

Accelerating Brain Circuit Simulations of Object Recognition
with CELL Processors

Andrew Felch, Jayram Moorkanikara Nageswaran1, Ashok Chandrashekar, Jeff Furlong1,

Nikil Dutt1, Richard Granger, Alex Nicolau1, Alex Veidenbaum1

Neukom Institute, Dartmouth College

Hanover, NH 03755, USA
E-mail:andrew.felch,ashok.chandrashekar,richard.granger@dartmouth.edu

1Centre for Embedded Computer Systems, University of California, Irvine

Irvine, CA 92697, USA
E-mail: jmoorkan,jfurlong,dutt,nicolau,alexv@ics.uci.edu

Abstract

Humans outperform computers on many natural tasks
including vision. Given the human ability to recognize
objects rapidly and almost effortlessly, it is pragmatically
sensible to study and attempt to imitate algorithms used by
the brain. Analysis of the anatomical structure and
physiological operation of brain circuits has led to
derivation of novel algorithms that in initial study have
successfully addressed issues of known difficulty in visual
processing. These algorithms are slow on uni-processor
based systems, thwarting attempts to drive real-time robots
for behavioral study, but as might be expected of
algorithms designed for highly parallel brain architectures,
they are intrinsically parallel and lend themselves to
efficient implementation across multiple processors. This
paper presents an implementation of such parallel
algorithms on a CELL processor and further extends it to a
low-cost cluster built using the Sony PlayStation 3 (PS3).
The paper describes the modeled brain circuitry, derived
algorithms, implementation on the PS3, and initial
performance evaluation with respect to both speed and
visual object recognition efficacy. The results show that a
parallel implementation can achieve a 140x performance
improvement on a cluster of 3 PS3s, attaining real-time
processing delays. More importantly, we show that the
improvements scale linearly, or nearly so in practice.
These initial findings, while highly promising in their own
right, also provide a new platform to enable extended
investigation of large scale brain circuit models. Early
prototyping of such large scale models has yielded evidence
of their efficacy in recognition of time-varying, partially
occluded, scale-invariant objects in arbitrary scenes.

1. Introduction

Processors have experienced tremendous progress
(Moore’s Law) and computer chips now have a million

times more building blocks than they did 40 years ago.
Historically, Intel et al. have attempted to use those resources
(transistors) to increase the speed of already-existing
programs by: (1) supporting higher instruction throughput
(using pipelines, caches, branch prediction etc.,) and, (2)
finding and executing multiple instructions simultaneously.
After many years, both of these techniques are now facing
severely diminishing returns, and in an extreme divergence
from tradition the newest chips yielded by Moore’s Law no
longer speed up old programs. Instead, the additional
transistors are used to fabricate multiple CPUs on a single
computer chip. The unfortunate drawback is that few
applications contain the parallelism necessary to
significantly benefit from the additional CPUs.

In contrast, the mammalian brain has evolved circuits
that lack any central processors or main memory but instead
comprise billions of low-precision processing units
(neurons) with distributed memory (synapses) stored within
their interconnections. With such a simple computing
fabric, how can humans still outperform computers at
natural tasks such as visual object recognition? We propose
that these brain circuit components are designed and
organized into specific brain circuit architectures that
perform atypical but quite understandable algorithms
conferring unexpectedly powerful functions to the resulting
composed circuits. As an example, humans recognize visual
objects in less than a second, during which billions of
neurons receive input from the visual scene, but due to slow
neuron communication (milliseconds) only a few tens of
serial operations are performed. Algorithms derived from
the anatomical structure and physiological operation of these
circuits similarly lack serial dependencies and are inherently
parallel, thus poised to take advantage of parallel hardware
such as multi-core processors.

In this paper we first present the components of visual
brain circuit architecture, and an overview of visual object

recognition. We then show a parallel “brain derived vision”
(BDV) algorithm derived from this, and we demonstrate its
application to a particular visual recognition benchmark of
known difficulty (the “Wiry Object Recognition Database”
from CMU). Various kinds of parallelism existing in the
BDV algorithm facilitate mapping it onto a variety of
computing platforms. It is hoped that understanding the pros
and cons of each platform will help in the design of a
customized architecture for BDV and future algorithms.
Some of the computing platforms considered for
accelerating the BDV algorithm are FPGA, CELL processor
[1], and Graphics Processing Unit (GPUs). In this paper we
describe the programmed realization of the algorithm on the
CELL multi-processor based PlayStation 3 gaming console
and analyze the resulting findings while scaling a small
cluster of PS3s from one to three nodes.

The overall flow of the paper is as follows. In Section 2
we briefly describe the background for this work. In Section
3, we describe the experimental setup and methodology for
evaluating the BDV algorithm. In Section 4 we describe the
architectures suitable for simulating the BDV algorithm. In
Section 5 we describe the details of the BDV on the PS3
CELL processor and in Section 6 its relative performance on
FPGA. Section 7 has the object recognition results followed
by the conclusion.

