

acceptance of a communication by ay actor in the population.

When an actor accepts a communication, it may create other actors or

send new communications to specific targets. These wll simply show up

'Milner represents internal transitions, or what he terms silent actions,' by but we

used that letter to denote tasks.

III

A PPE NDIX A. AS YN CHRONOU C-MAILTNIC.ATION TRE ES 180

in the subsequent bebavior of the configuration to which the transitio is

made. We do not lbel nodes in our trees (cf. Milner's urs) because the

label would be simply aiiother wy of noting the sub-tree dominated by te

given node. Formally we define an ACT as follows:

Definition A.1 Asynchronous Communication D-ees. Assume the

function extern(k) represents the external actors cmmunicated in k An

T with receptionists R and external actors E is a inite Set3 of pairs of the

form

(i) < a, f > a R where f is a family of Ts with receptionists R and

external actors E U extern(ki) indexed by possible communications ki

accepted; or,

0i < < k) t >> E where k is a communication targeted to the

mail address and t is an T with receptionists R and external actors

E U extern(k); or,

(iii < t > where t is an T with receptionists R and external actors E.

Remark. The receptionists denote all te urrent receptionists as well

as the (potential) future receptionists te external ators dnote only the

currently known external actors. The asymmetry arises because -y fu-

ture receptionists are created locally thus their potential mail addresses

axe internally determined even 'if they are functions of the iticoming tags),

We do not eed it inultiset because all mail addresses are, unique. However, T's In their

full generd-lity may lack rules garanteeing uniqueness of mail addresses. Technically

th's does not create any difficulty; t smply chmiges the nature of nondeterminism.

-Ill

however the mail addresses of external actors which become known as a

result of an 'Incoming cmmunication are in principle unknowable.

We will now define an algebra of T's and ten define three operations

namely, composition, restrietion, and relabeling on the T's. The actual

algebra is almost identical to CTs except, not surprisingly, in the notion of

receptionists and external actors. CTs used sorts which were a fixed set for

each CT. The concrete interpretations place -d on the terms are, of course,

quite Aifferent. Te definitions below are adapted from Mlner 80].

Let TR x E denote the T's with receptionists R and external actors E

an d ko, k1 denote the possible communications. We have an algebra of

T's as follows:

NIL(nullary operation)

NIL is the T

+ (binary operation)

+ G TR, x El x TR2x E2 TRxE

where R = (RI U R2) and E = (El UE2)

a (a w-ary opera

a takes a set of members of TR x E indexed by ko, kl,... , and produces

a member of T(R U fcj) x (E Li extern(ki)) for the ktb member. This

operation adds a receptionist with mail address a, see Fig A.3. Let =

'
- 4 .,4 -I

APPENDIX A. ASYNCIIRONOUSCOMMUNICA7'IONTREES 181

ut

Figure A.2: Possible nondeterministic transitions.

Iko, k ... I then

a (K - TR x E) T (R U a)) x E

iY (a family of nary operations)

Vk a(k) E TR x E ` TR x (E U extern(k))

�i(k) represents the fact that the communication k has been accepted by

an external actor with the mail address a. See Fig AA

p (a unary operation)

LOE TR x E TR x E

The interpretation of the operation is nondeterminism n the model-

tl +t2 simply means that we may be in the tree t or in the tree t2. The rest

of the operations are straight-forward and correspond to their description in

the introduction. The trees differ from the transitions model of Chapter' 5'

-1 - -

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 182

lu

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 183

a

. 0 0 0 10.

I 0.

Figure A.3 A new receptionist definition.

a 'IIII v/
0

Figure A.4:' Acceptance of a communication by an external actor.

that they represent computation in an open system: It 'is possible to send a

communication from the outside to a receptionist (the potential transitions

are included to account for this fact). However configurations contain all

the information necessary to map them into the trees and, furthermore, we

can commute the diagram of the composition maps configurations and

T's.

The mechanics of how T's axe built will become clearer with the com-

position operation. Composition wl allow us to combine acceptance of

--- - --- -------- --- - ----------

APPEWDIX A. ASYNCHRONOUS COMMUNICATION REES 1.84

communications sent to te receptionists (positive label bindings) in one

tree with cceptance by the corresponding external actors (negative label

bindings) in a dfferent tree to create an internal action of he composite.

We now provide three operations on T's, amely, (concurrent) composition,

restriction and relabeling.

