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Abstract 
 

Humans outperform computers on many natural tasks 
including vision. Given the human ability to recognize 
objects rapidly and almost effortlessly, it is pragmatically 
sensible to study and attempt to imitate algorithms used by 
the brain. Analysis of the anatomical structure and 
physiological operation of brain circuits has led to 
derivation of novel algorithms that in initial study have 
successfully addressed issues of known difficulty in visual 
processing. These algorithms are slow on uni-processor 
based systems, thwarting attempts to drive real-time robots 
for behavioral study, but as might be expected of 
algorithms designed for highly parallel brain architectures, 
they are intrinsically parallel and lend themselves to 
efficient implementation across multiple processors. This 
paper presents an implementation of such parallel 
algorithms on a CELL processor and further extends it to a 
low-cost cluster built using the Sony PlayStation 3 (PS3). 
The paper describes the modeled brain circuitry, derived 
algorithms, implementation on the PS3, and initial 
performance evaluation with respect to both speed and 
visual object recognition efficacy. The results show that a 
parallel implementation can achieve a 140x performance 
improvement on a cluster of 3 PS3s, attaining real-time 
processing delays. More importantly, we show that the 
improvements scale linearly, or nearly so in practice.  
These initial findings, while highly promising in their own 
right, also provide a new platform to enable extended 
investigation of large scale brain circuit models. Early 
prototyping of such large scale models has yielded evidence 
of their efficacy in recognition of time-varying, partially 
occluded, scale-invariant objects in arbitrary scenes.  
 
1. Introduction 
 

Processors have experienced tremendous progress 
(Moore’s Law) and computer chips now have a million 

times more building blocks than they did 40 years ago.  
Historically, Intel et al. have attempted to use those resources 
(transistors) to increase the speed of already-existing 
programs by: (1) supporting higher instruction throughput 
(using pipelines, caches, branch prediction etc.,) and, (2) 
finding and executing multiple instructions simultaneously.  
After many years, both of these techniques are now facing 
severely diminishing returns, and in an extreme divergence 
from tradition the newest chips yielded by Moore’s Law no 
longer speed up old programs.  Instead, the additional 
transistors are used to fabricate multiple CPUs on a single 
computer chip. The unfortunate drawback is that few 
applications contain the parallelism necessary to 
significantly benefit from the additional CPUs. 

In contrast, the mammalian brain has evolved circuits 
that lack any central processors or main memory but instead 
comprise billions of low-precision processing units 
(neurons) with distributed memory (synapses) stored within 
their interconnections.  With such a simple computing 
fabric, how can humans still outperform computers at 
natural tasks such as visual object recognition?  We propose 
that these brain circuit components are designed and 
organized into specific brain circuit architectures that 
perform atypical but quite understandable algorithms 
conferring unexpectedly powerful functions to the resulting 
composed circuits. As an example, humans recognize visual 
objects in less than a second, during which billions of 
neurons receive input from the visual scene, but due to slow 
neuron communication (milliseconds) only a few tens of 
serial operations are performed.  Algorithms derived from 
the anatomical structure and physiological operation of these 
circuits similarly lack serial dependencies and are inherently 
parallel, thus poised to take advantage of parallel hardware 
such as multi-core processors. 

In this paper we first present the components of visual 
brain circuit architecture, and an overview of visual object 



 

recognition.  We then show a parallel “brain derived vision” 
(BDV) algorithm derived from this, and we demonstrate its 
application to a particular visual recognition benchmark of 
known difficulty (the “Wiry Object Recognition Database” 
from CMU). Various kinds of parallelism existing in the 
BDV algorithm facilitate mapping it onto a variety of 
computing platforms. It is hoped that understanding the pros 
and cons of each platform will help in the design of a 
customized architecture for BDV and future algorithms. 
Some of the computing platforms considered for 
accelerating the BDV algorithm are FPGA, CELL processor 
[1], and Graphics Processing Unit (GPUs). In this paper we 
describe the programmed realization of the algorithm on the 
CELL multi-processor based PlayStation 3 gaming console 
and analyze the resulting findings while scaling a small 
cluster of PS3s from one to three nodes. 

The overall flow of the paper is as follows. In Section 2 
we briefly describe the background for this work. In Section 
3, we describe the experimental setup and methodology for 
evaluating the BDV algorithm. In Section 4 we describe the 
architectures suitable for simulating the BDV algorithm. In 
Section 5 we describe the details of the BDV on the PS3 
CELL processor and in Section 6 its relative performance on 
FPGA. Section 7 has the object recognition results followed 
by the conclusion. 

