
Learning to Play the Game of Go

James Foulds

October 17, 2006

Abstract

The problem of creating a successful artificial intelligence game playing program
for the game of Go represents an important milestone in the history of computer
science, and provides an interesting domain for the development of both new
and existing problem-solving methods. In particular, the problem of Go can be
used as a benchmark for machine learning techniques.

Most commercial Go playing programs use rule-based expert systems, re-
lying heavily on manually entered domain knowledge. Due to the complexity
of strategy possible in the game, these programs can only play at an amateur
level of skill. A more recent approach is to apply machine learning to the prob-
lem. Machine learning-based Go playing systems are currently weaker than the
rule-based programs, but this is still an active area of research.

This project compares the performance of an extensive set of supervised
machine learning algorithms in the context of learning from a set of features
generated from the common fate graph – a graph representation of a Go playing
board. The method is applied to a collection of life-and-death problems and
to 9 × 9 games, using a variety of learning algorithms. A comparative study
is performed to determine the effectiveness of each learning algorithm in this
context.

Contents

1 Introduction 4

2 Background 4

2.1 Go . 4

2.1.1 Description of the Game 5

2.1.2 The History of Go . 6

2.1.3 Elementary Strategy . 7

2.1.4 Player Rankings and Handicaps 7

2.1.5 Tsumego . 8

2.2 Artificial Intelligence . 8

2.3 Supervised Learning . 9

2.4 Artificial Intelligence for Game Playing 9

2.5 Artificial Intelligence for Go . 11

2.5.1 The Problem with Minimax 11

2.5.2 Other Challenges . 12

2.5.3 Board Evaluation Functions vs Move Evaluation Functions 12

2.5.4 Current Go Programs – the State of the Art 13

2.5.5 Pattern Matching . 13

2.5.6 Localized Goal-Directed Search 14

2.5.7 Monte Carlo Methods . 14

2.5.8 Machine Learning Approaches 15

3 A Supervised Learning Approach to Go 16

3.1 Common Fate Graph Representation 16

3.2 Relative Subgraph Features . 18

3.3 Tsumego Problems . 19

3.4 Playing Go . 19

4 An Implementation of the Relative Subgraph Feature Extrac-

tion Algorithm 20

4.1 Implementation Issues . 20

4.2 Building Common Fate Graphs 20

4.3 Extracting Relative Subgraph Features 20

4.4 Enumerating Subgraphs . 21

5 Tsumego Experiment 25

5.1 Experimental Setup . 25

5.2 Initial Parameter Tuning . 26

5.3 Experimental Results . 30

1

5.4 Analysis of Results . 31

5.5 Further Parameter Tuning . 33

5.5.1 Support Vector Machine using an RBF Kernel 33

5.5.2 Support Vector Machine using a Polynomial Kernel . . . 35

6 9 × 9 Go Experiment 36

6.1 Experimental Setup . 37

6.1.1 Training Sets . 37

6.1.2 Program Architecture . 37

6.1.3 Game Setup . 38

6.1.4 Evaluation . 39

6.2 Experimental Results . 39

6.3 Observations of Game Play . 42

7 Conclusions and Future Work 44

A Description of Machine Learning

Algorithms 48

B Dictionary of Go Terms 50

C Design of the System 51

2

List of Figures

1 Example board position, and corresponding CFG 17

2 Example relative subgraph feature vector 18

3 Parameter selection for Random Forest 27

4 Parameter selection for Bagging 27

5 Parameter selection for AdaBoost.M1 with Decision Stump as

the base classifier . 28

6 Parameter selection for AdaBoost.M1 with J48 (C4.5) as the base

classifier . 28

7 Parameter selection for Nearest Neighbour classifier 29

8 Parameter selection for Voted Perceptron 29

9 Parameter tuning for the support vector machine with the RBF

kernel, 3D View . 34

10 Parameter tuning for the support vector machine with the RBF

kernel, Side View 1 . 34

11 Parameter tuning for the support vector machine with the RBF

kernel, Side View 2 . 35

12 Parameter tuning for the support vector machine using a poly-

nomial kernel . 36

List of Tables

1 Results of tsumego experiment 31

2 Result of McNemar’s test for all pairs of algorithms 32

3 Number of the program’s stones surviving at the end of the game.

Median over 25 games for each classifier. 40

4 Mean number of the program’s stones on the board throughout

the game. Median over 25 games for each classifier. 40

5 Overall game score – Wally’s score minus the machine learning

player’s score. Median over 25 games for each classifier. 41

6 Total eyes created, summed over all 25 games for each classifier . 41

7 Number of games where groups with two eyes were formed 42

List of Algorithms

1 Transform näıve graph representation into common fate graph . 21

2 Count subgraph features . 21

3

1 Introduction

The board game ‘Go’, also known as Wéiq́ı, or Baduk, is one of the oldest

known games still played in its original form [32]. Ironically, despite its age and

simplicity, Go is the last remaining major board game where the best artificial

intelligence players perform only at the level of a weak amateur [29].

This report investigates the use of supervised machine learning techniques

to learn a move evaluation function for Go, and presents a comparative study

of the performance of various learning algorithms when applied to a particular

approach to Go playing.

The focus of this report is to extend the work done by Graepel et al. [21],

who introduce a graph representation of a Go board position, and apply su-

pervised machine learning techniques to a set of features generated from this

representation.

This report first provides an overview of the game of Go, including the his-

tory and rules of the game and a survey of existing approaches to artificial

intelligence Go playing. Relevant material from [21] is summarized for conve-

nience.

The results of a comparative study of supervised learning methods are then

presented. The study evaluates the performance of a set of machine learning

algorithms when learning a move evaluation function for Go, using the methods

described in [21]. The performance of each algorithm is measured in terms of

ability to choose moves that solve life-and-death problems, and score against an

automated benchmark opponent in games of Go on a 9 × 9 playing board.

2 Background

In this section, the nature of the game of Go is described, including the rules of

the game, the history, and the rudiments of game-playing strategy. Go puzzles

(tsumego) are used as a benchmark for supervised learning algorithms in this

project, therefore they are described briefly here. The methodology of super-

vised learning is then summarized, and a brief review of artificial intelligence

approaches for Go is presented.

2.1 Go

Go is an ancient oriental strategy board game for two players. It can be consid-

ered to be very elegant, in the sense that its rules are extremely simple to state,

but give rise to incredibly complex strategic possibilities.

The game is interesting from the point of view of artificial intelligence, as it

4

represents a task where skilled humans are currently far superior to machines.

The creation of an artificial intelligence Go-playing machine capable of beating

human experts would mark an important milestone in the history of computer

science, as Go is the last remaining popular strategy board game for which this

has not been achieved.

2.1.1 Description of the Game

Go is classified as a deterministic, zero-sum, perfect information, two player

strategy game [11]. This means that the outcome of the game is entirely deter-

mined by the moves made by the players, and a victory for one player necessarily

equates to a loss for his or her opponent. Complete information about the cur-

rent state of the game is available to both players at all times.

The players, labeled Black and White, take turns to place stones of their

own colour on a 19 × 19 board (although beginners may practice with smaller

9×9 or 13×13 boards) called the goban. Stones are placed on the intersections

of the grid lines, and cannot be moved once they are placed, only removed from

the board when they are captured. Black always plays first. Players may also

pass.

There is an additional rule, called ko, which disallows the placing of a stone

that repeats a previous board position. In some variants of the rules, only the

last board position before the current move must not be repeated, but in others

no previous board position encountered in the current game may be repeated.

This has been dubbed super ko.

Transitively adjacent sets of stones of the same colour are called groups.

Synonyms include strings, blocks and worms. Each empty point adjacent to a

group is called a liberty. After a player has placed a stone, any of her opponent’s

groups with no liberties are considered to be captured, and are hence removed

from the board. If any of her own groups have no liberties after the removal of

captured opponent groups, these are removed also.

The game ends when both players pass consecutively. Before calculating the

score the players agree to remove dead groups from the board. These are groups

that would inevitably be captured. If the status of a group is disputed, this is

resolved by further play.

In the Chinese version of the rules, each player’s score is calculated as the

number of points of her colour on the board, plus the number of empty points

enclosed by her colour. The Japanese rules count instead the number of op-

ponent’s stones captured plus the number of enclosed empty points. The two

systems almost invariably produce the same outcome of a game.

An additional consideration in scoring is the concept of komi, which compen-

5

sates the white player for the disadvantage of playing second by adding several

stones to their score at the end of the game. The komi is predetermined be-

fore the game starts, and depending on the local version of the rules, can vary

between around 4.5 stones and 8.5 stones.

2.1.2 The History of Go

Go was developed in China somewhere between 3000 and 4000 years ago [32].

The exact origins of the game are not known, although there are several com-

peting legends. The most popular states that the game was invented by the

Chinese emperor Yao, who reigned from 2357 to 2256 B.C. According to the

legend, Yao invented the game in order to teach his dim-witted son, Shang Kiun,

the concepts of discipline, concentration and balance. However, the game most

likely has more humble origins.

In ancient Imperial China, Go was ranked as one of the Four Arts of the

Chinese Scholar, along with calligraphy, painting, and playing the guqin, a

seven-stringed instrument which is a relative of the zither.

Go gained an enormous amount of popularity when it gradually spread to

Japan around 600-800 AD, which it still retains today [32]. In Japan, Go was

considered to be of such importance that the government established state-

sponsored academies for training and playing Go.

In the early 17th century, very soon after becoming Shogun and unifying

Japan after one and a half centuries of internal conflict, Tokugawa Ieyasu insti-

tuted the Go Academy, called the “Go In”. Honinbo Sansha, one of the most

famous Go players of all time, was appointed as the head of the organization.

The Academy was split into four houses, each with its own school and preferred

playing style. The houses were sponsored by the Japanese government until the

end of the Tokugawa Shogunate in 1868.

Go is now played all over the world, including several highly competitive

international tournaments sponsored by large Asian companies such as Fujitsu,

Toyota and Samsung.

An interesting recent development in the history of the game is the advent

of internet Go. The Internet Go Server (IGS) 1, founded as early as 1992, was

one of the earliest such servers, and is still probably the most popular. Another

popular server is the Kiseido Go Server (KGS) 2. Internet play has since become

a popular phenomenon, with many more servers now operating. Thousands of

players are competing around the world online at any one time. According to

the website of IGS, a significant number of professional players compete on their

servers regularly.

1www.pandanet.co.jp/English/
2www.gokgs.com/

6

Go has also become of interest to artificial intelligence researchers. Enor-

mous difficulty has been encountered in creating a competitive artificial intel-

ligence Go-playing program. In the last ten years, Go programs have become

sophisticated enough to play respectable novice Go, but they still cannot even

remotely approach a professional level of play. Some researchers, such as Russell

and Norvig [29] believe that progress in computer Go will be beneficial to the

artificial intelligence community in general.

2.1.3 Elementary Strategy

Important short term goals in Go include killing opponent groups, and creating

stable groups of one’s own. One must strike a balance between these sometimes

contradictory aims.

An important concept for creating stable groups is the notion of an eye. An

eye is an empty space surrounded by pieces of one colour that are all part of

the same group. The term usually refers to single-point eyes, but can also refer

to situations where the enclosed empty space contains more than one point.

A group with an eye is harder to capture because once it has been completely

surrounded externally, the player must play an additional move on the eye to

complete the capture. Groups with two eyes are unconditionally alive. Because

only one stone may be played per turn, it is impossible to fill in both eyes in

order to deprive the group of all of its liberties.

2.1.4 Player Rankings and Handicaps

There is a sophisticated system for rating and ranking players in Go. This is

useful because it provides us with a precise measure of the strength of a player,

at least relative to her peers.

