
MPSoC verification using a unified random program
approach

Methodology, tool and case-study

Jayram Moorkanikara Nageswaran
∗

Philips Research, Eindhoven
Ronald Bos

Philips Research, Eindhoven

ABSTRACT
This paper discusses a simulation-based verification approach
for Multiprocessor Systems-on-Chip using a unified random
program generator. Similar to design abstration, we first
explain the concept of verification abstraction. Then we
analyse the typical bugs encountered in a MPSoC design
and levels of verification abstraction at which they can be
found. Based on this analysis, we derive an unified approach
for generating random MPSoC test program with a single
architecture specification, and test constraint specification.
The main idea is to use an unified random program gener-
ation approach which covers different levels of verification
abstraction and allows to trigger bugs mainly related to in-
terconnection network and cache-coherence logic. The ap-
proach explained in this paper was applied in the verification
of cache-coherence logic in Wasabi media MPSoC at Philips
Research, and helped us to discover many bugs not discov-
ered by other approaches. The tool has been used for the
verification of different MPSoC RTL models, SystemC mod-
els because of its configuration and abstraction features.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Hardware Verification, Random Program Generation, MP-
SoC

1. INTRODUCTION
Verification of a System-on-Chip (SoC) is considered by

the industry as one of the most important and a critical
phase in an SoC development project. Verification ensures
that the SoC complies with its specification, both in terms of
functionality and performance. Many surveys of industrial

∗Currently working for his PhD at University of California,
Irvine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MTV ’06 Austin, Texas USA
.

Complexity
of writing
tests and
portability

Easy

Difficult

Debugging,
corner cases,
timing test

Easy

Difficult

Transaction level

Signal level testbench

Assembly level

System−level

Application level

Figure 1: Various levels of test abstraction for veri-
fication

projects [3] showed that more that 60-70 % of the develop-
ment time is spent on functional verification, debugging and
validation. Also more than 50 % of the total human resource
is spent on the verification phase alone. Thus new advances
in verification methodology are crucial for surviving the SoC
revolution [6].
In simulation-based verification methodology, verification en-
gineers create testbench which consists of a large body of
tests (referred as test programs or test vectors). Each test
is applied on the system-under-test (SUT) and its result is
checked for compliance with the system specification. Similar
to design abstraction, test programs can be specified at vari-
ous levels of abstraction with respect to the underlying hard-
ware. As shown in Fig. 1, a signal-level RTL testbench writ-
ten in Verilog or VHDL language operates at the lowest level
of abstraction (actually, no abstraction), directly manipulat-
ing the hardware signals, and checking for the correctness
of the response. The transaction-based verification(TBV)
[8, 12] methodology increases the level of verification ab-
straction by grouping low-level test sequences into logical
system-level ’transactions’ of a particular type. The system-
level testbenches written in C/C++ tests the SUT at even
higher levels of abstraction and are usually employed to ver-
ify higher level properties of the system (cache coherency,
cache consistency etc).
As shown in Fig. 1, when the level of verification abstrac-
tion is increased, it becomes easier to write, generate and
port the test programs to different systems. At the same
time, it becomes harder to create a particular timely intri-
cate test pattern (usually called a corner case) to trigger
difficult bugs, and also harder to debug the design when the
verification abstraction level is increased. Therefore when
the verification abstraction is increased, larger number of