2. Background

The thalamo-cortical system, which constitutes more
than 70% of the human brain, is primarily responsible for all
sensory processing as well as higher perceptual and
cognitive processing. The photo-receptors (rods and cones)
in the eye are activated by light and the information is sent
electrically to the thalamocortical system. It has long been
noted [2, 3] that this system of the brain operates
hierarchically: Downstream regions receive input from
upstream regions and in turn send feedback, forming
extensive cortico-cortical loops. Early visual components
have been shown to respond to simple constructs such as
spots, lines, and corners [4]; these form the lower stages in
the hierarchy of organization. Further downstream higher
level constructs and complex types of shape are selectively
activated in response to a cluster of low-level features, thus
forming more stages in the hierarchy [4, 5, 20]. Also the
neuron response becomes independent of the exact location
or size of the object (translation and scale invariance) [6]. In
our simulations each stage of the hierarchy responds to a
particular feature which is composed of multiple line
segments. In particular we present a computation which
starts with three line segments (“line triples”). Though the
organization is highly simplified, the architecture is shown to
be very effective on difficult visual applications such as the
CMU WORD database [7]. It is also hoped that
implementations of further downstream areas will extend the

work to more abstract perceptual and cognitive processing
[8, 9].

In Figure 1, we illustrate the working of a simplified
form of the BDV algorithm using 4 levels of hierarchy to
detect the number ‘8’. The first level or layer involves
detection of the line segments (line segment extraction). The
second level involves converting the line-segment into line-
segment triples and the detection of various known line-
segment triples present in the image. The detection of
specific line-segment triples is represented by the activation
of a grid in level 2. Each individual grid in level 2 and higher
represents a shape processor. Each shape processor is
modeled to detect the same set of shapes and its variation.
Level 2 elements are receptive to only a small field of the
input image.

Figure 1: The hierarchical organization of shape
detectors operating on the optical character number
eight. “Bottom-Up” input flows from 1 to 2, 2 to 3 etc.

In Figure 1, we observe that some of the shape
processors are activated for the given input image. Levels 3
and higher correspond to higher level constructs formed by a
group of low level constructs. At the top-most levels an
image region is classified into an appropriate type. Level 3
and 4 are under preliminary study and were implemented
such that for the given object we know the relative activation
pattern of other shape detectors in Level 2. A hierarchical
organization as depicted in Figure 1 enables sharing of lower
level shape processors by higher levels when recognizing
other objects, and hence reducing the total memory
requirements. For example, while detecting number ‘8’ and
‘9’, a number of shape processors in Level 2 will be shared.
The exact identification will be done at higher levels.

We briefly explain some aspects of the BDV algorithm
and its biological relevance. A given set of input neurons
(pattern) activates a particular neuron and this set of inputs is
loosely referred in our paper as receptive fields (RF). Any

1

2

3

4

two shapes are considered similar based on the number of
activated neurons shared in their activation patterns. As a
result of sparse population codes (SC) [10], most neurons
are inactive; this concept is represented in a highly simplified
form as sparse bit-vectors. The intrinsic random connectivity
tends to select some areas of neurons to respond to some
input features (RFs). These neurons train via increments to
their synaptic connections, solidifying their connection-
based preferences to specific input features. After a
simulated “developmental” phase, synapses are either
present or absent and each neuron’s level of activation can
be represented as the bit vector.

Neurons activate local inhibitory cells which in turn de-
activate their neighbors; the resulting competition among
neurons is often modeled as the K best (most activated)
“winners” take all or K-WTA [8, 9, 11], which our model
incorporates. These K winners activate a next set of neurons,
termed RF2. As objects are viewed, these RF2 neurons are
synaptically trained, becoming “recognizers” of classes of
objects. RF2 activation can in turn be used in “top-down” or
feedback processing, to affect the RF1 detectors based on
what the RF2 cells “think” is being recognized. More details
of the mechanism are shown in Figure 2.

Figure 2: Simplified model of the B-U computation

Figure 2 depicts the process of converting line-triple
representations into detected shapes, termed Bottom-Up (B-
U) computation. The model described here uses 8192
neurons to represent the first set of input feature detectors
(RF1) and 1024 neurons for RF2; other configurations
exhibit comparable behavior. Intuitively, increasing the
number of neurons can be used to increase the number of
classes of objects that can be recognized. Step 1 in Figure 2
converts line triples into a somewhat scale invariant and
translation invariant bit-vector representation based on the
angular relations of line segment endpoints. The
representation is a sparse encoding (SC), and slight changes
in the orientation of the line segments, or movement of a line
endpoint, lead to decreasing similarity between bit vectors

derived from the normal and modified shapes. An example
for generation of the line-segment triple is shown in Figure 3
and the encoding process is illustrated in

Figure 4. Step 3 depicts the approximately 8,192
vectors of 160 bits (RF1 vectors), each of which previously
and maximally trained on a single input. Step 2 indicates
that the dot-product will occur between the input vector and
all RF1 vectors. In Step 4 the resulting matches (8,192
match values between 0 and 160 each) are generated. Step 5
depicts the application of a threshold for k-WTA operation,
with K=512. This actually means that out of 8192 RF1
neurons only 512 best matching RF1 neurons will be
triggered to output. Step 6 shows the 512-hot1 of 8,192 bit-
vector (called Mid Vector), which provides input into the
next set of 1,000 vectors (RF2 vectors, 1024-2048 hot of
8,192). Step 7 indicates the dot-product operation between
the inputs from Step 6 with all RF2 vectors. The output
indicates the match values, ranging between 0 and 512,
indicating how well each RF2 vector matched the input. See
[14] for further details.