 
2. Background 
 

The thalamo-cortical system, which constitutes more 
than 70% of the human brain, is primarily responsible for all 
sensory processing as well as higher perceptual and 
cognitive processing. The photo-receptors (rods and cones) 
in the eye are activated by light and the information is sent 
electrically to the thalamocortical system. It has long been 
noted [2, 3] that this system of the brain operates 
hierarchically: Downstream regions receive input from 
upstream regions and in turn send feedback, forming 
extensive cortico-cortical loops. Early visual components 
have been shown to respond to simple constructs such as 
spots, lines, and corners [4]; these form the lower stages in 
the hierarchy of organization. Further downstream higher 
level constructs and complex types of shape are selectively 
activated in response to a cluster of low-level features, thus 
forming more stages in the hierarchy [4, 5, 20]. Also the 
neuron response becomes independent of the exact location 
or size of the object (translation and scale invariance) [6]. In 
our simulations each stage of the hierarchy responds to a 
particular feature which is composed of multiple line 
segments. In particular we present a computation which 
starts with three line segments (“line triples”). Though the 
organization is highly simplified, the architecture is shown to 
be very effective on difficult visual applications such as the 
CMU WORD database [7]. It is also hoped that 
implementations of further downstream areas will extend the 

work to more abstract perceptual and cognitive processing 
[8, 9]. 

In Figure 1, we illustrate the working of a simplified 
form of the BDV algorithm using 4 levels of hierarchy to 
detect the number ‘8’. The first level or layer involves 
detection of the line segments (line segment extraction).  The 
second level involves converting the line-segment into line-
segment triples and the detection of various known line-
segment triples present in the image. The detection of 
specific line-segment triples is represented by the activation 
of a grid in level 2. Each individual grid in level 2 and higher 
represents a shape processor. Each shape processor is 
modeled to detect the same set of shapes and its variation. 
Level 2 elements are receptive to only a small field of the 
input image.  

 
Figure 1: The hierarchical organization of shape 
detectors operating on the optical character number 
eight.  “Bottom-Up” input flows from 1 to 2, 2 to 3 etc. 

In Figure 1, we observe that some of the shape 
processors are activated for the given input image. Levels 3 
and higher correspond to higher level constructs formed by a 
group of low level constructs.  At the top-most levels an 
image region is classified into an appropriate type. Level 3 
and 4 are under preliminary study and were implemented 
such that for the given object we know the relative activation 
pattern of other shape detectors in Level 2. A hierarchical 
organization as depicted in Figure 1 enables sharing of lower 
level shape processors by higher levels when recognizing 
other objects, and hence reducing the total memory 
requirements. For example, while detecting number ‘8’ and 
‘9’, a number of shape processors in Level 2 will be shared. 
The exact identification will be done at higher levels.  

We briefly explain some aspects of the BDV algorithm 
and its biological relevance. A given set of input neurons 
(pattern) activates a particular neuron and this set of inputs is 
loosely referred in our paper as receptive fields (RF). Any 
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two shapes are considered similar based on the number of 
activated neurons shared in their activation patterns. As a 
result of sparse population codes (SC) [10], most neurons 
are inactive; this concept is represented in a highly simplified 
form as sparse bit-vectors. The intrinsic random connectivity 
tends to select some areas of neurons to respond to some 
input features (RFs). These neurons train via increments to 
their synaptic connections, solidifying their connection-
based preferences to specific input features. After a 
simulated “developmental” phase, synapses are either 
present or absent and each neuron’s level of activation can 
be represented as the bit vector. 

Neurons activate local inhibitory cells which in turn de-
activate their neighbors; the resulting competition among 
neurons is often modeled as the K best (most activated) 
“winners” take all or K-WTA [8, 9, 11], which our model 
incorporates. These K winners activate a next set of neurons, 
termed RF2. As objects are viewed, these RF2 neurons are 
synaptically trained, becoming “recognizers” of classes of 
objects. RF2 activation can in turn be used in “top-down” or 
feedback processing, to affect the RF1 detectors based on 
what the RF2 cells “think” is being recognized. More details 
of the mechanism are shown in Figure 2. 

 

 
Figure 2: Simplified model of the B-U computation 

Figure 2 depicts the process of converting line-triple 
representations into detected shapes, termed Bottom-Up (B-
U) computation. The model described here uses 8192 
neurons to represent the first set of input feature detectors 
(RF1) and 1024 neurons for RF2; other configurations 
exhibit comparable behavior. Intuitively, increasing the 
number of neurons can be used to increase the number of 
classes of objects that can be recognized. Step 1 in Figure 2 
converts line triples into a somewhat scale invariant and 
translation invariant bit-vector representation based on the 
angular relations of line segment endpoints. The 
representation is a sparse encoding (SC), and slight changes 
in the orientation of the line segments, or movement of a line 
endpoint, lead to decreasing similarity between bit vectors 

derived from the normal and modified shapes.  An example 
for generation of the line-segment triple is shown in Figure 3 
and the encoding process is illustrated in  