The system is very accurate in describing the relative abilities of human

players – a player with only a slightly higher rating can consistently beat her

opponent without a handicap. While the rating system is somewhat useful

in rating the ability of artificial intelligence Go-playing programs, there is a

problem in that a competent human player who knows the weaknesses of an

otherwise strong computerized opponent may be able to beat it even with an

extremely high handicap.

The rating system is closely linked to the handicapping system of the game.

The handicapping system is as follows. A stronger player may allow a weaker

player to place extra stones on the board in a prescribed pattern before taking

her first turn. The number of handicap stones required to make the game even

is the measure of difference in strength between the two players.

There are separate scales of rating for amateur and professional players.

7

Weak amateurs are given a rank from 1-kyu upwards, where higher numbers

mean less ability. Absolute beginners are generally placed somewhere between

20-kyu and 30-kyu.

There is a theoretical difference of a one stone handicap between each con-

secutive rating. For instance, a 5-kyu player would give a 7-kyu player two

stones handicap in order to have an even game. Ratings can be determined by

playing against others whose ranks are known, or are sometimes awarded by

national Go organizations. Unfortunately, the exact strength of a given rating

varies slightly over time and geographical location.

A player who can consistently beat a 1-kyu opponent with a single stone

handicap is given the rank of amateur 1-dan (shodan). The dan scale is similar

to the kyu scale, except that higher numbers are better. The amateur dan scale

ranges from 1-dan to 7-dan.

Professional players are also given a dan rating, but the rating system is

distinct from the amateur scale. The professional dan scale ranges from 1-dan

to 9-dan.

2.1.5 Tsumego

Go puzzles are called tsumego, meaning literally “packaged Go”. They serve a

similar function to chess puzzles, and are often featured in Japanese newspapers.

Tsumego problems are less contrived and artificial than their chess counterparts

however, and often represent situations that can arise in actual games [8]. In this

report, tsumego puzzles are used as a benchmark for the evaluation of machine

learning techniques.

In a tsumego puzzle, a board position, or partial board position, is given,

along with the goal of the problem. The goal is always either to try to find a

sequence of moves that guarantees the survival of one’s own group, or a sequence

of moves that guarantees the death of another group.

The concepts of life and death are very fundamental to Go, and the purpose

of tsumego puzzles is to teach players how to recognize these situations. The life

and death status of groups must be determined in order to calculate the score

at the end of the game. They are also very important to game playing strategy,

as players need to know which groups to protect, and which are already lost.

2.2 Artificial Intelligence

Artificial intelligence (AI) is difficult to define precisely due to the differing

paradigms existing within the field. Russell and Norvig [29] identify four dif-

ferent definitions, varying in two different dimensions. The definitions all agree

8

that the goal of AI is to build specific types of systems, but the nature of these

systems appears to be controversial.

Russell and Norvig state that each definition describes these ideal systems

as (a) rational, or (b) similar to humans, and the success of the system is

measured in terms of actions or thoughts. So the four possibilities are: artificial

intelligence is the science of building systems that {think like humans, think

rationally, behave like humans, behave rationally}.

In practice, the field of AI encompasses all four definitions. In this report,

we are specifically interested in systems that act rationally. An ideal Go-playing

system should make decisions that are optimal, regardless of whether humans

would have selected the same responses. Such a system should be evaluated in

terms of its behaviour – its ability to win is more important as an end result

than the inner processes, mental or otherwise, that produce such behaviour. Of

course, if successful, the processes used by such a system are likely to be of

interest in themselves.

2.3 Supervised Learning

This report investigates the use of supervised learning as an approach to Go-

playing. Supervised learning is a type of machine learning where a function is

learned from a set of examples [29]. The typical supervised learning scenario

involves a set of training examples that an agent is to learn from. Each example

consists of a vector of features that represent the properties of the example, and

a class. The class is the output value of the function for that example.

A supervised learning algorithm attempts to learn a function that maps an

instance from feature space to a class value. It must generalize from the training

data to predict the output of the function for any arbitrary example. If the class

is of a nominal type, this process is called classification. In the case where the

class is of a numeric type, the learning process is called regression.

2.4 Artificial Intelligence for Game Playing

Artificial intelligence techniques have been applied successfully to most popular

strategy board games. The most famous example is Deep Blue [9], which de-

feated Garry Kasparov, the then-reigning World Chess Champion in a six-game

match in 1997.

Deep Blue is the most recent, and almost certainly final, incarnation of IBM’s

chess-playing computer. It uses an optimized version of the minimax algorithm,

coupled with a sophisticated evaluation function in a massively parallel com-

puting environment in order to generate its moves. The system consists of 30

IBM RS/6000 processors and 480 custom single-chip processors.

9

Minimax is a game-playing algorithm where a search is done on the tree of

possible sequences of moves [29], called the game tree. Moves are chosen assum-

ing that each player plays optimally. If the entire game tree can be traversed

by the algorithm, optimal moves are found by considering the outcome at the

end of the game in a given branch, and propagating this information back up

the tree.

In practice, however, for interesting games such as chess there are too many

possible sequences of moves to investigate the entire game tree. In this case,

a cut-off function is used to determine when to terminate the search. At this

point, the result of the minimax search is estimated using a board evaluation

function.

Minimax can be optimized by careful pruning, and sophisticated cut-off tests

and evaluation functions. Alpha-beta pruning is a method for pruning the

search tree without affecting the result of the minimax search. Other pruning

methods are possible, but they may not guarantee that optimal moves are found.

Quiescence search is a method where the evaluation function is not applied

to highly unstable game positions, and the search is continued until quiescent

positions are reached.

The authors of Deep Blue state that it uses a “highly non-uniform” search –

i.e. it uses a quiescence search, and some branches of the game tree are explored

much more deeply than others.

The minimax approach has been applied successfully to many other games,

creating world champion artificial intelligence players for checkers [30], Qubic

[25] (3-dimensional tic-tac-toe on a 4 x 4 x 4 board) , Go-Moku [2](connect 5, tra-

ditionally played on a Go board with Go playing stones) and Nine-Men’s Morris

[19]. In most of these champion game-playing programs, end-game databases

are precomputed in order to terminate the search sooner.

Applying brute-force searching algorithms is not always enough, however.

When the depth of search space is limited, an evaluation function must be

carefully chosen. Machine learning has often been applied successfully to this

problem.

In 1997, three months after Deep Blue defeated Kasparov, an Othello playing

program called Logistello [7] defeated Takeshi Murakami, the world champion at

Othello, with six victories to none. Logistello uses a variant of alpha-beta mini-

max called ProbCut, which uses supervised learning techniques to find heuristics

for reducing the search space. It also learns both an evaluation function and an

opening book.

Backgammon also required some extra inspiration beyond mere brute-force.

Since backgammon includes an element of chance, the opponent’s move at a

given time cannot be unambiguously predicted. Hence, the subtrees for all

10

possible outcomes must be investigated in order to determine the expected value

of each move. Because of this increase in the branching factor of the game tree,

deep searches are much more computationally expensive.

To counter this, much work was done to find an accurate board evaluation

function [29]. A program called BKG [3] won against the world champion of the

year, Luigi Villa, as early as 1979. BKG uses a complex hand-coded evaluation

function and only searches one ply of the game tree. However, this was only a

short exhibition match, and not a world championship match. Its author admits

that the program made several mistakes in the game, but was lucky with the

dice.

In the end, it was a machine learning program that solved the problem. A

program called TD-Gammon [33] learnt a neural network for board evaluation

using a reinforcement learning method called temporal difference learning (TD).

By playing against itself more than a million times, it became strong enough to

be consistently ranked as one of the top three players in the world. TD-Gammon

plays at a level far superior to BKG.

2.5 Artificial Intelligence for Go

Much work has been done towards creating a successful artificial intelligence

Go program. Many of the techniques that were used to create programs that

play at a world-class level in other games have been applied to Go with limited

success. In this section we describe the challenges that Go presents for an

artificial intelligence program. We give an overview of some of the methods

that have been applied to the problem, and describe the current state of the

art.

2.5.1 The Problem with Minimax

Given the success of AI programs using the minimax algorithm in other games,

it may come as a surprise that this success does not transfer to Go.

One of the main reasons for this is the branching factor of the game tree.

For instance, at the beginning of the game there are 19 × 19 = 361 possible

legal moves. While this reduces as the game progresses, for most of the game

the branching factor remains far higher than for all of the games mentioned

previously. For instance, in chess the average number of legal moves is around

35. This can be reduced to a branching factor of around 3 after heuristics have

been applied to prune low quality moves[29].

Another reason for the poor performance of minimax is the difficulty of

writing a good board evaluation function [24]. The success of the TD-Gammon

program in backgammon demonstrates that it is possible to build a strong player

11

for a complex game where the search space is very large, as long as a good

enough evaluation function can be found. Hence, in theory such a function

could circumvent the problem of the large branching factor in Go. Such a

function for Go has proved elusive as of yet.

A further problem for a minimax solution to Go is the lack of a clear-cut

end to the game. Unlike in chess, where a checkmate is a well-defined scenario

that determines the end of the game, in Go both players must agree to finish

the game by consecutively passing. Few games of Go are played until the board

is completely filled in; they are instead ended when both players can agree on

the outcome, which is usually much earlier. A minimax search is thus much

more reliant on its evaluation function, since a given game is unlikely to get

close enough to the end of the game to allow a complete search of the remaining

portion of the game tree.

2.5.2 Other Challenges

At a high level of play, Go is very unforgiving of mistakes. Although the best

Go programs generally make reasonable moves most of the time, they also make

some crucial blunders that are likely to cost them the game [24].

The length of the game is also a factor. As each game can last for up to

around 300 moves, a human opponent has a lot longer to learn the weaknesses

of a computer program. In some cases, a human that knows how to exploit

the weaknesses of an otherwise competent program can win decisively, despite

giving the program a huge handicap.

These difficulties have meant that computer scientists have not been able to

develop AI players that are competitive against humans at an advanced level of

play.

2.5.3 Board Evaluation Functions vs Move Evaluation Functions

Until this point, we have only considered one class of evaluation function, known

as a board evaluation function. Such a function is a mapping from a board

position to a numeric value, typically between 1 and -1, indicating the predicted

outcome of the game from that position. Board evaluation functions are useful

when applying minimax search, because they allow the search to terminate early

and instead estimate the result produced by the remainder of the game tree.

An alternative approach is to evaluate moves instead of board positions. In

this case, each legal move is mapped to a numeric value representing the quality

of the move. A program would then select the highest ranked move to play.

In Go, move evaluation functions are often more appropriate, because mini-

max is generally not used as the core of the program’s decision-making process,

12

and good moves are, after all, what we are fundamentally interested in finding.

In practice, many programs use both move and board evaluation functions [24].

2.5.4 Current Go Programs – the State of the Art

As many of the current top programs are commercial or private software, it is

not always easy to determine the techniques used. However, it is probably safe

to assume that these programs are built using similar methods to their public

contemporaries.

In any case, the winner of the Go event at the most recent annual Computer

Olympiad, held in June 2006, was GNU Go3, an open source project from the

Free Software Foundation. This competition is the most prominent competition

in computer Go. Other important tournaments include the Kiseido Go Server

tournaments and the Computer Go Ladder.

The best Go programs existing currently, such as GNU Go, Go++4, and

The Many Faces of Go [17] rely heavily on large internal databases of hand-

coded domain knowledge. They apply localized alpha-beta minimax searches,

rule-based expert systems and pattern matching. Müller states in a 2002 review

article [24] that “Most competitive programs have required 5-15 person-years of

effort, and contain 50-100 modules dealing with different aspects of the game”.