Figure 3: (a) shows the extracted edges in a picture.
(b) shows the picture superimposed with the line
segments (c) shows sample line-segment triples
corresponding to different objects. These line segment
triples are processed by the B-U engine for recognition.

Figure 4: The process of converting a line-triplet into a
vector of quantized angles. 0 corresponds to 0o and
value 56 corresponds to 90o.

3. Experimental Setup

1 In 1-hot coding only a single bit is 1. In N-hot coding N bits are 1
(may or may not be in consecutive positions).

(a) (b) (c)

(3) RF1 compute

(7) RF2
compute

Input Vector

RF1 0

RF1 1

RF1 2

(2) dot
product

with RF1

4) Match
 value

(5) K-WTA
RF 8191

(6)
Mid

Vector

RF2 0

RF2 1

RF2 2

RF2 M

(1) Sparse
coding

The Wiry Object Recognition Database (WORD) [7] is
used to provide a difficult dataset dependent on shape-based
recognition. The database contains a series of videos, in
which a barstool is placed in several different office
environments. The goal is to determine the location of the
barstool in the videos. The location of the stool in the video
frame is judged correct if the bounding box had less than
25% area difference from the true bounding box.

Line segments are extracted using the Canny edge
detector implementation [12] such that approximately 400-
600 line segments are extracted per frame. The algorithm
and parameters used in this work were chosen for their ease-
of-use combined with the fact that humans often recognize
objects from the extracted line segments alone. The
performance impact of using other numbers (e.g., 100 or
1000 line segments) will be studied in the future.

The shape detectors modeled here are believed to learn
their shape during child development, a process during
which 50% of all synapses die off, and presumably only the
strongest remain. Under these circumstances, synapses can
be modeled as either present or absent, and each neuron’s
input weights can be modeled as a bit-vector. Thus
computing the degree of match between one shape detector
and an input shape is a matter of computing the bit-vector
dot-product.

Each of the 8192 upstream neurons (RF1s) was trained
to be maximally receptive to a single input line triple. This is
in accordance with the previously discussed physiological
studies that found upstream neurons to be simpler than
downstream neurons. Each RF1's line triple was randomly
selected from one of the 22 videos of WORD. To model the
sparse activity of the brain with sparse encoding, the
upstream layer (so called “RF1” vectors) was made to
activate in a K-WTA fashion, with K = 512 (6% activity
density) in all processing. Downstream neurons (so called
“RF2” vectors) were trained on multiple line triples during
the developmental period, randomly selected from those line
triples in the videos with which no receptive field yet
matched very well. All objects that need to be recognized are
a combination of elements of RF2 and located at specific
relative distances with respect to each other. To enable
recognition, an early prototype of downstream brain regions
was implemented, built to serve the very simple purpose of
creating expected locations of particular shapes inside a
recognizable object relative to other shapes within that
object. Figure 1 depicts the full system with additional
hierarchy (layers 3 and 4) operating over the line-triple shape
detectors. For each training frame of video, representations
of line triples built from members of the training object (a
sitting-stool) were iteratively added to a hierarchy of the
shapes and spatial relationships using the downstream
layer’s most active shape detector, along with its expected
location (relative to other shapes already added to the
hierarchy) and scale (standard deviation of line triple
endpoints from their midpoint). Thus, when testing on a

new frame of video, a highly active shape detector of a
particular scale indicates the expected locations of other
shape detectors of a learned object in the current frame.
Testing whether the expected shapes are at their expected
locations (within some maximum distance) computes the
likelihood of the visual object. Thresholds are used to
convert the matches between expected and actual shapes
into recognition confidence, and confidence above a
threshold indicates an actual guess of a recognized visual
object. The guesses created bounding boxes, which were
judged as in [13] for comparison.

4. Architectures for BDV

A salient feature of the BDV algorithm is the high

degree of parallelism at various levels. The simplest inherent
parallelism is the bottom-up computation for different line
segment triples. In our experiments most pictures contain
about 10,000 to 20,000 useful line segment triples. Hence
the best matching RF2 for all of these line segment triples
can be concurrently evaluated. The next level of parallelism
is achieved by the shape processing mechanism. For each
line segment triple we need to find a best matching shape
from the given table of shapes (RF2 elements). This search
can also be potentially parallelized to a higher degree with
the only limitation being the communication overhead. The
algorithm also exhibits large amounts of bit-level parallelism
and SIMD parallelism. For example in the RF2
computation we need to evaluate an 8192-bit dot-product
and population count on the result to estimate the degree of
match between two RF2 vectors. This can be concurrently
executed either at the bit, byte or at higher word levels.