Figure 4. Step 3 depicts the approximately 8,192 
vectors of 160 bits (RF1 vectors), each of which previously 
and maximally trained on a single input.  Step 2 indicates 
that the dot-product will occur between the input vector and 
all RF1 vectors.  In Step 4 the resulting matches (8,192 
match values between 0 and 160 each) are generated.  Step 5 
depicts the application of a threshold for k-WTA operation, 
with K=512.  This actually means that out of 8192 RF1 
neurons only 512 best matching RF1 neurons will be 
triggered to output. Step 6 shows the 512-hot1 of 8,192 bit-
vector (called Mid Vector), which provides input into the 
next set of 1,000 vectors (RF2 vectors, 1024-2048 hot of 
8,192). Step 7 indicates the dot-product operation between 
the inputs from Step 6 with all RF2 vectors.  The output 
indicates the match values, ranging between 0 and 512, 
indicating how well each RF2 vector matched the input. See 
[14] for further details.  

 
Figure 3: (a) shows the extracted edges in a picture. 
(b) shows the picture superimposed with the line 
segments (c) shows sample line-segment triples 
corresponding to different objects. These line segment 
triples are processed by the B-U engine for recognition. 
 

 
 
Figure 4: The process of converting a line-triplet into a 
vector of quantized angles.  0 corresponds to 0o and 
value 56 corresponds to 90o. 
 

3. Experimental Setup 
                                                
1 In 1-hot coding only a single bit is 1. In N-hot coding N bits are 1 
(may or may not be in consecutive positions). 
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The Wiry Object Recognition Database (WORD) [7] is 
used to provide a difficult dataset dependent on shape-based 
recognition.  The database contains a series of videos, in 
which a barstool is placed in several different office 
environments. The goal is to determine the location of the 
barstool in the videos. The location of the stool in the video 
frame is judged correct if the bounding box had less than 
25% area difference from the true bounding box.  

Line segments are extracted using the Canny edge 
detector implementation [12] such that approximately 400-
600 line segments are extracted per frame. The algorithm 
and parameters used in this work were chosen for their ease-
of-use combined with the fact that humans often recognize 
objects from the extracted line segments alone. The 
performance impact of using other numbers (e.g., 100 or 
1000 line segments) will be studied in the future.  

The shape detectors modeled here are believed to learn 
their shape during child development, a process during 
which 50% of all synapses die off, and presumably only the 
strongest remain.  Under these circumstances, synapses can 
be modeled as either present or absent, and each neuron’s 
input weights can be modeled as a bit-vector.  Thus 
computing the degree of match between one shape detector 
and an input shape is a matter of computing the bit-vector 
dot-product. 

Each of the 8192 upstream neurons (RF1s) was trained 
to be maximally receptive to a single input line triple. This is 
in accordance with the previously discussed physiological 
studies that found upstream neurons to be simpler than 
downstream neurons. Each RF1's line triple was randomly 
selected from one of the 22 videos of WORD. To model the 
sparse activity of the brain with sparse encoding, the 
upstream layer (so called “RF1” vectors) was made to 
activate in a K-WTA fashion, with K = 512 (6% activity 
density) in all processing.  Downstream neurons (so called 
“RF2” vectors) were trained on multiple line triples during 
the developmental period, randomly selected from those line 
triples in the videos with which no receptive field yet 
matched very well. All objects that need to be recognized are 
a combination of elements of RF2 and located at specific 
relative distances with respect to each other. To enable 
recognition, an early prototype of downstream brain regions 
was implemented, built to serve the very simple purpose of 
creating expected locations of particular shapes inside a 
recognizable object relative to other shapes within that 
object. Figure 1 depicts the full system with additional 
hierarchy (layers 3 and 4) operating over the line-triple shape 
detectors.  For each training frame of video, representations 
of line triples built from members of the training object (a 
sitting-stool) were iteratively added to a hierarchy of the 
shapes and spatial relationships using the downstream 
layer’s most active shape detector, along with its expected 
location (relative to other shapes already added to the 
hierarchy) and scale (standard deviation of line triple 
endpoints from their midpoint).  Thus, when testing on a 

new frame of video, a highly active shape detector of a 
particular scale indicates the expected locations of other 
shape detectors of a learned object in the current frame.  
Testing whether the expected shapes are at their expected 
locations (within some maximum distance) computes the 
likelihood of the visual object.  Thresholds are used to 
convert the matches between expected and actual shapes 
into recognition confidence, and confidence above a 
threshold indicates an actual guess of a recognized visual 
object.  The guesses created bounding boxes, which were 
judged as in [13] for comparison. 
 