Composition

Composition, is a binary operation on T's such that:

C TR, x El x TR, x E, TR x E

where R (RI U R2), E (El R2)U (E2 -- RI) and (RI n R2) 0- Let

t c T x El and u G TR -then t 11 u has the following branches:RI 2 >'E2

(i) For each branch of t representing a communication from the outside

to a receptionist (i.e., for the branches with te positive habels), there

is a branch which represents the input followed by the composition

with u of each of the trees it dominates Tis branch reflects te fact

that conii-nunications may be received by receptionists in t before any

other actions take place. Mutatis mutandis for the receptionist of u.

(ii) For each branch of t representing an internal transition a branch

corresponding to the internal transition followed by the composition

with u of the tree it dominates. This simply says that the internal

action could happen before any of the effects of omposition happen.

Mutatis rnutandis for branches of u.

ID

APPENDIX A. ASYNCHRONOUS COMMUNICATION 7REES 185

(iii) For each branch of t representing a communication to an external

actor there are two possibilities. If V R te tere is simply a

equivalent branch followed by the composition with u of the tree it

dominates. Otherwise, for each branch of u representing a commu-

nication from the otside to te receptionist P, there is internal

action followed by the composition of the tree in u which follows ac-

cepting the given communication and the tree the otput" branch

dominates. The acceptance has been internalize because of the com-

position. Mutatis mutandis for "'Output" branches of u.

The composition operator preserves arrival order nondeterminism since

'it simply represents te interleaving of all the possibilities.

Restriction

The restriction operation \ removes a receptionist from a system. The

result is that the mail address removed is no longer available-for composi-

tion with other trees. However, if the corresponding actor was involved in

accepting any communications froni actors wthin the configuration, then

these transitions are unaffected. One obviously can not remove 'Internal

actions since they are not "guarded" by the mail address. Formally,

\a C- R x E (R - a}) x E

Relabeling

Given a map from ail addresses to ail addresses, this operator changes

both the positive and negative bindings associated with each. It is nary

1,

186APPENDIX A. ASYNCIIRONOUI,3COMMUNICA7"IONTRE4E4S

operator. Note that 'in an actor system, RnE 0, therefore positive ad

negative versions of the sme label can not co-exist i the same T.

We skip the straightforward recursive efinitions of restriction and re-

labeling.

Thealgebra now behaveslike the algebra of CTs; 'in particular, the ame

definitions of strong equivalence and observation equivalence can be sed.

Observation quivalence on T's provides an ituitively bstract description

of actor systems and retains te rght ainount of information. We refer to

[Milner 80] for details.

An 'Interesting, and not too difficult exercise is to draw sufficient frag-

ments of the T's for the two systems SI and S2 used in discussion of the

Brock-Ackerman anomaly (§7.3). These T's are 'indeed not observation

equivalent.

One remark may be pertinent if peripheral, here. Mlner has shown

that observation equivalence is a congruence relation for all operations ex-

cept the 'Y' operator. The counter-exan-1ple which shows that observation

equivalence is not a congruence relation uses the absorption property of the

NIL tree under the operation. The counter-example would not work if

NIL had internal transitions to NIL. In any case, a congruence relation can

be defined in terms of observation equivalence.

ID

187

References

fAckerman 841 Ackerman, W. B. Efficient Implementation of Applicative
Languages. LCS Tech Report 323, MIT, March, 1984.

fAgerwala and Arvind 821 Agerwala, T. and Arvind. Data Flow Systems. Computer
15,2 (Feb 1982).

fAgha 841 Agha, G. Semantic Considerations. n the Actor Paradigni of Concurrent
Computation. Proceedings of te NSF/SERC Seminar on Concurrency.,
Springcr-Verlag, 1984. Forthcoming

[Agha 851 Agha, G. Actor Iformation Systems. M.I.T. A.L ab

[Atkinson and Hivitt 791 Atkinson, R. ad fiewitt, C. Scification ad Proof
Techniques or Serializers. IEEE Transactions oil Software Engineering SE-5
No. 1, IEEE, January, 1979.

[Backus 781 Backus, J. Can Programming be iberated from te von Neumann
Style? A Fnctional Style and Its Algebra of Programs. Communications of
the ACA1 21,8 August 1978),613-641.

[Brinch f lansen 771 Brinch Hansen, P. The Architecture of Concurrent Programs.
Prentice-Hall, Englewood Cffs, N.J., 1977.