The general approach of most of the current top programs is an inversion of

the traditional minimax scenario. For a practical implementation of minimax,

the game tree is searched, and an evaluation function is applied when we can

search no more. In Go, small localized searches are often applied as part of the

evaluation function, rather than the other way around.

Most modern Go programs, such as GNU Go and The Many Faces of Go,

produce a set of candidate moves using a wide variety of methods such as pattern

matching and hand-coded domain information heuristics. Candidate move sets

are necessary because of the sheer number of possible moves on the board –

their application allows more time to closely investigate the most promising

moves. These candidate moves are then evaluated and the best ranking move

is selected.

2.5.5 Pattern Matching

All of the top existing Go programs have an internal database of patterns. These

are localized positions of part of a Go board, combined with information per-

3Publicly available from http://www.gnu.org/software/gnugo/
4A commercial program that was the winner of the 9th KGS Computer Go Tournament

in 2005, and the Computer Olympiad in 2002. While its closed-source nature means that its
details are not publicly available, its website at www.goplusplus.com mentions some very high
level information about the techniques the program uses.

13

taining to that position such as a suggested move, or sequence of moves, further

preconditions for the applicability of the pattern, goals associated with the pat-

tern and a measure of importance. Patterns are invariant under the symmetries

of rotation, reflection and inversion of colour. Human players often train by

studying patterns of a very similar nature, called joseki in Go terminology.

Patterns can be added manually by experts, or discovered by machine learn-

ing techniques [10]. The Go++ program uses a pattern database containing over

23,000 hand-made patterns, and an additional 300,000 patterns that were gen-

erated automatically from professional games. The program’s author employs a

6-dan Japanese player full-time to add new patterns into the system. The pat-

tern acquisition method used by Go++ has not been released into the public

domain, but the program’s website hints that machine learning is involved.

While pattern matching is an important component of virtually every major

Go program, this method alone is not enough to make a strong player. For

instance, the program “Wally” is a very simple player that is based almost

entirely around pattern matching. Apart from pattern matching, its only rules

are to capture whenever it can, and never play suicide moves. If there is no

pattern that it knows, it plays a random move.

Wally’s playing strength is estimated to be only around 30-kyu, which is the

rating of an extreme beginner human player. It does however play a non-trivial

and consistent game.

2.5.6 Localized Goal-Directed Search

Although it is not feasible to perform a total minimax search on all of the avail-

able branches of the game tree, small localized searches are helpful in several

situations. The search space is cut down immensely when we are only consid-

ering points relevant to a given high-level goal on small portions of the board.

For instance, GNU Go uses minimax to detect dragons – sets of stones that

are provably connectable despite any opposition attempt to separate them. It

also uses minimax to determine the life-and-death status of groups.

Cazenave [10] uses a minimax search to evaluate candidate patterns. His pro-

gram, GoGol, acquires patterns for its pattern rule set by enumerating candidate

patterns based on general templates, and then evaluates them with respect to

simple goals such as making an eye. It performs minimax to determine if the

goals can be achieved.

2.5.7 Monte Carlo Methods

Monte Carlo methods are non-deterministic stochastic methods for simulating

the behaviour of a system. The approach is to repeatedly generate randomized

14

scenarios and evaluate their outcomes. They are often used when state infor-

mation is unknown, or when other methods are infeasible due to computational

complexity. They have applications in many areas such as finance, physics, and

gambling (in fact, the name is a reference to the casino in Monte Carlo). In the

field of game-playing AI, Monte Carlo methods have been successfully applied

to several games such as poker, bridge and backgammon.

In 1993, Brügmann [6] created the first Go program based around this tech-

nique. His system, called Gobble, evaluates each possible move by repeatedly

finishing the game via randomized play, and averaging the results to obtain an

expected outcome. A random sequence of moves for each player is generated in

advance, based on current move value estimates, and the score is calculated at

the end of the game.

Moves are evaluated based on the score for any game in which they were

played, no matter when in the game they were played. Simulated annealing

is used to control the probability that a move is played out of order. Despite

having almost no explicit domain knowledge built into the program, Gobble

plays “respectable novice go”[6] at a level of about 25-kyu.

Bouzy and Helmstetter [4] found that simulated annealing was not signifi-

cantly superior to using a fixed temperature. Monte Carlo Go players play a

respectable strategic game, but perform poorly at lower level tactics [24]. Bouzy

and Helmstetter tried to solve the tactics issue by starting the random games

with a one-ply minimax search, using the Monte Carlo method as the evaluation

function. No improvement was found with this method, however.

2.5.8 Machine Learning Approaches

The top programs currently do not make much use of machine learning tech-

niques. However, a new approach is needed in order to make progress, and

machine learning techniques, like Monte Carlo methods, are attractive alterna-

tives to the manual creation of domain knowledge playing heuristics. This is an

active area of research.

Reinforcement learning is a common approach, for example [1]. In contrast to

supervised learning, where a set of pre-labeled training examples are provided

to a learning agent, reinforcement learning provides an agent with feedback

responses to its actions as it interacts with its environment.

In particular, the temporal difference (TD) reinforcement learning algorithm

has been frequently tried in Go-playing applications (see, for example, [28], [22]

and [12]). The success of TD in backgammon, a complex game that has resisted

other artificial intelligence approaches, led to the hope that it will prove useful

when applied to the game of Go. However, like all other approaches, it has

15

produced only lukewarm results in Go [22].

Neural networks have been used, often in conjunction with TD learning.

Dahl [14] trains a neural network to learn strong local board position shapes

with supervised learning, and also trains two additional neural networks by

self-play using TD learning, to estimate the safety of group structures, and

value the territorial potential of unoccupied points. Shell et al. [31] use genetic

algorithms to train a neural network to play the Capture Game, a version of Go

with simplified objectives.

Enzenberger [16] uses a neural network, trained via self-play and TD learn-

ing, to segment a game position into smaller independent subgames to simplify

position evaluation. Russell and Norvig [29] suggest that work on such segmen-

tation may have important repercussions for the AI community in general.

A literature survey shows surprisingly little research into supervised learning

in the game of Go. Graepel et al. [21] try to learn a move evaluation function

using a support vector machine and a kernel perceptron. They also introduce a

novel representation for board positions, which they call a “common fate graph”

(CFG). The CFG is a graph-based representation that takes into account the

fact that connected stones share a common fate - they live or die in the same

circumstances, and hence can be treated as a single unit. Feature vectors are

extracted from the CFG representation. This is the method investigated in this

report.

3 A Supervised Learning Approach to Go

Graepel et al. [21] presented a new representation for a Go board position, and

accompanied this with a method for extracting feature vectors from this repre-

sentation, suitable for use with supervised learning techniques. This project is

an extension of that work. For convenience, their work is summarized here.

3.1 Common Fate Graph Representation

The common fate graph (CFG) is a graph representation of a Go board position.

It is founded on the observation that adjacent stones of the same colour have a

common fate - if one stone is captured, then all of the friendly stones belonging

to the same group must be captured also. Hence, all of these connected stones

can be conveniently represented as a single node in a graph representation of a

position.

Consider the simplest possible graph representation of a Go board position.

In this model, a Go position is represented by 19 × 19 nodes, representing the

361 intersections on the board. Each node stores either the colour of a stone at

16

Figure 1: Example board position, and corresponding CFG. The points marked
with a circle on each image correspond with each other.

that intersection, if there is such a stone, or the fact that it is empty. Each node

in the graph is adjacent to its geographical neighbors above, below and to its

sides. We will follow [21], and refer to this as the näıve full graph representation.

The CFG is built from the näıve full graph representation by repeatedly

merging all non-empty nodes with adjacent nodes of the same colour, until

there is no non-empty node of the graph adjacent to another node of the same

colour. This is the defining feature of the representation.

Formally, let G = (E, V) be the näive full graph representation of a Go

position with edges E and vertices V . While ∃p1, p2 ∈ G such that {p1, p2} ∈

E, p1.colour = p2.colour and p1.colour 6= empty, merge them using the follow-

ing transformation:

V 7→ V \ {p2} (1)

E 7→ (E \ {{p2, p3} ∈ E}) ∪ {{p1, p3} : {p2, p3} ∈ E} (2)

See Figure 1 for an example board position and the corresponding CFG.

The CFG is a useful representation because it abstracts from the notion of

‘stone’ to the notion of ‘group’, which is the level of abstraction at which com-

petent human players generally reason about Go positions. It helps to capture

the structure of the board position, as it represents the adjacency relationships

between the different groups, which indicates the level of interaction, in terms

of attack and defense patterns, surrounding and counter-surrounding.

There are limitations, though. The representation is ‘lossy’ in the sense that

information about the size and shape of the groups is not retained in the CFG

representation. Every full graph position maps to exactly one CFG, but each

CFG could map to many full graph positions.

17

Graph Count
• 0

2

1

• • 0

• 0

• 0

• 3

4

Figure 2: The first few subgraph features extracted from the board position in
Figure 1, relative to the intersection marked with a circle.

3.2 Relative Subgraph Features

Graepel et al. extract feature vectors from their CFG representation by counting

the occurrences of different types of subgraphs starting from any particular

empty node in the graph. They pick a maximum subgraph length, s, and

enumerate all of the different possible subgraphs of a CFG of length s or less.

Here the notion of “subgraph” is restricted to connected subgraphs with the

shape of chains without branches or loops. To meet this specialized definition,

there must be a path from any node to any other node in the graph, every node

must be adjacent to at most two other nodes, and the graph must be acyclic.

Hence, the notion of length makes sense – it is defined to be the order of the

subgraph. Throughout the remainder of this document, the term “subgraph”

will refer to this specific restricted class of subgraphs unless stated otherwise.

Given an empty intersection on the board, which corresponds to the move

of placing a stone at that intersection, Graepel et al. count the number of

occurrences of each possible type of subgraph of length ≤ s encountered, starting

from the nodes adjacent to that point. The original empty intersection is not

counted, and cannot form part of the subgraph. The feature vector is just the

vector of the counts of the different subgraphs.

If a real-valued or discrete class label representing the quality of a move at

that point can be appended to this feature vector, it can be used as part of a

training set for any standard supervised machine learning algorithm.

For an example of a relative subgraph feature vector, see the example given

in Figure 2. The features have been extracted from the CFG shown in Figure

1, relative to the empty intersection marked with a circle. This feature set

corresponds to the move of placing a stone on that intersection.

18

3.3 Tsumego Problems

Graepel et al. apply their relative subgraph feature extraction method to tsumego

problems. Tsumego problems are Go-playing puzzles, with a similar function

to chess puzzles. A board position is given, and the player must determine a

sequence of moves in order to surround an opponent’s group, or prevent her

own groups from dying. Tsumego problems are described more completely in

Section 2.1.5.

Graepel et al. take a set of tsumego problems generated by Thomas Wolf’s

GoTools program [35], and learn a move-evaluation function using a support

vector machine, and also using a kernel perceptron, two popular supervised

learning techniques. They found that both algorithms had approximately a

65% success rate at giving the highest evaluation to one of the moves selected

by GoTools.

As both the support vector machine and the kernel perceptron produced

similar results, the authors conjectured that “. . . the (common fate graph) rep-

resentation is so crucial that the difference between the learning algorithms be-

comes negligible”. The results of a more comprehensive experiment conducted

for this report using many more learning algorithms (described in Section 5)

show that this is not the case, however.