4. Architectures for BDV 

 
A salient feature of the BDV algorithm is the high 

degree of parallelism at various levels. The simplest inherent 
parallelism is the bottom-up computation for different line 
segment triples. In our experiments most pictures contain 
about 10,000 to 20,000 useful line segment triples. Hence 
the best matching RF2 for all of these line segment triples 
can be concurrently evaluated. The next level of parallelism 
is achieved by the shape processing mechanism. For each 
line segment triple we need to find a best matching shape 
from the given table of shapes (RF2 elements).  This search 
can also be potentially parallelized to a higher degree with 
the only limitation being the communication overhead.  The 
algorithm also exhibits large amounts of bit-level parallelism 
and SIMD parallelism.  For example in the RF2 
computation we need to evaluate an 8192-bit dot-product 
and population count on the result to estimate the degree of 
match between two RF2 vectors. This can be concurrently 
executed either at the bit, byte or at higher word levels.  

Various kinds of parallelism in the BDV algorithm 
facilitate mapping it onto a variety of computing platforms. 
Also, understanding the pros and cons of each platform 
helps in the design of customized architectures for the BDV 
algorithm. Some of the computing platform choices for 
BDV algorithms are briefly discussed below. 
(1) FPGA (Field Programmable Gate Array):  
FPGA based solutions are suitable for specific customization 
of the architecture at bit-level and also have the ability to 
deliver high performance with low power requirements. 
Some of the disadvantages are high cost associated with 
high-performance FPGA and large application development 
time to achieve considerable performance. A detailed study 
of the trade-offs when mapping BDV on FPGA and the 
resulting performance achieved is described elsewhere [14]. 
(2) CELL / Play Station 3 (PS3):  
STI (Sony, Toshiba, IBM) CELL Broadband Engine 
(CELL BE) is a high-performance, low-cost multi-processor 
targeting graphics and multimedia applications. The CELL 
BE contains eight specialized Synergistic processors (SPE) 
and one dual-threaded PowerPC Processor all operating at 
about 3.2 GHz. A detailed description of the chip is present 
in [1]. The recently released Sony Play Station3 (PS3) is 



 

powered by the CELL processor and is available at about 
$500. The PS3 console offers a programmable PowerPC 
processor with 6 SPEs. It has an inbuilt Gigabit Ethernet, 
making it suitable for cluster computing. Thus, the PS3 
offers impressive performance and programmability for 
mapping the BDV algorithm. Section 5 contains the details 
of the various trade-offs involved in mapping BDV on 
CELL/PS3 The main limitation is in developing efficient 
parallelization and optimization to exploit the capabilities of 
the CELL processor. 
(3) General Purpose Computer Clusters and High 
Performance Parallel Architectures: This platform is suitable 
for large scale prototyping of BDV, and with parallel 
programming models like MPI & PVM, it is easier to map 
BDV on grids or clusters. The main disadvantages are the 
impact of communication overhead on overall performance 
and large system cost. 
(4) Programmable Graphic Processing Units (GPU): 
Recent GPUs such as NVidia’s CUDA and AMD’s CTM, 
offer affordable high performance, parallel hardware. 
Increasingly these GPUs are becoming much more 
programmable and useful for general purpose applications.  
(5) Application Specific Integrated Circuit (ASIC) or 
MPSoC (multi-processor system-on-chip): For very low 
power and small footprint, ASIC or MPSoC offers a good 
solution.  

This paper discusses the implementation of the BDV 
algorithm on the CELL architecture. In our future work we 
will be looking into GPU and ASIC/MPSoC as a computing 
platform for BDV algorithms. 
 
5. Mapping on CELL / Play Station 3 

(PS3) 
 

We now present the programming methodology and 
trade-offs involved in mapping BDV on CELL. We have 
used different levels of programmable parallelization 
available on CELL namely: (1) parallel execution of many 
CELLs (network or cluster of CELLs), (2) multiple 
programmable units executing simultaneously (namely 6 
SPEs and 1 PPE in PS3) (3) concurrent computation and 
communication (DMA operation) by the SPEs, (4) 
instruction level parallelization in the SPE with two 
instructions executing simultaneously, and (5) SIMD 
parallelization using 128-bit data path (up to 16 single byte 
operations in one cycle).  In the remainder of this section we 
examine the parallelization applied across the CELL clusters 
and within the CELL. Compiler assisted parallelization 
using IBM XL compiler [15] will be part of our future 
studies. 