[Brock 831 Brock, J.D. A Formal Model of Non-daerminate Datatlow
Computation. LCS Tech Report 309, MIT, Aug, 1983.

[Brock and Ackerman 811 Bock J.D. nd Ackerman, W.B. Scenarios: A Model of
Non-Determin.ate Computation. In 107: ormalization of Programming
Concepts, Springer-Verlag, 1981, pp. 252-259.

[Brookes 831 Brookes, S.D. A Model For Communicating Sequcntial Processes.
Tech. Rep. CMU-CS-83-149, Carnegie-Mellon, 1983.

[Clinger 811 Cinger, W. D. oundations of Actor Smantics. Al-TR- 633,, MIT
. Artificial Intelligence Laboratory, May, 1981.

fCook 811 Cook, S.A. Towards a Complexity Theory of Synchronous Parallel
Systems. LEnseignement Nfathematique, Reveu Internationale, Geneva (Jan
June 1981). 1:

[Costa and Stirling 841 Costa, G. ad Stirling, C. A Fair Calculus of
Communicating Systems. Foundations of Computer Theory, LNCS,
Spfinger-Verlag, 1984.

[Dahl, Myhrhaug, and Nygaard 701 Dahl 0. J., Myhrhaug B., and Nygaard K.
Simula Common Bse Language. Tch. Rep. S-22, Norwegian Computing
Center, October, 1970.

[Date 831 Date, U. An Introduction to Database Systems. Addison-Wesley, 1983.

188

[de Bakker 801 de Bakker, JX Mathematical Theory of Program Correctnes&
Prentice-Flail nternational, 1980.

[de Bakker and Zucker 821 de Bakker, JX and Zucker, J.]. Processes wid the
Denotational Semantics of Concurrency. Inform.ation and Control 54
(1982), 70-120.

[D"kstra 771 Dijkstra, E. W. A Discipline of Programming. Prentice-Flall, 1977.

[Emden and Fillio 821 van Embden, M.H., and de Lucena Filho, G.J. Predicate
Logic as a Language for Parallel Pogramming. In Logic Programming,
Academic Press, 1982.

[Feynman et al 651 Feynnian, R., Leighton, R., and Sands, M. The Feynman
Lectures on Physics. Addison-Wesley, 1965.

[Golson and Rounds 831 GolsonW. and RoundsW. Connections Between Two
Theories of Concurrency: Metric Spaces and Synchronization Trees.
Information and Control, 57 1983), 102-124.

[Gray 801 Gray, J. Experience with die Systcn R Lock Manager. IBM Sn Jose
Research Laboratory, 1980.

[Gre if 751 Greif, 1. Semantics of Communicating Parallel Processes. Technical
Report 154, MIT, Project MAC, 1975.

[Gurd, et a] 851 Gurd JR, Kirkham, C.C., and Watson, 1. The Manchester
Prototype Dataflow CMPLIter. Communications of the ACM 28, 1 (JCanuary
1985), 34-52.

111arel 791 Harel, D. Lecture Notes in Computer Sience. VoL 68: First-Order
Dynamic Logic. Springer-Verlag, 1979.

111enderson 801 Henderson, P. Functional Programming.- Applications and
Implementation. Prentice-Hall International, 1980.

[Hewitt 771 Hewitt, C.E. wing Control Structures s Patterns of Passing
Messages. Journal of Artificial Intelligence 83 (June 1977), 323-364.

[Hewitt 801 Hewitt C. E. The Apiary Network Architecture for Knowledgeable
Systems. Conference Re'Cord of the 1980 Lisp Conference, Stanford
University, Stanford, California, August, 1980, pp. 107-118.

[flewitt 831 Hewitt, C. Some Fundamental Limitations of Logic Programming.
A.]. Memo 748, MIT Artificial Intelligence Laboratory, November, 1983.

[Hewitt and Atkinson 771 Hewitt, C. and Atkinson, R. Synchronization in Actor
Systerns. Proceedings of Conference on Principles of Programming
Languages, January, 1977, pp. 267-280.

Iflewitt and Baker 771 Hewitt, C. and Baker, H. Laws for Communicating Parallel
Processes. 1977 FIP Congress Proceedings, IFIP, August, 1977, pp. 987-992.

m

189

Iflewitt and de' 831 Hewitt, C., de Jong, P. Analyzing the Roles of
Descriptions ad Actions i Open Systems. Proceedings of the National
Conference on Artificial Itelligence, AAAI, August, 1983.