Various kinds of parallelism in the BDV algorithm
facilitate mapping it onto a variety of computing platforms.
Also, understanding the pros and cons of each platform
helps in the design of customized architectures for the BDV
algorithm. Some of the computing platform choices for
BDV algorithms are briefly discussed below.
(1) FPGA (Field Programmable Gate Array):
FPGA based solutions are suitable for specific customization
of the architecture at bit-level and also have the ability to
deliver high performance with low power requirements.
Some of the disadvantages are high cost associated with
high-performance FPGA and large application development
time to achieve considerable performance. A detailed study
of the trade-offs when mapping BDV on FPGA and the
resulting performance achieved is described elsewhere [14].
(2) CELL / Play Station 3 (PS3):
STI (Sony, Toshiba, IBM) CELL Broadband Engine
(CELL BE) is a high-performance, low-cost multi-processor
targeting graphics and multimedia applications. The CELL
BE contains eight specialized Synergistic processors (SPE)
and one dual-threaded PowerPC Processor all operating at
about 3.2 GHz. A detailed description of the chip is present
in [1]. The recently released Sony Play Station3 (PS3) is

powered by the CELL processor and is available at about
$500. The PS3 console offers a programmable PowerPC
processor with 6 SPEs. It has an inbuilt Gigabit Ethernet,
making it suitable for cluster computing. Thus, the PS3
offers impressive performance and programmability for
mapping the BDV algorithm. Section 5 contains the details
of the various trade-offs involved in mapping BDV on
CELL/PS3 The main limitation is in developing efficient
parallelization and optimization to exploit the capabilities of
the CELL processor.
(3) General Purpose Computer Clusters and High
Performance Parallel Architectures: This platform is suitable
for large scale prototyping of BDV, and with parallel
programming models like MPI & PVM, it is easier to map
BDV on grids or clusters. The main disadvantages are the
impact of communication overhead on overall performance
and large system cost.
(4) Programmable Graphic Processing Units (GPU):
Recent GPUs such as NVidia’s CUDA and AMD’s CTM,
offer affordable high performance, parallel hardware.
Increasingly these GPUs are becoming much more
programmable and useful for general purpose applications.
(5) Application Specific Integrated Circuit (ASIC) or
MPSoC (multi-processor system-on-chip): For very low
power and small footprint, ASIC or MPSoC offers a good
solution.

This paper discusses the implementation of the BDV
algorithm on the CELL architecture. In our future work we
will be looking into GPU and ASIC/MPSoC as a computing
platform for BDV algorithms.

5. Mapping on CELL / Play Station 3

(PS3)

We now present the programming methodology and
trade-offs involved in mapping BDV on CELL. We have
used different levels of programmable parallelization
available on CELL namely: (1) parallel execution of many
CELLs (network or cluster of CELLs), (2) multiple
programmable units executing simultaneously (namely 6
SPEs and 1 PPE in PS3) (3) concurrent computation and
communication (DMA operation) by the SPEs, (4)
instruction level parallelization in the SPE with two
instructions executing simultaneously, and (5) SIMD
parallelization using 128-bit data path (up to 16 single byte
operations in one cycle). In the remainder of this section we
examine the parallelization applied across the CELL clusters
and within the CELL. Compiler assisted parallelization
using IBM XL compiler [15] will be part of our future
studies.

For mapping the application on clusters we use a client-
server architecture consisting of a cluster of three PS3s
controlled by a powerful desktop PC. This architecture fits
well with our application computation requirements. The
cluster (server) consists of multiple CELLs in charge of the

bottom-up computations and the desktop PC (client)
controls the overall flow of the application. For each line-
triple request, the workflow follows the process of the
desktop PC sending the initial bit-vectors as input to the
bottom-up engine, and each PS3 sending the output data
structure back over the network. The desktop PC uses this
output data structure information to prune the top-down
search and evaluate higher levels of constructs (beyond line
triples, to conjunctions of line triples, etc.) present in the
image to arrive at confidence values for object recognition at
different locations in the image.

5.1 Parallelization within the CELL

In this section we describe the techniques used in

parallelizing the application within the CELL. First we
execute the bottom-up engine on a single processor and then
evaluate the critical functions that need to be executed
parallelly within the CELL. A simple functional model of
the bottom-up computation is shown in Figure 5. The Sparse
Coding (SC) block converts the input line triplets into a
space and scale invariant code. The RF1 and RF2 process
input block finds the best matching line triplets from the
reference set. The RF1 Activate pattern block implements
the k-WTA computation. The bottom-up (B-U) engine was
executed on a 2.13 GHz Intel Core2 (E6400) CPU. A
fractional breakdown of execution time into functional
bottom-up code blocks is shown in Figure 6. Approximately
1.89ms was required to execute the B-U computation for a
single line segment triple. This corresponds to a B-U
computation throughput of about 526 line segment triples
per second (526 LST/sec). In Figure 6 we can observe that
RF1 Vector computations and RF2 Vector computations
take more than 95 % of the overall execution time. These are
the critical functions that need to be optimized and
parallelized to increase the throughput of the B-U
computation. From these results, the runtime of processing
an entire video frame with 30,000 line-triples can be
estimated at approximately one minute. To execute the BDV
algorithm on interactive robots, the recognition time of
humans must be achieved (approximately 500 ms per frame,
thus requiring a speedup of about 120x i.e., from 526
LST/sec to about 60,000 LST/sec).