For mapping the application on clusters we use a client-
server architecture consisting of a cluster of three PS3s 
controlled by a powerful desktop PC. This architecture fits 
well with our application computation requirements. The 
cluster (server) consists of multiple CELLs in charge of the 

bottom-up computations and the desktop PC (client) 
controls the overall flow of the application. For each line-
triple request, the workflow follows the process of the 
desktop PC sending the initial bit-vectors as input to the 
bottom-up engine, and each PS3 sending the output data 
structure back over the network. The desktop PC uses this 
output data structure information to prune the top-down 
search and evaluate higher levels of constructs (beyond line 
triples, to conjunctions of line triples, etc.) present in the 
image to arrive at confidence values for object recognition at 
different locations in the image. 

 
5.1 Parallelization within the CELL 

 
In this section we describe the techniques used in 

parallelizing the application within the CELL. First we 
execute the bottom-up engine on a single processor and then 
evaluate the critical functions that need to be executed 
parallelly within the CELL. A simple functional model of 
the bottom-up computation is shown in Figure 5. The Sparse 
Coding (SC) block converts the input line triplets into a 
space and scale invariant code. The RF1 and RF2 process 
input block finds the best matching line triplets from the 
reference set. The RF1 Activate pattern block implements 
the k-WTA computation. The bottom-up (B-U) engine was 
executed on a 2.13 GHz Intel Core2 (E6400) CPU. A 
fractional breakdown of execution time into functional 
bottom-up code blocks is shown in Figure 6. Approximately 
1.89ms was required to execute the B-U computation for a 
single line segment triple. This corresponds to a B-U 
computation throughput of about 526 line segment triples 
per second (526 LST/sec). In Figure 6 we can observe that 
RF1 Vector computations and RF2 Vector computations 
take more than 95 % of the overall execution time. These are 
the critical functions that need to be optimized and 
parallelized to increase the throughput of the B-U 
computation.  From these results, the runtime of processing 
an entire video frame with 30,000 line-triples can be 
estimated at approximately one minute. To execute the BDV 
algorithm on interactive robots, the recognition time of 
humans must be achieved (approximately 500 ms per frame, 
thus requiring a speedup of about 120x i.e., from 526 
LST/sec to about 60,000 LST/sec).  

 
Figure 5: Functional Model of the BU Engine 

The code size and the data size (both static and 
dynamic) need to be evaluated to effectively determine the 
memory footprint and the bandwidth requirements of the 
given application. Each SPE has a local store (LS) of 256 
KB which can be used for both code and data. This small 
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memory size influences the way code and data for the 
applications are partitioned across the CELL. For many 
programs with a small code size, function overlaying and 
resident partition management [15] might not be necessary. 
The total code size for the B-U computation is about 57 KB 
and hence no function overlaying mechanism was used in 
our implementation. 
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Figure 6: Fractional execution time of the important 
functions in the Bottom-Up engine on an Intel Core 
E6400 running at 2.13GHz 

TABLE 1:  Analysis of data structures used by BDV  
Main data 
structures 

Data 
Size 

Data usage Data 
Access 
Pattern 

Accessing 
Tasks 

(Figure 5)
RF2 Vector 
Table 

1.1 M Partitionable Linear (D) 

RF1 Vector 
Table 

160 K Partitionable Linear (B) 

Sparse 
Code Table 

125 K Static/fixed Random (A) 

SC Angle 
Table 

48 K Static/fixed Random (A) 

popCount 
RF1 

8 K Static/fixed Random (B) & (C) 

Histogram 
K-WTA 

2 K Static/fixed Linear (B) & (C) 

 
With respect to data size, we evaluated the memory 

requirement of several large data structures used in our 
application (shown in Table 1). We further classified the 
data structures based on their usage as static/fixed and 
partitionable. If a particular function or loop is parallelized to 
run across different SPEs, we need to determine whether the 
data set is duplicated in each SPE (called static/fixed data 
set) or the data set gets divided across SPEs (called 
partitionable data set). This classification is important to 
decide what type of parallelization and data access 
mechanism should be used once the application is mapped 
onto the CELL. This information is also useful to determine 
the SPE bandwidth and the SPE LS memory requirements 
for a particular parallel model. 

Furthermore, we need to determine how to map the 
data sets with size larger than the available SPE LS. To 
reduce this constraint, various techniques such as software 
cache, double buffering, pre-fetching [15], etc., can be used 
depending upon the data access pattern. For our application 
we have four large data structures (Table 1) namely RF1 
Table, RF2 Table, Sparse Code (SC) Ordering Table and 
Angle Table.  The SC Ordering and Angle tables are used 
by the PPE for input bit-vector generation. The remaining 
data sets can be accessed either through software cache or 
directly on SPE LS. Also, we observe from the algorithm 
that RF1 and RF2 table elements are accessed linearly (one 
after another in a specific sequence) during the comparison 
operation with the given input data. Hence if RF1 and RF2 
do not fit into the SPE LS, then they can utilize either double 
buffering or software cache with data access optimization to 
allow efficient access to large data arrays. 