simulation cycles need to be spent in order to increase the
probabilty of triggering the corner cases bugs. Similar result
was reported in [2].
At each level of abstraction, test could be either a directed
self-test or a constrained random test. Directed self-test are
usually hand written to test a particular functionality of the
design based on the design specification. However, as the
complexity of the SUT increases it becomes hard to cover
all the intricate cases using directed approach alone. In most
cases constrained randomization is the key technique to au-
tomate the test process and cover large state-space of com-
plex MPSoC. We remark that since verification at high level
of abstraction requires a larger number of tests, randomiza-
tion becomes particularly suitable as it allows to generate
them automatically.
As SoC design progressesfrom uni-core towards multi-core
systems, the verification complexity increases and imposes
new challenges. Some of the major issues which need to
be addressed in the verification of programmable MPSoC
systems are verification of the cache-coherency and mem-
ory consistency properties, and guaranteed absense of race-
conditions resulting in deadlocks, live-locks and starvation[9].
.
In this paper we present a tool and approach that mainly
targets verification of cache-coherency properties, deadlock
and race-conditions of MPSoC. The tool is called Reconfig-
urable Offline Multi-processor Random Program Generator
(or, ROMRPG). The tool can be configured to generate self-
checking MPSoC test programs which can be run on differ-
ent platforms at different stages of verification.
The paper is structured as follows. We first discuss related
works in Section 2. Section 3 provides the motivation for
the development of the ROMRPG tool with a short descrip-
tion of a generic MPSoC architecture, and summarize some
typical kinds of error scenarios (or bugs) which are encoun-
tered in practical design projects. Section 4 describes the
overall structure of the ROMRPG. Section 5 presents a case
study showing howthe tool has been applied for MPSoC ver-
ification. Section 6 presents the algorithm used in the tool
and some results obtained with the tool. Finally, Section
7 discuss the conclusions, and future works related to this
paper.

2. RELATED WORKS
Verification of uniprocessor architecture by means of ran-

dom program generation (RPG) at processor instruction
level was presented by [11]. The approach presented in [11]
is very useful for verifying the processor pipeline, bus in-
terface, and L1 cache interface. An attempt to extend this
approach for MPSoC has been presented in [16]. This ex-
tended approach can be applied only on specific architec-
tures and is not a generic approach. Another tool called
ARCHTEST [7] could be used to verify the memory con-
sistency properties of multiprocessor or multicore system.
This comes under the category of system-level test-bench
(Fig. 1) and is useful only in the latter stages of verification
to check cache-consistency properties[1]. Wood et. al [20]
also present a random test generation approach for verify-
ing multiprocessor cache controller. This approach is suit-
able for assembly level verification of multiprocessor, and
does not provide ways to configure the MPSoC architec-
ture and constrain the test generation. Transaction-level
verification approaches [5, 8] are mainly suitable for block-

L1$

ARM

L1$

TriMedia

L1$

TriMedia

L1$

TriMedia

L1$

TriMedia

L1$

TriMedia

PCI expr
master

PCI expr
master

PCI expr
master

PCI expr
master

PCI legacy
master

DDR ctrl

memory group

client group

PCI expr

slave

Coherent Communication network

and L2 Cache Controller

Coproc

HW

L2

RAM

data

To DDR memory To other tiles and external FPGA link

Tile

Wasabi SoC

PE0 PE1 PE2 PE7 PE8

SRAM

SRAM

SRAM

Figure 2: Philips Wasabi media CMP: An example
of an MPSoC architecture

level verification, and cannot be easily applied for MPSoC
cache-controller verification (which is one of the main goals
of this paper). A Trace-driven validation methodology for
MPSoCs is presented in [4] which can be used along with
our approach to validate programs with true data-sharing.
To the best of our knowledge none of previous approaches
address the problem of holistic verification scheme for tar-
geting different levels of abstraction.

3. MOTIVATION
Different verification tools are applied in the real-world

projects to verify designs at each level of abstraction (like
block, processor or system level etc) In our case, during the
verification of the Wasabi CMP project [18], three verifi-
cation teams were implementing different verification tools
each addressing different level of abstraction. One team
was applying the concept of e-verification components[5],
another team implemented a low-level traffic generator con-
trolled by a script, and another team was doing system-level
verification by incorporating the complete system (including
cache-coherent processors). We observed that the underly-
ing mechanism used by different teams were almost similar
(i.e. trying to check for coherency violations, or checking
various protocol issues). The only difference was in the in-
put language, and some specific features of the applied tool.
It would make more sense to use a single flow which can gen-
erate test for each abstraction level by generating the test
program in the required format from a generic trace format.
Also in all previous approaches[20, 16] customizations and
configurations of the tool for the intended SoC architecture
were always embedded within the test code, which made
understanding and re-using the approach for verifying other
MPSoC quite cumbersome.
The approach which used in this paper is motivated by our
experiences obtained during the verification of the Philips
Wasabi media processor [18]. Wasabi is a shared-memory
multiprocessor (shown in Fig. 2) and consists of a num-
ber of processing elements (PEs), which are typically pro-
grammable media-processors (TriMedia media CPUs [17])
and ARMs and few hardware coprocessors (for graphics ac-
celeration, image scaling etc), all connected with each other,
and to the system’s L2 cache via a high performance inter-
connection network (HPIN). The chip supports hardware
cache-coherency or memory-coherency protocol[9], which en-
sures that every processor receives the latest content of the