[Hewitt, et al 841 Hewitt, C., Rinhardt, T., Agha, G. and Attardi, G. Linguistic
Support of Receptionists for Shared Rources. Proceedings of the
NSF/SERC Seminar on Concurrency, Springer-Verlag, 1984. Forthcoming

[floare 78] Hoare, C. A. R. Communicating SeqUelltial Processes. CACM 2
(August 1978), 666-677.

[Holland 751 Holland, J.H. Adaptation in Natural and Artificial Systems. U. of
Michigan Press, 1975.

[Hwang and Briggs 841 Hwang, K. and Biggs, F. Computer Architecture and
Parallel Processing. McGraw H * 1, 1984.

[Kahn and MacQueen 781 Kahn, K. ad MacQueen, D. CorOUtines ad Networks
of Parallel Processes. Information Processing 77: Proccedinos of the IFIP
Congress, IF111, Academic Press, 1978, pp. 993-998,

[Keller 771 Keller, R.M. Denotational Models for Parallel Pograms with
Indeterminate Operators. Proceedings of the IFIP Working Conference on
Formal Desciiption of Programming Concepts, IFIP Agust, 1977.

[King and Collmeyer 731 King, Rand Collmeyer, A. Database Sharing: An
'Efficient Mechanism for Supporting Concurrent Processes. Proceedings of
NCC9 1973.

[Liskov, Snyder, Atkinson, and Schaffert 771 Liskov B., Snyder A., Atkinson R.,
and Schaffert C. Abstraction Mechanism in CLU. Communications of the
A CAf 20,8 (August 1977).

[Lynch and Fischer 8t] Lynch, N. and Fscher, J. On Describing Behavior and
Implementation of Distributed Systems. Theoret. Comp. Science 13, 1
(1981).

[Manthey and Moret 831 Manthey, M. and Moret, B. The Computational
Metaphor and Quantum Physics. CACM (February 1983).

[McCarthy 59] McCarthy, John. Recursive Functions of Symbolic Expressions and
their Computation by Machine. Memo 8, MIT, March, 1959.

[Mead and Conway 801 Mead, C. and Conway, L. Introduction to VLSI System&
Addison-Wesley, Reading, MA, 1980.

[Meijer and Peeters 821 Me"er, A. and Peeters, P. Computer Network
Architectures, Computers Science Press, 1982.

[Milner 801 Milner, R. Lecture Notes in Computer Science Vol. 92 A Calculus of
Communicating Systems. Springer-Verlag, 1980.

I

190

[Peterson 771 Peterson, JL. Petri Nets. Comput. Survey (Sept. 1977).

[Pnueli 831 Pn u e ', A. On the Extremely Fair Treatment of Probabilistic
Algorithms. Proceedings of the Fifteenth Annual ACM Symposium on the
Theory of Computing, 1983.

[Pratt 821 Pratt, V. R. On the Composition of Processes. Poceedings of the Ninth
Annual ACM Conf on Principles of Programming Lnguages, 1982.

[Scott 721 Scott, D. S. Lattice Theoretic Models for Various Type-free Calculi.
Proceedings 4th International Congress 'in Logic, Methodology and te
Philosophy of Science Bcharest, Hungary, 1972.

[Scott 821 Scott, D. S. Domains for Denotational Semantics. ICALP-82, Aarhus,
Denmark, July, 1982.

[Seitz 851 Seitz, C. The Cosmic Cube. Communications of the ACU 281 1 (January
1985)� 22-33.

[Sinyth 781 Syth, M.B. Petri Nets,, J. of Comput. Survey Science (Feb. 1978).

[StGy 771 Stoy, Joseph E. Denotational Semantics: The Scou-Strachey Approach to
Programming Language Theory., The MIT Press, Cambridge, MA, 1977.

[Theriault 831 nieriault, D. Issues in the Design and Implementation of Act2.
Technical Report 728, MIT Atificial Intelligence Laboratory, June, 1983.

[von Neumann 581 von Neumann, J. The Computer and the Brain. Yale U. Press,
New Haven, Conn., 1958.

[Weng 751 'Weng, K.-S. Strearn-Ofiented Computation in DaW Flow Schemas.
TM 68, MIT Laboratory For Computer Science, October, 1975.

[Wirth 721 Wrth, N. The Programming Language Pascal. Eidgenossiche
Technische Hochschule Zrich, November, 1972.

III