Various kinds of generic parallel models can be 
developed from the functional model of the B-U engine. The 
possible models are: overlapped functional parallel model 
(OFP), data parallel model (DF), series-parallel model (SP), 
and overlapped series-parallel model (OSP). A model is 
termed overlapped if the communication and computation 
can happen concurrently, and hence the waiting time 
associated with communication can be mitigated.  

In a fully overlapped functional parallel (OFP) model 
each functional block is mapped onto an SPE and hence the 
actual execution time of the model is dependant upon the 
execution time of the slowest functional block. Through this 
type of parallelization, the code size restriction can be 
reduced since each function, rather than the whole 
application, is mapped to a separate SPE.  Load balancing 
issues, however, make this model difficult to implement. 
This model can be extended to process networks [16] or data 
flow networks [17] with APIs for communication and 
appropriate modeling methodology. Since the SPE LS is of 
a very small size, usage of these communication APIs will 
reduce the available memory resources even further. 

The next logical choice for parallelization is a simple 
series-parallel model (SP). This model overcomes the load 
balancing limitation of a fully overlapped functional parallel 
model by splitting the sequential model into a series-parallel 
graph at loop boundaries either manually or by using the 
compiler (OpenMP primitives). If the data and computation 
is evenly partitioned across these loop boundaries, this kind 
of parallel model exhibits good load balancing, speedup, and 
reduced SPE LS requirements. A version of a SP model for 
the B-U engine is shown in Figure 7.   

The serial portion can either be executed in the PPE or 
SPE, depending upon the complexity of the serial task. The 
main qualitative advantage of this model is lower data size 
requirement in each SPE, as well as reduced application 
latency and reduced SPE bandwidth. Two disadvantages are 
that the serial portion can affect the overall execution time 
and the presence of higher synchronization requirements 



 

will result in increased waiting time for synchronization with 
serial portions of the execution, during which all the SPE 
cores will be waiting for new data. A series-parallel model 
can be extended to an overlapped series-parallel (OSP) 
model by overlapping computation and communication 
using either a double buffer or FIFOs. Thus instead of 
waiting for the serial portion to finish its operation and 
communicate the result to the SPE, the SPE performs the 
computation for the next input data. During this time the 
serial portion completes the execution and communicates 
the data by means of DMA so that the data is ready for the 
next cycle of SPE computation. Unfortunately, this approach 
does not solve the problem caused by potentially high-
synchronization requirements between the serial and parallel 
portions.  

For much higher performance the overlapped data 
parallel (ODP) model can be employed. In this type there is 
virtually no communication between the SPEs. Earlier 
models parallelize the bottom-up so that only part of the 
code or data is mapped on to the SPE. But in ODP model an 
SPE can be treated as a full processor and complete bottom-
up computation for a line segment triple is mapped to a 
single SPE. This model requires large SPE bandwidth and 
large SPE LS because all the data and code for the execution 
of the application must be present or accessible by the SPE. 
The performance of this model is dependant upon the 
technique used to overcome the code and data size 
restrictions within the SPE LS. Table 2 gives a quick 
qualitative comparison of different kinds of parallel models.   

 
5.2 Other kinds of optimizations 
 

We now present specific optimizations carried out in 
the implementation of the B-U algorithm on CELL to 
exploit the low-level features which improves the concurrent 
execution of the code. More details of other kinds of 
programmer optimizations are available in [18]. 
• DMA alignment optimization: DMA operations in 

CELL can have a size of 1,2,4,8,16 bytes or multiples 
of 16 bytes. If a particular transaction’s address crosses 
the 128 byte boundary, the results can be achieved 
through additional DMA transactions. Hence by means 
of careful alignment of important data that is 
communicated regularly, the overall communication 
bandwidth required by the application can be 
significantly reduced. If DMA alignment optimization 
is carried out on too many data sets, then it will result in 
significant wastage of precious SPE LS memory. 

• Mailbox Vs signaling mechanism optimization: The 
CELL allows various means for synchronization, like 
regular DMA operations, mailboxes and signaling 
mechanisms. The mailbox mechanism allows 32 bit 
communication but takes about 0.5us (taking into 
account the setup and various application code 
overhead) for each 32 bit transaction. The signal 
communication mechanism allows 1-bit 
synchronization between the SPE and PPE at a much 
higher speed. Hence, the signaling mechanism was 
selected for synchronization between various tasks. 

• Branch optimization: The SPE does not have a branch 
prediction unit and assumes a sequential program flow. 
Thus pipeline stalls due to mispredicted branches can 
be very costly (on the order of 18 to 19 cycles). Various 
techniques such as function inlining, loop-unrolling and 
branch hinting mechanisms were used to reduce the 
branch misprediction overhead.  