3.4 Playing Go

Graepel et al. also use the same training paradigm to learn a move evalua-

tion function for a simple AI Go-playing program. The training examples were

acquired from a collection of 9×9 internet Go games that were collected and pre-

processed by Nicol Schraudolph. The relative subgraph features were extracted

for each move in the sample games. Each resulting feature vector was labeled

as a “good” move. For each good move, a random legal move was selected as

a “bad” move example. The program always selects the highest ranking legal

move according to the predictions of the learning algorithm.

The resulting player was not able to beat GNU Go, but showed some promise

and successfully managed to threaten its opponent’s pieces (atari) and even

make captures in some games. Graepel et al. suggest that their method may

eventually be used as a move generator heuristic for selecting which moves to

consider for further evaluation, as part of a broader strategy.

As mentioned before, programs such as GNU Go use a wide variety of move

generator heuristics in order to select a small set of promising moves to examine

thoroughly. This method allows more time to be spent evaluating moves that

are likely to be played, rather than wasting time by examining every possible

legal move on the board.

19

4 An Implementation of the Relative Subgraph

Feature Extraction Algorithm

In order to perform benchmark experiments with a set of machine learning algo-

rithms on tsumego problems and 9×9 games, it was first necessary to implement

the software for creating the common fate graph representation and extracting

the relative subgraph features. A Go-playing engine capable of communicat-

ing with a graphical user interface and other Go programs was also built. The

design of the system and the algorithms used are presented here.

4.1 Implementation Issues

The relative subgraph feature extraction system, and the tsumego-solver and

Go-playing engine were implemented using Sun Java version 1.5.0.

Graphs are represented by a class named CFG, which is implemented as an

adjacency list [20] data structure. This allows for fast access to the sisters of

a given node, while still allowing for easy modification to the structure. The

design of the system is described in Appendix C.

4.2 Building Common Fate Graphs

To build the common fate graph representation of a board position, the 2-

dimensional array representing the board position is first converted into the

näıve full graph representation by creating a 2-dimensional array of nodes with

the same dimensions as the board array. The colours are set appropriately, and

every node is connected to its vertical and horizontal neighbours.

The procedure used for transforming the näıve full graph representation into

a common fate graph is an iterative one. In a loop, we examine all vertices in

the graph. Each non-empty vertex is compared with its neighbours, looking for

nodes of the same colour. Each neighbour with the same colour is merged into

the current node.

When an iteration produces no change to the model, the process can be

terminated. Pseudocode for the algorithm is provided in Algorithm 1.

4.3 Extracting Relative Subgraph Features

From the common fate graph representation, the relative subgraph features are

computed using a simple recursive depth first search with cycle detection.

The node coloured empty, which we will label p, for which the subgraph

features being computed are relative to, is marked as ‘visited ’. A counter for

the remaining search depth is set to s, the maximum subgraph length. The

20

Algorithm 1 Transform näıve graph representation into common fate graph

G ⇐ Näıve graph representation
repeat

somethingChanged ⇐ false

for all v in G do

if v.colour = empty then

continue
end if

for all e in edges(v) do

if e.other.colour = v.colour then

merge(v, e.other)
somethingChanged = true

end if

end for

end for

until somethingChanged = false

feature vector, counts, is initialized as an empty array of length s. Then a

depth first search is applied to all of the neighbours of p, using the procedure

described in Algorithm 2.

Algorithm 2 Count subgraph features

Procedure countSubgraphs(depthRemaining, currentNode, subgraphCounts,
currentGraphString)

if depthRemaining = 0 then

return
end if

currentGraphString = currentGraphString + currentNode.getColour()
subgraphCounts[subgraphIndex(currentGraphString)]++
currentNode.setVisited(true)
for all outEdge ∈ currentNode.getEdges() do

other = outEdge.getOtherNode(currentNode)
if other.visited() = false then

countSubgraphs(depthRemaining - 1, other, subgraphCounts,
currentGraphString)

end if

end for

currentNode.setVisited(false)

4.4 Enumerating Subgraphs

In order to implement the extraction of relative subgraph features from a com-

mon fate graph representation of a board position, it is necessary to uniquely

identify each different possible subgraph of length ≤ s, the chosen maximal

length. Furthermore, an ordering must be imposed on the subgraph types in

21

order to consistently define a feature vector.

In practice, this is implemented as an index into an array of integers repre-

senting the counts of each subgraph type. When a subgraph is encountered, we

must somehow determine the index corresponding to the subgraph of that type

so that the count of that subgraph type may be incremented.

Clearly, what is required is an enumeration of the subgraph types, i.e. a

bijective mapping f : G → N, where G is the set of all subgraph types and N is

the set of natural numbers.

Unfortunately, Graepel et al. do not describe such an enumeration. Hence, a

new method for enumerating subgraphs, presented here, was developed during

the course of this project.

To simplify our terminology, without loss of generality we will view each

subgraph as a string over the alphabet A = {0, 1, 2}. 0 represents an empty

coloured node in the subgraph, and 1 and 2 represent black and white coloured

nodes respectively. The mapping between strings and subgraphs is defined in

the obvious way.

For instance, the string “010012” represents a subgraph which contains an

empty node, followed by a black node, two consecutive empty nodes, another

black node and finally a white node. Clearly, the mapping between strings and

subgraphs is a bijection. Because the two notions are equivalent, the terms will

sometimes be used interchangeably, as long as the meaning is clear.

The order of the subgraphs in the enumeration sequence is defined to be the

lexicographical order of the corresponding strings. Hence, the first few entries

in the sequence are the subgraphs corresponding to: {0, 1, 2, 00, 01, 02, 10,12,

21, . . . }. Note that there is no “11” entry – this is because adjacent non-empty

coloured nodes are merged together during the creation of the common fate

graph. Such subgraphs cannot occur, so they are omitted from the sequence.

Also note that the empty subgraph is not included.

The ordering of the subgraphs has now been described precisely, so the

enumeration function is completely defined. A little more work is needed to

make this useful in practice, however.

We would like to be able to efficiently evaluate the enumeration function

f(g) for a given g ∈ G without having to visit every single subgraph that exists

earlier in the sequence.

A recurrence relation describing the number of subgraphs of a given length

is required. Consider the relation p : N → N, where p(n) is defined to be the

number of subgraphs (strings) of length n or less. Then we have:

22

Lemma 4.1. p(n) =

0 if n = 0;

3 if n = 1;

10 if n = 2;

3p(n − 1) − p(n − 2) − p(n − 3) if n ≥ 3.

Proof. It is easy to verify the cases where n ≤ 3 by simply counting the strings.

We just need to show that the lemma is true for the case where p ≥ 3.

Let α be a string of length k, ending in a ‘0’. Then α has three successors

of length k + 1: α0, α1, and α2. Also, if a string β does not end in a 0, it has

two successors: β0, and β2 if β ends in a 1, otherwise β1.

So the number of strings of a given length is three times the number of

“zero enders” of the previous length plus two times the non-zero enders of the

previous length. Let Mk = {α0 : α ∈ G, length(α) = k − 1} be the set of zero

enders of length k, and Nk = {β[1|2] : β ∈ G, length(β) = k − 1} the set of

non-zero enders of length k. So we have:

p(n) = p(n − 1) + 3|Mn−1| + 2|Nn−1| (3)

Also notice that every zero ender α0 of length k has a predecessor α of length

k−1. Conversely, every such α of length k−1 has a zero ender successor. So the

number of zero enders of length k is precisely the number of strings of length

k − 1, which is equal to p(k − 1) − p(k − 2). The non-zero enders form the

remaining strings of length k. Then

|Mk| = p(k − 1) − p(k − 2) (4)

|Nk| = (p(k) − p(k − 1)) − |Mk|

⇔ |Nk| = (p(k) − p(k − 1)) − (p(k − 1) − p(k − 2))

⇔ |Nk| = p(k) − 2p(k − 1) + p(k − 2) (5)

Substituting into Equation 3, we get

p(n) = p(n − 1) + 3(p(n − 2) − p(n − 3))

+ 2(p(n − 1) − 2p(n − 2) + p(n − 3))

⇔ p(n) = p(n − 1) + 3p(n − 2) − 3p(n − 3)

+ 2p(n − 1) − 4p(n − 2) + 2p(n − 3)

⇔ p(n) = 3p(n − 1) − p(n − 2) − p(n − 3)

Lemma 4.1 is very useful in computing f(g). Note that instead of attempting

23

to solve this recurrence relation, it is sufficient to compute the required values

of the sequence in a bottom-up fashion and store them in a lookup table.

Let Hg = {i : i ∈ G, length(i) = length(g), i ≺ g} be the set of strings of

the same length as g, that precede g in the enumeration sequence. Then

f(g) = p(length(g) − 1) + |Hg| (6)

Consider the elements of Hg. As each such element is ordered lexicographi-

cally earlier than g, it must begin with a prefix in which every character strictly

precedes the corresponding character in g. For example, assume g =“120”.

Then Hg is the set of strings of length 3 which begin with the prefixes “0”,

“00”, “01”, “10”, “11”. The strings beginning with “00” and “01” are already

covered by strings starting with “0”, so we can drop them from our list of

prefixes while retaining complete coverage of Hg.

In order to count the elements of Hg, we iterate through the prefix lengths,

from 1 to length(g). At each prefix length, we only need to consider the case

where all but the last letter of the prefix are identical to the corresponding

letters of g – all other elements were counted earlier in the process. We consider

the possible options for the last letter of the prefix, where the letter is strictly

less than the corresponding letter in g, but can legally follow the second to last

letter of the prefix, if any. There are only ever at most two such options.

For the prefix under consideration, we add to our running total the number

of strings with the same length as g beginning with this prefix. The last letter

of the prefix, and the length of the remaining substring completely determine

this number.

If the last character of the prefix is a ‘0’, any string of the correct length

may follow – and we can use the recurrence relation to find the number of these

strings. If the last character is not a ‘0’, the possible number of strings is equal

to the total number of strings whose length k is length(g) − length(prefix)

minus the zero-starter strings (there are p(k − 1) − p(k − 2) of them), divided

by two since in this case, the non-zero last character of the prefix cannot be

followed the same symbol.

An example may help to illustrate this. As before, let g be the subgraph

represented by the string “120”. We want to find f(g). First, from our recur-

rence relation lookup table we know that p(2) = 10. In order to apply Equation

6, we now only need to calculate |Hg|.

At prefix length one, we must only consider the prefix “0”. The string “1”

is not strictly less than the first character of g, so we discard it. There are

p(2) − p(1) = 7 strings of length two which may be preceded by a ‘0’.

Now the prefixes of length two must be examined. We only need to consider

24

legal prefixes which start with the first character of g, and whose second charac-

ter is lexicographically less than the second character of g. The only such prefix

is“10”. There are 3 strings of length one that can follow a ‘0’.

So |Hg| = 7 + 3 = 10.

Hence, f(g) = 10 + 10 = 20. Manually computing the sequence of possible

strings confirms that g is in fact the 21st element in the sequence, as expected

(recall that the enumeration sequence starts from zero).

5 Tsumego Experiment

A comparative study of a large set of supervised machine learning algorithms

applied to tsumego problems was performed. This study compares the perfor-

mance of a set of machine learning algorithms in learning a move evaluation

function for solving tsumego problems. In this section, the experimental setup

is described, and the results of the study are presented.

5.1 Experimental Setup

The experimental setup is similar to that used by [21]. The dataset used is a

subset of a database of around 40,000 tsumego problems and solutions generated

by Thomas Wolf’s program GoTools.

GoTools solves tsumego problems with a combination of domain-knowledge

heuristics and alpha-beta minimax search [35]. It has been rated by top am-

ateur players to have a strength of 4-6 amateur dan (strong amateur, close to

professional level) [36].