Figure 5: Functional Model of the BU Engine

The code size and the data size (both static and
dynamic) need to be evaluated to effectively determine the
memory footprint and the bandwidth requirements of the
given application. Each SPE has a local store (LS) of 256
KB which can be used for both code and data. This small

(A)
Comp-
ute SC

(B)
RF1

Process
Input

(C)
RF1

Activate
Pattern

(D)
RF2

Process
Input

(E)
Output
Stage

memory size influences the way code and data for the
applications are partitioned across the CELL. For many
programs with a small code size, function overlaying and
resident partition management [15] might not be necessary.
The total code size for the B-U computation is about 57 KB
and hence no function overlaying mechanism was used in
our implementation.

Execution time profiling

0.7%64.2%

30.9%
4.2% 0.05%

Sparse Coding

RF1 Process Input

RF1 Activate/kWTA

RF2 Process Input

Initialization

Figure 6: Fractional execution time of the important
functions in the Bottom-Up engine on an Intel Core
E6400 running at 2.13GHz

TABLE 1: Analysis of data structures used by BDV
Main data
structures

Data
Size

Data usage Data
Access
Pattern

Accessing
Tasks

(Figure 5)
RF2 Vector
Table

1.1 M Partitionable Linear (D)

RF1 Vector
Table

160 K Partitionable Linear (B)

Sparse
Code Table

125 K Static/fixed Random (A)

SC Angle
Table

48 K Static/fixed Random (A)

popCount
RF1

8 K Static/fixed Random (B) & (C)

Histogram
K-WTA

2 K Static/fixed Linear (B) & (C)

With respect to data size, we evaluated the memory

requirement of several large data structures used in our
application (shown in Table 1). We further classified the
data structures based on their usage as static/fixed and
partitionable. If a particular function or loop is parallelized to
run across different SPEs, we need to determine whether the
data set is duplicated in each SPE (called static/fixed data
set) or the data set gets divided across SPEs (called
partitionable data set). This classification is important to
decide what type of parallelization and data access
mechanism should be used once the application is mapped
onto the CELL. This information is also useful to determine
the SPE bandwidth and the SPE LS memory requirements
for a particular parallel model.

Furthermore, we need to determine how to map the
data sets with size larger than the available SPE LS. To
reduce this constraint, various techniques such as software
cache, double buffering, pre-fetching [15], etc., can be used
depending upon the data access pattern. For our application
we have four large data structures (Table 1) namely RF1
Table, RF2 Table, Sparse Code (SC) Ordering Table and
Angle Table. The SC Ordering and Angle tables are used
by the PPE for input bit-vector generation. The remaining
data sets can be accessed either through software cache or
directly on SPE LS. Also, we observe from the algorithm
that RF1 and RF2 table elements are accessed linearly (one
after another in a specific sequence) during the comparison
operation with the given input data. Hence if RF1 and RF2
do not fit into the SPE LS, then they can utilize either double
buffering or software cache with data access optimization to
allow efficient access to large data arrays.

Various kinds of generic parallel models can be
developed from the functional model of the B-U engine. The
possible models are: overlapped functional parallel model
(OFP), data parallel model (DF), series-parallel model (SP),
and overlapped series-parallel model (OSP). A model is
termed overlapped if the communication and computation
can happen concurrently, and hence the waiting time
associated with communication can be mitigated.

In a fully overlapped functional parallel (OFP) model
each functional block is mapped onto an SPE and hence the
actual execution time of the model is dependant upon the
execution time of the slowest functional block. Through this
type of parallelization, the code size restriction can be
reduced since each function, rather than the whole
application, is mapped to a separate SPE. Load balancing
issues, however, make this model difficult to implement.
This model can be extended to process networks [16] or data
flow networks [17] with APIs for communication and
appropriate modeling methodology. Since the SPE LS is of
a very small size, usage of these communication APIs will
reduce the available memory resources even further.

The next logical choice for parallelization is a simple
series-parallel model (SP). This model overcomes the load
balancing limitation of a fully overlapped functional parallel
model by splitting the sequential model into a series-parallel
graph at loop boundaries either manually or by using the
compiler (OpenMP primitives). If the data and computation
is evenly partitioned across these loop boundaries, this kind
of parallel model exhibits good load balancing, speedup, and
reduced SPE LS requirements. A version of a SP model for
the B-U engine is shown in Figure 7.

The serial portion can either be executed in the PPE or
SPE, depending upon the complexity of the serial task. The
main qualitative advantage of this model is lower data size
requirement in each SPE, as well as reduced application
latency and reduced SPE bandwidth. Two disadvantages are
that the serial portion can affect the overall execution time
and the presence of higher synchronization requirements

will result in increased waiting time for synchronization with
serial portions of the execution, during which all the SPE
cores will be waiting for new data. A series-parallel model
can be extended to an overlapped series-parallel (OSP)
model by overlapping computation and communication
using either a double buffer or FIFOs. Thus instead of
waiting for the serial portion to finish its operation and
communicate the result to the SPE, the SPE performs the
computation for the next input data. During this time the
serial portion completes the execution and communicates
the data by means of DMA so that the data is ready for the
next cycle of SPE computation. Unfortunately, this approach
does not solve the problem caused by potentially high-
synchronization requirements between the serial and parallel
portions.