• Compute intensive kernels in the BDV code (e.g., dot-
product and population counting) can be significantly 
speeded-up by means of the various CELL SIMD 
instructions. After optimizing the kernels using special 
128-bit SIMD instructions such as absdiff, abs_sumb, 
spu_add, spu_cntb [18], one RF1 inner loop 
computation takes only 31.2 cycles on an average (the 
desktop PC version takes 164 cycles) and RF2 inner 
loop takes about 246 cycles (the desktop PC version 
takes about 2879 cycles).  Thus with superior 128-bit 

Table 2: Comparison of different application parallel models on CELL 

Model name Application 
Latency 

Bandwidth 
usage 

Memory 
usage 

Modeling 
effort 

Performance 

Functional parallel model High Low Low Low Low-Medium 
Series-parallel  Medium Medium Medium Medium Medium 
Overlapped series-parallel Low Medium Medium Medium-High Medium-High 
Overlapped data-parallel  Medium High High High High 
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Figure 7:  Parallel Model for Brain-derived Vision algorithm. Parallel part of the code is indicated by cascaded box 



 

SIMD instruction set and SPE instruction fine-tuning, 
impressive speedups are possible.  
We implemented the series-parallel (SP) model on the 

CELL with various optimizations described above. On a 
single CELL present in PS3 we measured a speedup of 57 
times using the series-parallel model compared to serial 
execution on a desktop CPU (E6400) running at 2.13 GHz. 
It should be noted that no special optimizations using SSE2 
or MMX instructions were carried out on the desktop PC 
running Intel Core. From the performance of the series-
parallel model we could estimate the performance of other 
parallel models (results are shown in Table 3). These 
estimations are very useful for obtaining approximate 
performance of various kinds of parallel models from only a 
single implementation. The execution time of an overlapped  
data-parallel model was estimated by evaluating the 
computation time for each function when it is completely 
mapped onto the SPE and assuming that we can overlap the 
computation and communication. Hence, for example, the 
execution time for RF1 processing in an overlapped data-
parallel model is equal to the sum of the execution times of 
RF1 processing on each SPE in an unoverlapped series-
parallel model. The execution time for an overlapped series-
parallel model can be evaluated from a series-parallel model 
using the approach shown with an example in Figure 8. 
When it comes to estimating the overlapped function 
parallel (OFP) model, SC generation is mapped to the PPE 
and each function is mapped to a SPE (RF1 Process Input, 
RF1 Activate, and RF2 Process Input). Since we have 6 
SPEs we can execute two overlapped function parallel 
models in a CELL. Hence the total execution time for an 

overlapped function parallel (OFP) model was obtained by 
taking the slowest execution time (namely RF1 Process 
Input) and multiplying by 2. It should also be noted that the 
two functions: Global histogram and Global MidVector 
(Table 3, functions (C) and (E)), take into account the 
serial computation part, and communication between the 
serial and parallel parts. This comes into the picture only in a 
series-parallel model. 

 
6. Performance Comparison 
 

We evaluated the performance of the BDV algorithm 
on other architectures like FPGA and clusters. A detailed 
description of mapping BDV on FPGA is presented in [14]. 
It was shown in [14] that a single Xilinx Virtex4 FPGA 
provided a 62x performance improvement and 2500x 
performance-per-watt improvement over a general purpose 
CPU for the B-U computation.  The power dissipation was 
estimated to be around 1.63W and speedup per $1K was 
about 6.27. 

We also evaluated the performance of the BDV 
algorithm by mapping the application on PS3 clusters.  After 
eliminating some of the bottlenecks associated with Gigabit 
Ethernet communication (which requires all PPE cycles to 
achieve 500mbps) we scaled the implementation to a cluster 
of three PS3 and achieved a full round trip time of 1.24 
seconds on a video frame with 93,267 line triples achieving 
a speedup over the desktop of 140x.  The performance on 
PS3 cluster is shown in Figure 9. We are also currently 
evaluating the scalability of the BDV algorithm on large-
scale PC cluster to find the potential scalability of the model. 

Table 3: Actual and Estimated Performance for BDV on Desktop PC and PS3 with a single CELL. The approach used 
to calculate the stages in an overlapped series-parallel model is shown in Figure 8.  