For each problem in the database, GoTools provides a set of solutions, ranked

in order of quality. To build each instance in the training set for supervised

learning, a randomly selected problem from the database is transformed into

a common fate graph representation. The highest ranked solution provided by

GoTools is selected as an example of a “good” move. The lowest ranked solution

(apart from the top-ranked move), if it exists, is selected as an example of a

“bad move”.

Subgraph features, relative to the position of the first move in these selected

solutions, are generated, creating feature vectors for use in learning. Class values

are appended to the vectors, describing the quality of the moves. “Good” move

examples are given a class value of 1, and “bad” move examples are given a class

value of 0. The learning problem is thus a classification problem, and standard

supervised learning techniques can be applied.

Following [21], the maximum subgraph length parameter, s, was set to 6.

This makes for feature vectors with just over 400 attributes. It should be noted

25

that this value is large enough to allow the subgraphs to cover a good portion of

the board, due to the compact nature of the common fate graph representation,

and the fact that tsumego puzzles tend to only refer to a subsection of the

full 19 × 19 grid. For the tsumego database, at least in the subset of the full

dataset used in this study, the average board size for the tsumego puzzles was

approximately 6 × 7.

Evaluation is performed slightly differently to training. In the evaluation

scheme used, unlike the method for generating the training set, each problem

in the tsumego database generates exactly one test case.

First, the common fate graph transformation is performed on the tsumego

board positions. For each legal move in the test data (ignoring ko restrictions),

the relative subgraph features are computed. Then, the classifier performs a

move evaluation by predicting the class value of the relative subgraph feature

vector of that move. The move with the highest predicted probability for a class

value of 1 is selected as the move chosen by the algorithm. Nothing sophisticated

was done to break ties – moves encountered earliest took precedence.

If the move selected by the learning algorithm is one of the moves nominated

by GoTools as the start of a solution sequence, then this is counted as a success

for the classifier. Otherwise, it is counted as a loss.

Due to the large size of the tsumego dataset (40,907 problems), only a subset

could be used. Instances were selected by random sampling without replace-

ment. The running times of the algorithms were the limiting factor in the size

of the test/training sets. For this reason, a training/test split of 6600/4000

instances was used.

5.2 Initial Parameter Tuning

Given the large number of classifiers used in the experiment, it was not feasible

to tune every possible parameter on each of the learning algorithms. In the ini-

tial experiment, parameter selection was performed only where there was just

one parameter trading off computational expense against performance. In par-

ticular, the number of iterations was varied for the ensemble learners. We also

varied the number of nearest neighbours for IBk, and the number of iterations

for VotedPerceptron. Graphs of the varied parameters against performance are

provided in Figures 3 to 8.

For all other learning algorithms, the default parameter settings in Weka

were used. Some parameter tuning was later done with a separate tuning dataset

to try to fine-tune the best-performing algorithms. This is summarized in Sec-

tion 5.5.

The ensemble learners recorded increased performance with more iterations,

26

0

20

40

60

80

100

200100501051

P
er

ce
n
ta

ge
S
u
cc

es
se

s

Number of Trees (Logarithmic Scale)

Random Forest Number of Trees vs Percentage Successes

rs

rs

rs

rs

rs rs

Figure 3: Parameter selection for Random Forest

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

P
er

ce
n
ta

ge
S
u
cc

es
se

s

Number of Trees

Bagging with J48 (C4.5) Decision Trees, Number of Trees vs Percentage Successes

rs

rs

rs

rs

rs

rs

rs

rs

rs rs
rs

Figure 4: Parameter selection for Bagging

27

0

20

40

60

80

100

0 50 100 150 200 250 300

P
er

ce
n
ta

ge
S
u
cc

es
se

s

Number of Iterations

AdaBoost.M1 w/ Decision Stump Number of Iterations vs Percentage Successes

rs

rs

rs

rs

rs

rs

rs

Figure 5: Parameter selection for AdaBoost.M1 with Decision Stump as the
base classifier

0

20

40

60

80

100

5 10 15 20 25 30 35 40

P
er

ce
n
ta

ge
S
u
cc

es
se

s

Number of Iterations

AdaBoost.M1 w/ J48 Number of Iterations vs Percentage Successes

rs

rs

rs

rs

rs

rs

rs

rs

rs

Figure 6: Parameter selection for AdaBoost.M1 with J48 (C4.5) as the base
classifier

28

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

ge
S
u
cc

es
se

s

Number of Nearest Neighbours

IBk Nearest Neighbours vs Percentage Successes

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

Figure 7: Parameter selection for Nearest Neighbour classifier

0

5

10

15

20

25

30

35

40

100501051

P
er

ce
n
ta

ge
S
u
cc

es
s

Number of Iterations

Iterations vs Percentage Success for Voted Perceptron

rs

rs

rs rs rs

Figure 8: Parameter selection for Voted Perceptron

29

until the improvements gradually trailed off. At this point, greater numbers of

iterations made no difference, except for the case of AdaBoost.M1 with both

J48 and DecisionStump as the base learners, where eventually a slight decrease

in performance was detected. The most likely explanation for this decrease is

that the classifier began to overfit the training data.

RandomForest’s performance peaked after around 100 trees, with a success

rate of 77.08%. Using J48 as the base learner, AdaBoost.M1 peaked after 15

iterations while Bagging peaked after only 10 iterations. AdaBoost.M1 gained

very little accuracy after around 100 iterations.

Interestingly, VotedPerceptron performed best with only one iteration. Per-

formance gains leveled off after around 7 neighbours for IBk.

5.3 Experimental Results

The above experimental method was applied to a wide variety of supervised

machine learning algorithms. All of the algorithms used are implemented as

part of the Waikato Environment for Knowledge Analysis (WEKA) [34], an

open-source data mining suite developed at the University of Waikato, New

Zealand.

The results of the experiment are summarized in Table 1. For a brief explana-

tion of each of the classifiers used, see Appendix A. More thorough descriptions

of each algorithm can be found in [34].

To test for statistical significance in the differences between each of the

learning algorithms’ results, McNemar’s test was applied with a significance

level of α = 0.05.

McNemar’s Test, in the context of evaluation of machine learning algorithms,

is described elegantly in [15]. At the core, McNemar’s test is simply an appli-

cation of the sign test. Because the sign test is distribution-free [23], this test

can be used without making too many assumptions about the data.

McNemar’s Test was applied to each pair of learning algorithms, A and B.

The null hypothesis is that cases where A produces a success and B has a failure

(‘A+B-’) are equally as likely as cases where B has a success and A has a failure

(‘A-B+’), measured according to the instances of the test data. Each of these

two random variables has a binomial distribution.

To test whether there is a statistically significant difference between the two

algorithms, we count the number of instances where the outcome is A+B-, and

the number of instances where the outcome is A-B+, ignoring cases where both

successfully predict a solution recommended by GoTools, or neither did. Then,

the sign test is applied to these counts. The result of this is the probability

that the observed result or a result further away from the null hypothesis would

30

Name of WEKA classifier Number Statistical Wins Percentage successes
AdaBoostM1 w/ DecisonStump
(100 iterations) 1 9 56.38
AdaBoostM1 w/ J48
(15 iterations) 2 12 70.0
Bagging w/ J48
(10 iterations) 3 12 70.58
Bagging w/ J48
(unpruned, 10 iterations) 4 12 70.15
IB1 5 3 33.58
IB5 6 6 47.35
IB10 7 8 50.78
J48 8 2 30.45
JRip 9 6 46.6
NaiveBayes 10 1 28.30
PART 11 5 39.95
RandomForest (10 trees) 12 11 62.98
RandomForest (50 trees) 13 16 74.98
RandomForest (100 trees) 14 17 77.08
RandomForest (200 trees) 15 17 77.18
SMO w/ Polynomial kernel
(C = 1, Exp = 1) 16 9 56.75
SMO w/ RBF kernel
(C = 1, Gamma = 0.01) 17 14 71.43
VotedPerceptron (1 iteration) 18 4 36.38
ZeroR 19 0 25.15

Table 1: Results of tsumego experiment

have occurred if the null hypothesis were true. This value is multiplied by two

in order to make the test two sided.

If the observed result is very unlikely given the null hypothesis, this is evi-

dence that the null hypothesis is false. When the probability is less than α, we

conclude that the difference between the algorithms is significant.

5.4 Analysis of Results

Table 1 lists the results for the algorithms in alphabetical order. The top few

algorithms are all either types of support vector machines or ensemble learners.

The best-performing algorithms are the support vector machine learner SMO,

using a radial basis function kernel, and RandomForest, an implementation of

the Random Forest algorithm [5]. Random Forest is a meta-learning algorithm

which works by bagging random trees.

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 - L L L W W W W W W W L L L L - L W W
2 W - - - W W W W W W W W L L L W L W W
3 W - - - W W W W W W W W L L L W - W W
4 W - - - W W W W W W W W L L L W L W W
5 L L L L - L L W L W L L L L L L L L W
6 L L L L W - L W - W W L L L L L L W W
7 L L L L W W - W W W W L L L L L L W W
8 L L L L L L L - L W L L L L L L L L W
9 L L L L W - L W - W W L L L L L L W W
10 L L L L L L L L L - L L L L L L L L W
11 L L L L W L L W L W - L L L L L L W W
12 W L L L W W W W W W W - L L L W L W W
13 W W W W W W W W W W W W - L L W W W W
14 W W W W W W W W W W W W W - - W W W W
15 W W W W W W W W W W W W W - - W W W W
16 - L L L W W W W W W W L L L L - L W W
17 W W - W W W W W W W W W L L L W - W W
18 L L L L W L L W L W L L L L L L L - W
19 L L L L L L L L L L L L L L L L L L -

Table 2: Result of McNemar’s test for all pairs of algorithms

The range in performance among the algorithms is remarkable. There is a

difference of over fifty percentage points between the best and worst perform-

ing algorithms. This may be partly to the nature of the dataset – there are

many attributes, all of which are correlated weakly to the class, and the same

attributes may not always be important in different cases.

If this theory is correct, the algorithms that make greedy choices about which

attributes are important may underperform because they are not able to use

all of the available data – a “big picture” kind of approach is required. The

attributes that are highly correlated with the class in some areas of instance

space may not be so highly correlated in others, as a different situation on the

board may require different types of move to be played.

Thus, the ensemble algorithms may perform better because they have more

diversity in their approach. Many classifiers acting at once on the problem may

help the meta-classifier from falling into the trap of overfitting to a narrow range

of game-playing situations. Support vector machines are also able to use all of

the features if necessary. More work is required to determine if this theory holds.

Graepel et al. used a support vector machine and a kernel perceptron for

learning on the tsumego data. As the performance of both of these algorithms

was very similar, they conjectured that the common fate graph representation

was the crucial factor in the result, and the choice of learning algorithm was

32

unimportant. The above results show that the opposite is true – the selection

of algorithm here has a huge impact on the result.

Interestingly, the VotedPerceptron learner did not perform nearly as well as

the kernel perceptron used in [21]. This may be because the VotedPerceptron

classifier used a polynomial kernel, while [21]’s kernel perceptron used a radial

basis function kernel. This is consistent with the results for the support vector

machine classifier, where the RBF kernel achieved a higher accuracy than the

polynomial kernel, although the difference between the classifiers using the two

kernels was not nearly so marked in that case.

5.5 Further Parameter Tuning

Having gained a good estimate for the relative strength of each algorithm in

the tsumego move evaluation problem, some further parameter tuning was per-

formed in order to fine-tune the strongest algorithms. In particular, parameter

tuning was applied to the support vector machine algorithms. These classifiers

were among the best-performing algorithms even with their default settings,

and it was considered that these in particular were likely to benefit from the

tuning.