For much higher performance the overlapped data
parallel (ODP) model can be employed. In this type there is
virtually no communication between the SPEs. Earlier
models parallelize the bottom-up so that only part of the
code or data is mapped on to the SPE. But in ODP model an
SPE can be treated as a full processor and complete bottom-
up computation for a line segment triple is mapped to a
single SPE. This model requires large SPE bandwidth and
large SPE LS because all the data and code for the execution
of the application must be present or accessible by the SPE.
The performance of this model is dependant upon the
technique used to overcome the code and data size
restrictions within the SPE LS. Table 2 gives a quick
qualitative comparison of different kinds of parallel models.

5.2 Other kinds of optimizations

We now present specific optimizations carried out in
the implementation of the B-U algorithm on CELL to
exploit the low-level features which improves the concurrent
execution of the code. More details of other kinds of
programmer optimizations are available in [18].
• DMA alignment optimization: DMA operations in

CELL can have a size of 1,2,4,8,16 bytes or multiples
of 16 bytes. If a particular transaction’s address crosses
the 128 byte boundary, the results can be achieved
through additional DMA transactions. Hence by means
of careful alignment of important data that is
communicated regularly, the overall communication
bandwidth required by the application can be
significantly reduced. If DMA alignment optimization
is carried out on too many data sets, then it will result in
significant wastage of precious SPE LS memory.

• Mailbox Vs signaling mechanism optimization: The
CELL allows various means for synchronization, like
regular DMA operations, mailboxes and signaling
mechanisms. The mailbox mechanism allows 32 bit
communication but takes about 0.5us (taking into
account the setup and various application code
overhead) for each 32 bit transaction. The signal
communication mechanism allows 1-bit
synchronization between the SPE and PPE at a much
higher speed. Hence, the signaling mechanism was
selected for synchronization between various tasks.

• Branch optimization: The SPE does not have a branch
prediction unit and assumes a sequential program flow.
Thus pipeline stalls due to mispredicted branches can
be very costly (on the order of 18 to 19 cycles). Various
techniques such as function inlining, loop-unrolling and
branch hinting mechanisms were used to reduce the
branch misprediction overhead.

• Compute intensive kernels in the BDV code (e.g., dot-
product and population counting) can be significantly
speeded-up by means of the various CELL SIMD
instructions. After optimizing the kernels using special
128-bit SIMD instructions such as absdiff, abs_sumb,
spu_add, spu_cntb [18], one RF1 inner loop
computation takes only 31.2 cycles on an average (the
desktop PC version takes 164 cycles) and RF2 inner
loop takes about 246 cycles (the desktop PC version
takes about 2879 cycles). Thus with superior 128-bit

Table 2: Comparison of different application parallel models on CELL

Model name Application
Latency

Bandwidth
usage

Memory
usage

Modeling
effort

Performance

Functional parallel model High Low Low Low Low-Medium
Series-parallel Medium Medium Medium Medium Medium
Overlapped series-parallel Low Medium Medium Medium-High Medium-High
Overlapped data-parallel Medium High High High High

Compute

SC

Global
histogram
generate

Partial to
Global

activation
Pattern

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

 RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Activate
Pattern

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF1
Process
Input

RF2
Process
Input

Figure 7: Parallel Model for Brain-derived Vision algorithm. Parallel part of the code is indicated by cascaded box

SIMD instruction set and SPE instruction fine-tuning,
impressive speedups are possible.
We implemented the series-parallel (SP) model on the

CELL with various optimizations described above. On a
single CELL present in PS3 we measured a speedup of 57
times using the series-parallel model compared to serial
execution on a desktop CPU (E6400) running at 2.13 GHz.
It should be noted that no special optimizations using SSE2
or MMX instructions were carried out on the desktop PC
running Intel Core. From the performance of the series-
parallel model we could estimate the performance of other
parallel models (results are shown in Table 3). These
estimations are very useful for obtaining approximate
performance of various kinds of parallel models from only a
single implementation. The execution time of an overlapped
data-parallel model was estimated by evaluating the
computation time for each function when it is completely
mapped onto the SPE and assuming that we can overlap the
computation and communication. Hence, for example, the
execution time for RF1 processing in an overlapped data-
parallel model is equal to the sum of the execution times of
RF1 processing on each SPE in an unoverlapped series-
parallel model. The execution time for an overlapped series-
parallel model can be evaluated from a series-parallel model
using the approach shown with an example in Figure 8.
When it comes to estimating the overlapped function
parallel (OFP) model, SC generation is mapped to the PPE
and each function is mapped to a SPE (RF1 Process Input,
RF1 Activate, and RF2 Process Input). Since we have 6
SPEs we can execute two overlapped function parallel
models in a CELL. Hence the total execution time for an

overlapped function parallel (OFP) model was obtained by
taking the slowest execution time (namely RF1 Process
Input) and multiplying by 2. It should also be noted that the
two functions: Global histogram and Global MidVector
(Table 3, functions (C) and (E)), take into account the
serial computation part, and communication between the
serial and parallel parts. This comes into the picture only in a
series-parallel model.

6. Performance Comparison

We evaluated the performance of the BDV algorithm
on other architectures like FPGA and clusters. A detailed
description of mapping BDV on FPGA is presented in [14].
It was shown in [14] that a single Xilinx Virtex4 FPGA
provided a 62x performance improvement and 2500x
performance-per-watt improvement over a general purpose
CPU for the B-U computation. The power dissipation was
estimated to be around 1.63W and speedup per $1K was
about 6.27.