Function name 

Serial 
model 
(us) 

series-parallel  
(SP) model  

(us) 

Overlapped 
Data-parallel 

(ODP)  
model  

(us) 

Overlapped 
functional  
parallel  

(OFP) model  
(us) 

s
t
a
g
e 

Overlapped 
series-
parallel 

(OSP) model
(us) 

(A) Sparse coding 0.89 0.80 0.80 0.80 1 0.80 
(B) RF1 Process Input 603.53 13.78 82.66 82.66 2 13.78 
(C) Partial to Global 
Histogram 0.00 2.71 0.00 0.00 3 13.78 
(D) Generate Partial 
MidVector 13.34 2.48 3.87 3.87 4 2.71 
(E) Partial to Global 
MidVector 0.00 1.91 0.00 0.00 5 2.48 
(F) RF2 Process Input 1276.68 12.91 77.23 77.23 6 12.91 
(G) Dump Output 0.60 0.75 0.75 0.75 7 12.91 
 8 0.75 
Performance Evaluation Actual Actual Estimated Estimated  Estimated 
Effective time per LST 1895.04 35.34 27.55 41.33  30.06 
Speedup w.r.t serial 1.00 53.63 68.78 45.85  63.04 

 



 

Built from base model PS3s, and using two built-in gigabit 
network interfaces and one PCI gigabit network card, the 
cost of the cluster hardware was approximately $1500.  Thus 
the speedup of more than 130 times was achieved at a cost  
similar, or cheaper than a top-of-the-line desktop machine, 
enabled by the intrinsically parallel nature of the derived 
brain algorithms. 

 
Figure 9: Scalability of BDV algorithm on PS3 Cluster 
 
7. Object Recognition Experimental 

Results 
 

Much work in computer vision and image retrieval has 
been performed using pattern recognition theory (e.g. [19]), 
which treats an image or image sequence as a vector, for 

which rigorous mathematical frameworks have been 
developed and on which machine learning algorithms such 
as traditional classifiers can operate.  On the other hand, the 
models presented here share more in common with part-
based image analysis, [3,9] and more specifically those 
systems that attend to the type of part being observed and the 
spatial relationships between them [21]. A difficult problem 
class in computer vision is that of shape based recognition, 
where the textures of contiguous pieces of an object are not 
sufficient for traditional algorithms to perform recognition. 
To address this difficult area of computer vision, we used 
videos from the Wiry Object Recognition Database [7] and 
compared our engine with the precision of the only other 
system reporting results on this dataset; namely the 
aggregation sensitive version of the cascade edge operator 
probes (EOP-AS) in [13].  In this dataset, the task is to find a 
sitting-stool in various cluttered office scenes.  

Results of our experiment are given in Figure 10. The 
BDV model (8,448 RF1 vectors, 1020 RF2 vectors) was 
trained with first frames of videos 0 and 2 (Room A401 clips 
5 and 6) and tested on 30 frames of video from different 
rooms (Room A408 clip 4 and Room sh201 clips 1 and 3). 
The activity supporting evidence threshold was set to 98.5%, 
such that a neuron's observed activity (using the previously 
described algorithm) was considered supporting evidence if 
the probability of the expected neuron occurring so active 
and close to the expected location was less than 1.5% (other 
thresholds could be selected and their impact on 
performance is currently under study).  Stools were guessed 
in order of the most unique line segments part of some 
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Figure 8: An illustrated example of the performance of (a) overlapped parallel model (b) un-overlapped parallel 
model. In the overlapped parallel model the SPE starts the computation for the second input data before proceeding 
to the next stage. P1(2) (S1(2)) indicates the execution time for the 2nd iteration of task 1 on PPE (SPE), C1(2) indicate the 
communication time for data produced by task 1 in its 2nd iteration 



 

supporting evidence.  For comparison, results using the 
EOP-AS [13] were estimated from the reported accuracy on 
"other room" test sets of 22% (8.8 false positives per image) 
used as the probability of an arbitrary true positive guess.  In 
Figure 10 the y-axis is the probability of finding the stool 
within the number of guesses defined by the x-axis. We can 
see that the neocortical model achieves similar performance 
to EOP-AS.  As the system increases the number of guesses 
they make per image from 1 to 5, the probability of finding 
the sitting-stool in the image increases from 20% to 70% 

. 
Figure 10: Comparison between our neo-cortical model 
and Cascade EOP-AS [13] model 

8. Conclusion 
 

The results indicate that computational models derived 
from brain circuitry are not only capable of delivering good 
performance on hard real-world tasks such as shape-based 
vision, but also carry with them the capacity for efficient 
implementation on highly parallel hardware.  As the number 
of processors per CPU (or GPU) continues to increase, 
algorithms derived from brain circuitry are uniquely situated 
to take an advantage, resulting in impressive speedups over 
their single-threaded implementation. Future work includes 
accelerating the downstream brain regions that receive input 
from those accelerated here in order to support the real-time 
speeds necessary to drive interactive robots.  These regions 
“recognize” relationships between objects and drive the 
object search by communicating Top-Down feedback of 
semantic context to earlier levels in the hierarchy.  To this 
end, design of computer architecture for efficiently 
accelerating these and future brain-derived algorithms is also 
under study. 
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