A separate dataset was constructed consisting of 3300 training instances

and 2000 test instances, randomly selected without replacement from the un-

used portion of the GoTools tsumego database. Parameter space was scanned

systematically, and the algorithms were rerun on the original train/test data

using the parameters that performed best on the separate dataset.

5.5.1 Support Vector Machine using an RBF Kernel

The gamma parameter and the “C” parameter were varied for SMO (an im-

plementation of a support vector machine learner) with a radial basis function

kernel. The C parameter is the upper limit on the absolute values of the support

vectors, the variation of which allows control of how closely the model fits to

the data. The gamma value is the inverse of the width of the Gaussian kernel

used, and also influences the fit to the training data.

Parameter space was scanned systematically, with both parameters being

varied in exponentially increasing increments. Figures 9 to 11 show the results.

The parameter values that produced the best results on the separate dataset

were Gamma = 1.0 and C = 1.0 or greater. The lowest sufficient value to reach

peak performance, setting C to 1.0, was selected.

The support vector machine was rerun on the actual test and training data

using these parameter values. The result was a success rate of 79.45%, making

it statistically even with the first-placed algorithm, RandomForest.

33

0.01 0.1 1 10 0.1
1

10
100

1000
20
25
30
35
40
45
50
55
60
65
70

Percentage Successes

Gamma vs Percentage Successes vs C Parameter, 3D View

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

Gamma

C Parameter

Percentage Successes

Figure 9: Parameter tuning for the support vector machine with the RBF kernel,
3D View

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

P
er

ce
n
ta

ge
S
u
cc

es
se

s

C Parameter

Gamma vs Percentage Successes vs C Parameter, Side View 1

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs rs

rs rs

rs

rs

rs
rs rs

rs rs rs rs

rs

rs

rs rs rs rs rs rs rs

rs

rs

rs
rs rs rs rs rs rs

Figure 10: Parameter tuning for the support vector machine with the RBF
kernel, Side View 1

34

0

10

20

30

40

50

60

70

80

90

100

0.01 0.05 0.1 0.5 1 5 10

P
er

ce
n
ta

ge
S
u
cc

es
se

s

Gamma

Gamma vs Percentage Successes vs C Parameter, Side View 2

rs rs rs rs rs rs rs

rs

rs

rs

rs

rs

rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

Figure 11: Parameter tuning for the support vector machine with the RBF
kernel, Side View 2

5.5.2 Support Vector Machine using a Polynomial Kernel

The C parameter and the size of the exponent of the polynomial kernel were

varied as the resulting classifier was evaluated on the separate dataset. The C

parameter was once again varied in exponential increments, while the exponent

was varied linearly. The results are shown in Figure 12.

The best parameter values on the separate dataset were Exponent = 6.0 and

C = 10.0 or greater, with a result of 72.1% accuracy. Setting the polynomial

exponent to 5.0 had very similar results, but interestingly there was a sharp dip

in performance with the exponent value set to 7.0. The exception to this was

the result where the polynomial exponent was set to 7.0 and C was set to 0.1,

where the outcome was 72.1% accuracy – making it tie for first place. However,

the points immediately around it had much lower percentage accuracy values,

so it was decided to treat this point as an outlier.

The support vector machine using a polynomial kernel was evaluated on

the actual test/train sets using an exponent of 6.0 and a C value of 10.0, the

smallest value of C sufficient to reach the peak in performance on the holdout

set. However, when the algorithm was run with this ‘best’ parameter selection,

the performance on the test/train set was disastrous. The result was a success

rate of only 2.45%!

This was the lowest success rate seen throughout the entire course of the

35

1 2 3 4 5 6 7 8 9 10 0.1
1

10
100

10000
10
20
30
40
50
60
70
80

Percentage Successes

Polynomial Exponent vs C Parameter vs Percentage Successes

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

Polynomial Exponent

C Parameter

Percentage Successes

Figure 12: Parameter tuning for the support vector machine using a polynomial
kernel

experiment, with a result very much less than would be acquired by random

chance (around 25%). This result is difficult to explain.

Further investigation revealed that the classifier using these parameters that

was trained on the separate training dataset was able to retain its performance

on the actual test set, recording a success rate of 71.15%.

Given these results, it appears that there is something in the actual training

set that creates a problem for the classifier. The most likely explanation for

this is that there is a bug in the WEKA implementation of the support vector

machine learner which is triggered by some property of this particular dataset.

6 9 × 9 Go Experiment

Just as beginners often practice on boards much smaller than the usual 19 × 19

grid, it is common for programs in their earlier stages to be developed for the

simpler problem of smaller board sizes. 9 × 9 boards are most commonly used

for this purpose – see, for instance, [21], [16] and [4]. Even smaller boards, such

as 5 × 5 [28] and 7 × 7 [12] are sometimes used for Go programs that learn

from self-play. However for pure supervised learning this is problematic as it is

harder to find game record databases for these.

Playing Go on smaller boards is still an interesting problem in itself. For

instance, the Internet Go Server has a highly competitive 9 × 9 Go ladder.

Therefore, in this section we present experimental results for the performance

36

of a Go machine trained on 9 × 9 games using supervised learning on extracted

relative subgraph features.

6.1 Experimental Setup

An AI Go program was created using the relative subgraph feature algorithm.

It was trained on 9× 9 Go game records, and played against a benchmark weak

opponent called “Wally”5, discussed in more detail below. A variety of features,

including the final score and the ability to create stable groups, were used to

evaluate each of the learning algorithms in this context.

6.1.1 Training Sets

A set of 9 × 9 Go game records was used for training. The database of game

records was compiled and archived by Nicol Schraudolph, from internet games

played on the Internet Go Server. For the purposes of learning, only games

where both players had a rating of shodan (1-dan) on the amateur scale were

selected. A set of game records meeting the required player rating criterion was

randomly selected from the database. Since the program played as the white

player in all games, only white moves were used for training.

6.1.2 Program Architecture

The architecture of the Go-playing program is very simple. The chosen machine

learning algorithm is trained using relative subgraph features, extracted from

board positions in the same manner as in the tsumego program described earlier.

For each white move in the selected games, subgraph features are generated

relative to the location of the move. Each of these feature vectors is considered to

be an example of a “good” move, and given a class value of 1. A corresponding

“bad” move example is generated for each good move by picking a random

empty intersection and extracting subgraph features relative to this point. To

this feature vector, a class value of 0 is appended.

Move selection is performed similarly to the case of tsumego solving. For a

given board position, every possible move is evaluated by generating the sub-

graph features relative to the corresponding board location. The utility of each

move is predicted from the subgraph features by the learning algorithm. The

move with the highest predicted utility is selected for playing.

Suicide moves are not considered as candidate moves, in order to avoid vi-

olation of the ko rule. The program is also prevented from filling in its own

5Wally is a simple Go-playing program by Bill H. Newman. It is in the public domain, and
comes packaged with its source code. There is no official website for Wally, but it is available
for download from http://www.britgo.org/gopcres/gopcres1.html

37

single-point eyes – this was the only domain knowledge given to the program.

Filling in an eye is a disastrous move that no competent human player would

ever make. Implementing this rule is necessary since the program is unable

to give a rating to pass moves, and so would most likely perform this move

regardless of a poor utility rating if no other option were available, such as at

the end of the game when there are no other legal moves.

It may be possible to get away without this rule by setting a threshold move

utility value to determine whether the player should pass, provided that explicit

training examples were given labeling this type of move as “bad”. It is not clear

how this threshold value should be determined, however. The authors of [4] also

implement the ‘no eye-filling’ rule as the only domain knowledge heuristic built

into a Go program using a Monte Carlo approach.

6.1.3 Game Setup

For each classifier, twenty-five 9×9 games were played against a program called

“Wally”. Wally is often used as a benchmark weak player – see, for instance, [21]

and [28]. It works almost entirely by simple pattern matching, with no other

heuristics or algorithms built in except that it always captures when it is able

to, and will not play suicide moves. It also detects ko situations so that it will

always play legal moves. If it can find no matching patterns, it plays a random

move. According to comments in its source code, Wally’s author estimates its

playing strength as around 30-kyu.

Wally was originally written in C. However, for this project a C++ port of

the program called “Wallyplus” was used. This version was selected because

Wallyplus implements the Go Text Protocol, a modern communication protocol

used by Go programs to communicate with each other and with graphical user

interfaces.

In all of the games played, the supervised learning-based program played

as White, and Wally played as Black. The reason for this is that both players

are almost completely deterministic, which leads to a lack of variation between

games if Wally does not play first. If the other player starts, play proceeds in

a deterministic fashion until a position occurs such that Wally can match no

pattern in its database. In these situations, Wally is programmed to play a

random move. However, in many cases in the experiment this did not happen

at all, resulting in games being repeated in their entirety.

Fortunately, this is avoidable by allowing Wally to play the first move. If

Wally is the Black player and hence plays first, the initial board position matches

no pattern in its internal pattern library. This causes it to play a randomly

chosen first move, resulting in very different games being played each time.

38

6.1.4 Evaluation

To evaluate the learning algorithms, for each game the number of a program’s

pieces left at the end of the game was recorded. The mean number of pieces

on the board throughout the entire game, and the score at the end of the game

were recorded as well. The median of each of these values over 25 games was

then computed. The number of eyes formed by the player, and the number of

unconditionally alive groups were also counted.

The median was selected as the measure of central tendency for results over

all of the games due to its robustness. On the other hand, the average number

of pieces on the board during each game was estimated by its arithmetic mean,

in order to better take into account all of the data rather than just the middle

values. If a program steadily increases the number of its stones on the board

throughout the game, a median measure would determine only the number of

stones in the middle of the game, which is not what we want to measure.

Scoring in Go is problematic, in particular for computer programs, since the

players must agree on which groups are alive, and which are dead groups that

must be removed from the board. Hence, there is no clear-cut algorithm for

correctly determining the score at the end of the game. Most graphical front-

ends for Go, such as GoGUI and Jago6, ask the user to specify the life-and-death

status of groups in order to determine the score.

In this experiment, the score was calculated by Wally’s score estimation

routine, which makes no attempt to remove dead groups. This means that

in the cases where the machine learning player has surviving stones left on

the board, the difference in score is often underestimated. It still gives a good

relative indication of the difference in performance between the machine learning

algorithms, however.

6.2 Experimental Results

It was quickly discovered that Wally was superior in playing performance to the

supervised learning player. While the program was unable to defeat Wally no

matter which machine learning algorithm was used, the results of the compar-

ative study are still interesting. The results are shown in Tables 3 to 7.

In Table 5, the scores are shown as the overall score of the game, calculated

as Black’s individual score minus White’s individual score (including a komi of

6.5 points in compensation for starting second). Hence, larger numbers indicate

a greater victory for the Black player, Wally.

6GoGUI and Jago are open source graphical user interfaces for playing Go. They are pub-
licly available from http://gogui.sourceforge.net/ and http://www.rene-grothmann.de/jago/
respectively.

39

Name of Weka Classifier # Stones surviving
JRip 0
ZeroR 0
Voted Perceptron (1 iteration) 0
Bagging w/ J48 (10 iterations) 2
IB10 2
Naive Bayes 2
Random Forest 4
SMO (Polynomial Kernel) 9
PART 19
SMO (RBF Kernel) 20
AdaBoostM1 w/ J48 (10 iterations) 20
AdaBoostM1 w/ DecisionStump (100 iterations) 21
J48 22

Table 3: Number of the program’s stones surviving at the end of the game.
Median over 25 games for each classifier.