We also evaluated the performance of the BDV
algorithm by mapping the application on PS3 clusters. After
eliminating some of the bottlenecks associated with Gigabit
Ethernet communication (which requires all PPE cycles to
achieve 500mbps) we scaled the implementation to a cluster
of three PS3 and achieved a full round trip time of 1.24
seconds on a video frame with 93,267 line triples achieving
a speedup over the desktop of 140x. The performance on
PS3 cluster is shown in Figure 9. We are also currently
evaluating the scalability of the BDV algorithm on large-
scale PC cluster to find the potential scalability of the model.

Table 3: Actual and Estimated Performance for BDV on Desktop PC and PS3 with a single CELL. The approach used
to calculate the stages in an overlapped series-parallel model is shown in Figure 8.

Function name

Serial
model
(us)

series-parallel
(SP) model

(us)

Overlapped
Data-parallel

(ODP)
model

(us)

Overlapped
functional
parallel

(OFP) model
(us)

s
t
a
g
e

Overlapped
series-
parallel

(OSP) model
(us)

(A) Sparse coding 0.89 0.80 0.80 0.80 1 0.80
(B) RF1 Process Input 603.53 13.78 82.66 82.66 2 13.78
(C) Partial to Global
Histogram 0.00 2.71 0.00 0.00 3 13.78
(D) Generate Partial
MidVector 13.34 2.48 3.87 3.87 4 2.71
(E) Partial to Global
MidVector 0.00 1.91 0.00 0.00 5 2.48
(F) RF2 Process Input 1276.68 12.91 77.23 77.23 6 12.91
(G) Dump Output 0.60 0.75 0.75 0.75 7 12.91
 8 0.75
Performance Evaluation Actual Actual Estimated Estimated Estimated
Effective time per LST 1895.04 35.34 27.55 41.33 30.06
Speedup w.r.t serial 1.00 53.63 68.78 45.85 63.04

Built from base model PS3s, and using two built-in gigabit
network interfaces and one PCI gigabit network card, the
cost of the cluster hardware was approximately $1500. Thus
the speedup of more than 130 times was achieved at a cost
similar, or cheaper than a top-of-the-line desktop machine,
enabled by the intrinsically parallel nature of the derived
brain algorithms.

Figure 9: Scalability of BDV algorithm on PS3 Cluster

7. Object Recognition Experimental

Results

Much work in computer vision and image retrieval has
been performed using pattern recognition theory (e.g. [19]),
which treats an image or image sequence as a vector, for

which rigorous mathematical frameworks have been
developed and on which machine learning algorithms such
as traditional classifiers can operate. On the other hand, the
models presented here share more in common with part-
based image analysis, [3,9] and more specifically those
systems that attend to the type of part being observed and the
spatial relationships between them [21]. A difficult problem
class in computer vision is that of shape based recognition,
where the textures of contiguous pieces of an object are not
sufficient for traditional algorithms to perform recognition.
To address this difficult area of computer vision, we used
videos from the Wiry Object Recognition Database [7] and
compared our engine with the precision of the only other
system reporting results on this dataset; namely the
aggregation sensitive version of the cascade edge operator
probes (EOP-AS) in [13]. In this dataset, the task is to find a
sitting-stool in various cluttered office scenes.

Results of our experiment are given in Figure 10. The
BDV model (8,448 RF1 vectors, 1020 RF2 vectors) was
trained with first frames of videos 0 and 2 (Room A401 clips
5 and 6) and tested on 30 frames of video from different
rooms (Room A408 clip 4 and Room sh201 clips 1 and 3).
The activity supporting evidence threshold was set to 98.5%,
such that a neuron's observed activity (using the previously
described algorithm) was considered supporting evidence if
the probability of the expected neuron occurring so active
and close to the expected location was less than 1.5% (other
thresholds could be selected and their impact on
performance is currently under study). Stools were guessed
in order of the most unique line segments part of some

C 1(1)
 10 us

S 1(1)
 25 us

P3(1)
 2 us

C 2(1)
 10 us

C4(1)
 3 us

S5(1)
 25 us

C6(1)
 5 us

C 1(1)
 10 us

S 1(1)
 25 us

P3(1)
 2 us

C 2(1)
 10 us

C4(1)
 3 us

S5(1)
 25 us

C6(1)
 5 us

C 1(2)
 10 us

S 1(2)
 25 us

P3(1)
 2 us

C2(1)
 10 us

C4(1)
 3 us

S5(1)
 25 us

C 6(1)
 5 us

(a)

t 2 = 25 us
stage 2

t 3 = 25 us
stage 3

t4=25 us
stage 4

t5=25 us
stage 5

t 6 = 5 us
stage 6

Total execution for 1 input = 80 us

t 1 = 10 us
stage 1

(b) Total execution for 2 inputs= 115 us (Speedup = 1.4)

Figure 8: An illustrated example of the performance of (a) overlapped parallel model (b) un-overlapped parallel
model. In the overlapped parallel model the SPE starts the computation for the second input data before proceeding
to the next stage. P1(2) (S1(2)) indicates the execution time for the 2nd iteration of task 1 on PPE (SPE), C1(2) indicate the
communication time for data produced by task 1 in its 2nd iteration

supporting evidence. For comparison, results using the
EOP-AS [13] were estimated from the reported accuracy on
"other room" test sets of 22% (8.8 false positives per image)
used as the probability of an arbitrary true positive guess. In
Figure 10 the y-axis is the probability of finding the stool
within the number of guesses defined by the x-axis. We can
see that the neocortical model achieves similar performance
to EOP-AS. As the system increases the number of guesses
they make per image from 1 to 5, the probability of finding
the sitting-stool in the image increases from 20% to 70%

.
Figure 10: Comparison between our neo-cortical model
and Cascade EOP-AS [13] model

8. Conclusion

The results indicate that computational models derived
from brain circuitry are not only capable of delivering good
performance on hard real-world tasks such as shape-based
vision, but also carry with them the capacity for efficient
implementation on highly parallel hardware. As the number
of processors per CPU (or GPU) continues to increase,
algorithms derived from brain circuitry are uniquely situated
to take an advantage, resulting in impressive speedups over
their single-threaded implementation. Future work includes
accelerating the downstream brain regions that receive input
from those accelerated here in order to support the real-time
speeds necessary to drive interactive robots. These regions
“recognize” relationships between objects and drive the
object search by communicating Top-Down feedback of
semantic context to earlier levels in the hierarchy. To this
end, design of computer architecture for efficiently
accelerating these and future brain-derived algorithms is also
under study.

9. References

1. Gschwind M (2006), Hofstee H.P, et. al, “Synergistic
Processing in CELL’s Multicore Architecture”, IEEE
Computer, 2006 Volume 2, 10-2
2. Wallis, G., Rolls, E. (1997), “A model of invariant
object recognition in the visual system”, Prog.
Neurobiology, 51, 167–194.

3. Wiskott, L. Fellous, J., Kruger, N., Malsburg, C.
(1997), “Face recognition by elastic bunch graph matching”,
Proc. 7th Intern. Conf. on Computer Analysis of Images and
Patterns, CAIP’97, 456–463
4. Hubel, D., Wiesel, T. (1965), “Receptive fields and
functional architecture in two nonstriate visual areas (18 and
19) of the cat”, J. Neurophysiol, 28, 229–289.
5. Hubel, D. & Wiesel, T. (1962), “Receptive fields,
binocular interaction and functional architecture in the cat’s
visual cortex”, J. Physiol. (Lond.) 160, 106–154.
6. Bruce, C., Desimone, R., et. al, “Visual properties of
neurons in a polysensory area in the superior temporal sulcus
of the macaque”, in J. Neurophysiol., 1981, 46, 369–384.
7. Carmichael, O., Hebert, M, “WORD: Wiry Object
Recognition Database”, Carnegie Mellon University;
http://www.cs.cmu.edu/~owenc/word.htm, retrieved
December 20, 2006
8. Douglas, R., Martin, K. (2004), “Neuronal circuits of
the neocortex”, Annu. Rev. Neurosci. 27, 419–451.
9. Marr, D., Nishihara, H. (1978), “Representation and
recognition of the spatial organization of three-dimensional
shapes”, in RoyalP, volume B-200, pg: 269–294.
10. Olshausen B.A, Field D.F, “Sparse coding of sensory
inputs”, Current Opinion in Neurobiology, 2004.
11. Coultrip, R., Granger, R., and Lynch, G. (1992), “A
cortical model of winner-take-all competition via lateral
inhibition”, Neural Networks, 5: 47-54.
12. P. D. Kovesi, “ MATLAB and Octave Functions for
Computer Vision and Image Processing”, School of
Computer Science & Software Engineering, The University
of Western Australia; Retrieved on December 2006 from
http://www.csse.uwa.edu.au/~pk/research/matlabfns/.
13. Carmichael, O. (2003),”Discriminative Techniques For
The Recognition Of Complex-Shaped Objects”, PhD Thesis,
The Robotics Institute, Carnegie Mellon University.
Technical Report CMU-RI-TR-03-34
14. Furlong J, Felch A, Moorkanikara Nageswaran J, Dutt
N, Nicolau A, Veidenbaum A, Chandreshekar A, Granger R.
(2007), “Novel brain-derived algorithms scale linearly with
number of processing elements”, Proc. Intl. Conf on
Parallel Computing, (parco.org) 2007
15. Eichenberger, A. O’Brien, et. al, (2005), “Optimizing
Compiler for a CELL Processor”, IEEE PACT 2005
16. de Cock, E. (2000), “YAPI: application modeling for
signal processing systems”, DAC-2000,
17. Lee, E., Parks, T. (1995), “Dataflow Process
Networks”, in Proceedings IEEE, May 1995
18. IBM (2005) CELL BE Programming Handbook and
Programming Tutorial
19. Duda, R., Hart, P, Stork, D. (2000) in Pattern
Classification, John Wiley & Sons, Inc.
20. Rodriguez, A., Whitson, J., Granger, R. (2004),
“Derivation and analysis of basic computational operations
of thalamocortical circuits”, Journal of Cognitive
Neuroscience, 16: 856-877.
21. Barrow, H., Popplestone, R. (1971), “Relational
descriptions in picture processing”, in Machine Intelligence,
pg: 6:377–396.