Name of Weka Classifier Average stones on board
Voted Perceptron (1 iteration) 3.19
ZeroR 3.27
JRip 3.45
Bagging w/ J48 (10 iterations) 4.95
Naive Bayes 6.76
Random Forest (100 iterations) 7.22
IB10 7.23
SMO (Polynomial Kernel) 7.77
J48 11.49
PART 11.49
AdaBoostM1 w/ J48 (10 iterations) 11.5
SMO (RBF Kernel) 11.68
AdaBoostM1 w/ DecisionStump (100 iterations) 12.49

Table 4: Mean number of the program’s stones on the board throughout the
game. Median over 25 games for each classifier.

40

Name of Weka Classifier Overall game score
JRip +113.5
Voted Perceptron (1 iteration) +112.5
ZeroR +111.5
Bagging w/ J48 (10 iterations) +106.5
IB10 +104.5
Naive Bayes +103.5
Random Forest (100 iterations) +97.5
SMO (Polynomial Kernel) +78.5
PART +40.5
SMO (RBF Kernel) +39.5
AdaBoostM1 w/ DecisionStump (100 iterations) +38.5
AdaBoostM1 w/ J48 (10 iterations) +36.5
J48 +36.5

Table 5: Overall game score – Wally’s score minus the machine learning player’s
score. Median over 25 games for each classifier.

Name of Weka Classifier Number of eyes created
JRip 0
Naive Bayes 0
ZeroR 0
Bagging w/ J48 (10 iterations) 4
PART 4
J48 5
IB10 6
Random Forest (100 iterations) 1
Voted Perceptron (1 iteration) 0
SMO (Polynomial Kernel) 27
AdaBoostM1 w/ DecisionStump (100 iterations) 29
AdaBoostM1 w/ J48 (10 iterations) 42
SMO (RBF Kernel) 87

Table 6: Total eyes created, summed over all 25 games for each classifier

41

Name of Weka Classifier Number of games where
safe groups were created

IB10 0
J48 0
JRip 0
Naive Bayes 0
Random Forest (100 iterations) 0
Voted Perceptron (1 iteration) 0
ZeroR 0
PART 1
Bagging w/ J48 (10 iterations) 2
SMO (Polynomial Kernel) 3
AdaBoostM1 w/ DecisionStump (100 iterations) 8
SMO (RBF Kernel) 16
AdaBoostM1 w/ J48 (10 iterations) 17

Table 7: Number of games where groups with two eyes were formed

While a clear winner did not emerge, the stand-out learning algorithms were

AdaBoost (a boosting algorithm) using both DecisionStump and J48 (C4.5)

decision tree classifiers as the base learners, and SMO (a support vector machine-

based classifier) using a radial basis function kernel. These classifiers learnt to

create eyes and form stable groups.

J48 and PART successfully kept large groups alive, but this was only due to

the simplicity of their opponent. They were unable to form eyes. None of the

algorithms managed to capture any of Wally’s stones.

Interestingly, the results did not completely match the outcome of the tsumego

scenario. The support vector machine learner with the RBF kernel was once

again one of the best-performing algorithms, but RandomForest was not as

successful as it was at the tsumego task.

6.3 Observations of Game Play

The differences observed in playing behaviour between the algorithms were re-

markable, especially considering that each was trained using exactly the same

training set. Algorithms of different levels of sophistication made quite different

moves, and were consistent in their styles of play across all games. The trends

observed over the 25 games for each algorithm are described here.

Given that the ZeroR classifier does not make any use of the feature vector

information from instances given at prediction time, it is unsurprising that it

was completely unable to distinguish between the possible choices available.

This algorithm always predicted the same utility value for each move.

Combining this with the fact that ties in utility value were broken by se-

42

lecting the first move examined, its behaviour was always to play the first legal

move encountered in the move selection process. Effectively, this meant that

starting from the left edge of the board, it filled each column of the grid from

bottom to top, before doing the same thing on the next column.

JRip was also unable to distinguish between moves. It also just filled in the

intersections in columns, starting from the bottom-left of the board.

While J48 appears to have performed well at keeping pieces on the board,

an examination of the game records found that this success is largely illusory.

Its secret was to play a few pieces smatteringly around the board in the early

game, and then merely plough columns of stones from the bottom left in the

fashion exemplified by ZeroR. Wally was usually too distracted in capturing the

scattered pieces to attack the large but extremely weak group built on the left

hand side. This group was often allowed to live all the way until the end of the

game. J48 was not competent at creating eyes, however, and would therefore

have been immediately wiped out by a superior opponent.

IB10 behaved similarly to J48 but was less successful in distracting Wally,

so its large left-hand groups were usually captured early in the game.

Bagging with J48 as the base learner always started the game with several

pieces spread out around the board. It then usually played a few moves to

expand on an existing group. For the remainder of the game, almost every move

was placed on intersections with three black stones adjacent – a disastrous move

resulting in the capture of the piece in the next move.

Random Forest and SMO, the support vector machine learner, using the

polynomial kernel, played similarly to Bagging with J48. They made the same

disastrous moves, but generally played more stones next to their own stones

to develop their groups. It was interesting that the Random Forest algorithm,

which performed at a similar level to the support vector machine in the tsumego

experiment, was only mediocre in the 9 × 9 game playing scenario.

The boosting algorithms always opened by playing individual stones near all

of the edges of the board. They then expanded on these, sometimes making eyes

and even stable groups, but doing very little in the way of attempting to capture

the opposition’s groups. An interesting feature was the tendency to place stones

close to but not adjacent to existing groups, and only connect these up later

on. The effect of this was to surround more territory with any fixed number of

stones. This is a fundamental technique used by competent human players [32].

The behaviour of the support vector machine learner with the RBF ker-

nel was very different to the other algorithms. This classifier played more ag-

gressively and also formed eyes – the foundations of stable groups – far more

frequently than the other algorithms did.

In 16 out of 25 games, groups with two or more eyes were created. Forming

43

groups with two eyes is one of the most important subgoals in Go, as such

groups are unconditionally alive. They cannot be captured unless the player

deliberately and suicidally fills in one of the eyes themselves.

In Go, there is no advantage to be gained by creating groups with more

than two eyes – a group needs exactly two eyes to become unconditionally alive.

Further eyes are redundant and are generally a waste of moves. The classifier

did not stop after achieving two eyes in a group, however. In some cases it went

on to build groups with as many as four eyes.

The program played aggressively by placing its stones next to its opponent’s

stones, right from the very first move. This is in contrast with the other learning

algorithms, which usually played far away from the enemy stones whenever

possible.

The algorithm was unable to capitalise on its early aggression, however.

The attacking groups were usually developed by adding further stones, but the

program preferred to defensively secure its position by creating eyes or retreating

instead of trying to completely surround its opponent’s groups. Similarly to the

other learning algorithms, it did not successfully capture any of its opponent’s

stones in any of the games.

7 Conclusions and Future Work

In this project, supervised machine learning techniques were applied to the game

of Go, in the form of tsumego problems and 9×9 games. The relative subgraph

feature extraction algorithm presented by Graepel et al. [21] was implemented

in order to extract feature vectors for learning.

Comprehensive experiments were performed for the scenarios of tsumego

solving and 9 × 9 game playing. A wide range of machine learning algorithms

were evaluated in each of these contexts.

It was found that the support vector machine classifier using a radial basis

function kernel with the gamma and C parameters both set to 1.0, and the

Random Forest classifier, were the algorithms that performed best at predicting

the solutions to tsumego problems generated by the GoTools program. These

classifiers both achieved success rates of close to 80% – a significant improvement

on the results recorded in the earlier work by Graepel et al.

An interesting result was the broad range in performance between the differ-

ent types of classifier in this scenario. The support vector machine and ensemble

learners far outperformed the simpler methods. An investigation into the pre-

cise reasons for this unusual outcome may have important repercussions for the

machine learning community in general.

There was not a clear winner in the 9 × 9 game-playing experiment. The

44

support vector machine learner with the RBF kernel, using the same parameter

settings as above, was one of the best learning algorithms at playing 9×9 games.

A boosting algorithm, AdaBoost, using two different types of decision tree as

its base learner, was also notable.

Simple artificial intelligence programs using these classifiers for move selec-

tion were not able to beat a weak benchmark Go-playing program, but showed

some promise as they learned to consistently make eyes and create stable groups.

Although non-trivial defensive play was learned, the algorithms were weaker of-

fensively, being unable to capture any of their opponent’s stones.

A weakness of the common fate graph method is the loss of important infor-

mation regarding the shape and size of groups, and location of the boundaries

of the board. If the common fate graph representation and the subgraph feature

vectors were extended to preserve more of the information, better results might

be obtained.

A possible extension is to merge provably connectable sets of groups during

the common fate graph transformation. These sets of groups should be consid-

ered to be one unit (a dragon, in Go terminology) rather than several separate

objects.

The machine would need a separate module to connect the groups whenever

this became necessary, however. GNU Go detects dragons using localized mini-

max searches, and uses this same technique to make connections between groups

when required. It performs most of its analysis on the level of abstraction of

dragons rather than groups.

One potential use of the move evaluation function learned from the features

extracted by the relative subgraph feature extraction algorithm is as a move

generator heuristic within a larger Go-playing system [21]. Move generators

suggest candidate moves for further consideration, to enable the program to

spend its time investigating only the most promising moves.

Further work is required to determine if the method is effective when applied

to a practical scenario in this manner, but the experimental results presented

here are encouraging.

Acknowledgments

The author would like to thank his supervisor, Dr Eibe Frank, for guidance and

helpful insights, especially with report writing, and Thomas Wolf for providing

the tsumego datasets.

45

References

[1] Myriam Abramson and Harry Wechsler. A distributed reinforcement learn-

ing approach to pattern inference in go. In Proceedings of the International

Conference on Machine Learning and Applications (ICMLA 2003), pages

60–65, 2003.

[2] L. Victor Allis, H. Jaap van den Herik, and M. P. H. Huntjens. Go-Moku

solved by new search techniques. Computational Intelligence, 12:7–23, 1996.

[3] Hans J. Berliner. Backgammon computer program beats world champion.

Artif. Intell., 14(2):205–220, 1980.

[4] B. Bouzy and B. Helmstetter. Developments on Monte Carlo Go, 2003.

[5] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[6] Brugmann. Monte Carlo Go, 1993.

[7] M. Buro. Improving heuristic mini-max search by supervised learning.

Artificial Intelligence, 134(1–2):85–99, 2002.

[8] J. A. Campbell. Computer Game Playing: Theory and Practice, chapter

Go, Introduction, pages 136–140. Ellis Horwood Limited, 1984.

[9] Murray Campbell, Joseph Hoane, and Feng hsiung Hsu. Deep Blue. Arti-

ficial Intelligence, 134(1–2):57–83, 2002.

[10] Tristan Cazenave. Automatic acquisition of tactical Go rules. In H. Matsub-

ara, editor, Proceedings of the 3rd Game Programming Workshop, Hakone,

Japan, 1996.

[11] Tristan Cazenave. Integration of different reasoning modes in a Go playing

and learning system. In E. Freuder, editor, Proceedings of the AAAI Spring

Symposium on Multimodal Reasoning, Stanford, CA, 1998. AAAI Press.

[12] Horace Wai-Kit Chan, Irwin King, and John Lui. Performance analysis

of a new updating rule for TD(lambda) learning in feedforward networks

for position evaluation in go game. In IEEE International Conference on

Neural Networks, pages 1716–1720, 1996.

[13] William W. Cohen. Fast effective rule induction. In ICML, pages 115–123,

1995.

[14] Fredrik Dahl. Honte, a Go-playing program using neural nets. Nova Science

Publishers, New York, 2001.

46

[15] Thomas G. Dietterich. Approximate statistical test for comparing super-

vised classification learning algorithms. Neural Computation, 10(7):1895–

1923, 1998.

[16] Markus Enzenberger. Evaluation in go by a neural network using soft

segmentation. In 10th Advances in Computer Games conference, pages

97–108, 2003.

[17] David Fotland. Knowledge representation in The Many Faces of Go.

Manuscript available from www.smart-games.com/manyfaces.html, 1993.

[18] Eibe Frank and Ian H. Witten. Generating accurate rule sets without global

optimization. In ICML, pages 144–151, 1998.

[19] Ralph Gasser. Solving Nine Men’s Morris. Computational Intelligence,

12:24–41, 1996.

[20] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Founda-

tions, Analysis and Internet Examples. John Wiley and Sons, Inc, 2002.

[21] Thore Graepel, Mike Goutrie, Marco Krüger, and Ralf Herbrich. Learning

on graphs in the game of Go. In G. Dorffner, H. Bischof, and K. Hornik,

editors, Proceedings of the International Conference on Artificial Neural

Networks (ICANN-01), pages 347–352, Vienna, Austria, 2001. Springer-

Verlag.

[22] Imran Ghory May. Reinforcement learning in board games., 2004.

[23] David S. Moore and George P. McCabe. Introduction to the Practice of

Statistics, pages 509–511. W. H. Freeman and Company, fourth edition,

2002.

[24] Martin Müller. Computer Go. Artif. Intell., 134(1-2):145–179, 2002.

[25] Oren Patashnik. Qubic: 4x4x4 tic-tac-toe. Mathematics Magazine,

53(4):202–216, 1980.

[26] J. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines, 1998.

[27] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, 1993.

[28] R.Ekker, E.C.D. van der Werf, and L.R.B. Schomaker. Dedicated TD-

learning for stronger gameplay: applications to Go. In Proceedings of

Benelearn 2004 Annual Machine Learning Conference of Belgium and The

Netherlands, pages 46–52, 2004.

47

[29] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Prentice Hall, 1995.

[30] J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in Check-

ers. Springer-Verlag New York, Inc., 1997.

[31] D. Shell, G. Konidaris, and N. Oren. Evolving neural networks for the cap-

ture game. In Proceedings of the 2002 SAICSIT Postgraduate Symposium,

2002.

[32] Arthur Smith. The Game of Go: the National Game of Japan. Charles E.

Tuttle Company, Inc., 1956.

[33] Gerald Tesauro. Temporal difference learning and TD-Gammon. Commun.

ACM, 38(3):58–68, 1995.

[34] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, San Francisco, second edition,

2005.

[35] Thomas Wolf. The program gotools and its computer-generated tsume go

database. In H. Matsubara, editor, Game Programming Workshop in Japan

’94, pages 84–96, Computer Shogi Association, Tokyo, Japan, 1994.

[36] Thomas Wolf. Forward pruning and other heuristic search techniques in

tsume go. Information Sciences, 122(1):59–76, 2000.

A Description of Machine Learning

Algorithms

AdaBoost.M1 An ensemble learner that iteratively builds models that are

weighted towards correctly classifying instances that were misclassified by

the earlier models. Effectively, a set of base classifiers are built, each of

which specializes in different parts of instance space. A weighted vote is

conducted to create an overall prediction. To generate class probability

estimates, the weighted vote is viewed as estimating the log-odds of the

set of class values.

Bagging An ensemble learner that builds sets of models on different subsets

of the training data. A vote between the base models is taken at pre-

diction time. To estimate class probability distributions, the probability

distribution estimates from the base models are averaged.

48

DecisonStump A one-level decision tree. Class probability estimates are gen-

erated based on observed frequencies of each of the class values in the leaf

nodes.

IBk A k-nearest neighbours learning algorithm. The k instances in the training

data that are closest to the test instance in instance space are located.

The prediction is just the majority vote of the neighbours. Probability

estimates for each class value are generated based on the frequency of

that class value among the k neighbours.

J48 An implementation of the C4.5 decision tree learner developed by Ross

Quinlan [27]. Class probability estimates are generated based on the ob-

served frequencies of the classes in the leaves.

JRip Implements Repeated Incremental Pruning to Produce Error Reduction

(RIPPER) [13], a propositional rule learning algorithm. Class probability

distributions are estimated by the frequencies of the different class values

of the instances covered by the rule that covers the test instance.

NaiveBayes The simple naive Bayesian classifier that estimates the probabil-

ity of each class value being present given the observed features, using

Bayes’ rule. The assumption is made that each attribute is conditionally

independent of the others. This is often not true in practice, but good re-

sults can sometimes be achieved regardless in cases where these incorrect

class probability estimates are close enough to still rank the class values

in the correct order.

PART Generates a PART [18] decision list, using a separate-and-conquer method

for deriving rules from partial C4.5 decision trees. Class probability esti-

mates are generated similarly to JRip.

RandomForest A meta-learning algorithm based on bagging ensembles of ran-

dom trees [5]. Class probabilities are estimated by averaging the estimates

generated by the base classifiers.

SMO An implementation of the sequential minimal optimization algorithm [26]

for training a support vector machine classifier. A logistic function is fitted

to the output of this classifier to obtain probability estimates.

VotedPerceptron Implements the voted perceptron algorithm for voting each

of the weight vectors encountered in the creation of a kernel perceptron.

This implementation uses a polynomial kernel. For the experiments in

this report, the exponent of the kernel was set to 1. Class probability

estimates are generated similarly to SMO.

49

ZeroR A rudimentary algorithm that merely predicts the majority class en-

countered in the training data. Class probabilities are estimated based on

the frequency that each class value occurs.

B Dictionary of Go Terms

alive A group is alive if it cannot currently be captured.

atari Term used to warn an opponent that a group of stones is about to be

captured.

dan Unit of rank for strong amateurs and professional players. There are sepa-

rate dan scales for amateurs and professionals. Higher numbers are better.

dead A group is dead if it can be captured against any defense.

dragon Set of groups that are considered to be one unit for strategic purposes.

The groups in a dragon can be connected to each other against any defense.

eye Enclosed set of intersections within a group. Eyes are fundamental concepts

in Go strategy, as they are required to build groups that are uncondition-

ally alive.

fuseki Sequence of opening moves, similar in function to a chess opening.

goban The playing board for Go. Usually consists of a grid of 19 × 19 inter-

sections, although smaller board sizes such as 9 × 9 are sometimes used.

group Set of stones that are strictly connected. Some authors use the term to

mean a set of several such strictly connected objects that can be viewed as

one unit for the purposes of strategic consideration (described here under

the term dragon).

joseki Playing patterns, consisting of sequences of moves usually played in the

corner of the board that generate an outcome seen as fair to both players.

ko A rule of the game that prevents moves that repeat the immediately preced-

ing board position. The main purpose of the rule is to prevent infinitely

repeating gameplay, but in practice the strategic implications of ko are

quite significant. The situation arises frequently in actual play.

komi Extra points given to the White player at the beginning of the game to

compensate for the disadvantage of playing second.

50

kyu Unit of rank for weak to moderate amateur players. Beginners start with

a rank of around 30-kyu, and progress to 1-kyu, after which they are mea-

sured on the dan scale.

liberty The total number of empty spaces adjacent to a group. Groups with

no liberties are considered to be captured and are immediately removed

from the board.

tsumego A type of Go puzzle, similar in function to a chess puzzle. A board

position is given, and the goal is either to protect a group from death or

to kill an opponent’s group.

stone Playing piece.

super ko Variant of the rules where the ko rule is extended to disallow the

repetition of any previously encountered board position, rather than just

the immediately preceding one. This rule is used in the New Zealand rule

set.

C Design of the System

The software for the tsumego learner and game-playing engine was implemented

in Sun Java version 1.5.0. The classes that were developed for this system are

briefly described here.

AIplayer The game-playing engine, which handles move generation. It loads

a serialized machine-learning model from a file, and queries this model on

each possible legal move during gameplay.

It also handles communication to a graphical user interface and to Go-

playing opponents. This is achieved using the Go Text Protocol (GTP), a

modern text-based computer-Go protocol. Most of the GTP functionality

is inherited from the GtpDummy class packaged with the GoGUI graphical

user interface by Markus Enzenberger.

ArrayBoard An array-based implementation of a board representation. Stones

are placed on the board via the playMove() method. When moves are

played, captures are detected and the board is updated accordingly. Moves

that violate the ko rule are identified at this stage, and stored in a list for

quick access. This class extends the Board abstract class.

Board An abstract class providing a framework for representation of a Go

board position. Abstract methods are specified for playing moves, access-

ing board information and basic information such as the number of stones

51

of each colour on the board. Concrete methods are provided for making

random moves and printing the board, in order to help with debugging.

CFG A graph data type for representing a common fate graph. This is im-

plemented using an adjacency list data structure, for flexibility and fast

access to the sisters of any given node.

The constructor accepts a Board object, and immediately converts this

into the näive full graph representation. It then applies the common fate

graph transformation to itself. The CFG transformation algorithm and

relative subgraph feature extraction procedure are implemented in this

class.

Edge A helper class for CFG, representing an edge in a directed graph. Im-

plements the Comparable interface to allow instances of CFG to maintain

sorted lists of edges, for efficiency.

Main The main class, which sets up the playing engine and logging facilities.

McNemarsTest A class to perform McNemar’s test to statistically compare

the results of different classifiers on the tsumego data. It reads a list of the

outcomes of each tsumego problem (where each problem outcome is either

a success or failure) for each classifier. It then performs the statistical test

on each pair of classifiers.

The results of the test are output to a CSV file, readable in a spreadsheet

program such as Microsoft Excel. Another CSV file is created, recording

whether there was a win, loss, or draw between each pair of classifiers

given a fixed significance level α.

ModelBuilder An executable main class for building machine learning models

on game records, and then serializing them.

ParseTG Parser for tsumego problems created by Thomas Wolf’s GoTools

program. As an implementation of the WEKA Filter class, it expects the

problems to have been converted to arff format by TsumegoArffMaker.

ParseGameRecord Parser for game records stored in the olf format, such

as the 9 × 9 game records from Nicol Schraudolph’s database. This is

implemented as a WEKA Filter, and hence expects the game records to

have been packaged within an arff file. The output of the filter is a set

of relative subgraph feature vectors pertaining to the moves played in the

game record.

52

PlayerRankFilter Inherits from the Filter class from the WEKA framework.

It processes game records to find the games where both players were above

a given playing strength rating.

SimpleSGF The Smart Go Format (SGF) is a sophisticated tree-based file

format for representing games of Go. Its main strength is the ability to

support variations in the game-tree for “what-if” scenarios. The Sim-

pleSGF class parses this format, but relies on the assumption that there

are no such variations present in the game record.

TsumegoArffMaker Reads data files containing tsumego problems generated

by GoTools, and packages them in the arff format. Each tsumego problem

in a given data file is individually identified. The name of each problem

and the board layout information are extracted and stored together in a

single instance of the output dataset.

TsumegoLearner The program for learning to solve tsumego problems and

evaluating the results. The percentage success rates of each classifier on

the test tsumego data are calculated, and the outcomes for each individ-

ual tsumego problem are written to a file for later use when performing

McNemar’s test. This class also handles the selection of the test, train

and holdout datasets, using the method of random selection without re-

placement.

Vertex A helper class for CFG, representing a vertex in a graph. Stores the

colour of the node, coordinates for one of the intersections within the

graph, and a TreeSet of Edge objects connecting it to adjacent vertices. A

method for counting the number of liberties of the node is provided. In-

stances can also be marked as visited when graph searches are performed.

53