memory location even if the content resides in another pro-
cessor’s private L1 cache. In general, any memory operation
performed by a (co-) processor PE, which cannot be served
by the PEs L1 cache results in a transaction (usually a se-
ries of transaction) serviced by the HPIN.At any cycle each-
PEcan initiate a new transaction, and each transaction takes
multiple cycles for completion. Furthermore, since PEs are
able to issue multiple outstanding transactions, the num-
ber of transactions being concurrently serviced by HPIN is
quite large (up to 20-30). Under many situations the newly
issued transactions can be dependent on the behaviour of
those already under execution. These situations will be re-
ferred to as ”corner cases”, ”transition cases” or ”race con-
ditions”. Such cases should be extensively tested during the
verification process. Typical class of verification targets are
summarized below.

• Deadlocks: Though the actual underlying protocol used
by the interconnection network for communication and
cache-coherence can be guaranteed to be deadlock free,
deadlock can still arise due to various implementation
decisions. This is a recurrent problem that needs to
be specifically addressed in the verification approach.

• Memory coherency violations: If we look into the im-
plementation of a HPIN for many SoCs[18], large num-
ber of bufiers or queues are employed at different parts
to increase the concurrency, and thus the throughput
of the chip. If the order of the transaction response or
the selection of the right buffer is altered then mem-
ory coherency breaks, resulting in incorrect execution
of the program.

We remark that in some cases formal verification have been
applied by other authors to identify potenetial deadlocks.
But for a large design such as HPIN with many complex
interacting FSMs, it is hardly feasible due to state explo-
sion of the composite systems. Therefore we have chosen
for simulation-based verification. Due to complexity of the
Wasabi SoC, it is not feasible to explicitly trigger all the
corner cases by means of directed tests. These observations
have motivated us to develop a tool for simulation-based
verification which allows to trigger many corner cases im-
plicitly and automatically. Also nowadays MPSoC comes in
various flavour with different cache configuration, cache size,
coherency mechanism, interconnection type etc. Hence we
implemented the idea of single, separate architecture speci-
fication and a separate user-defined constraints to drive test
at different level of abstraction and targeting various MP-
SoC architectures. This systematic flow and approach for
addressing the verification of MPSoC by using random pro-
gram generation is the main contribution of this paper.

4. ROMRPG: ORGANIZATION AND COM-
PONENTS

In the previous section we gave a brief description of the
CMP architecture, and typical error scenarios which could
happen in the implementation of such SoC architecture. Er-
ror conditions arise when the HPIN or the PEs are unable
to correctly handle the incoming transactions. These error
conditions are triggered by the ROMRPG tool. ROMRPG
is designed to be a customizable, general purpose tool to
automate the process of verification of a broad classes of
MPSoCs.

The ROMRPG tool (represented in Fig. 3) takes a memory

Dtree file C file eVC/MTL
Generator

Customised
Generator

TM .rpg
Generator Genenator generator

ROM−RPG

CORE

<generic format>

SHARED
MEMORY

MODEL

<link to simulator>> <link to FPGA>

<processors>
<Simulator with>
<link to System>

<with traffic>
<generator>

TM−RPG

Test specs
(memory region

constraints

MPSoC

and Specification
Configuration

config and

Figure 3: ROMRPG tool components

region specification, user-defined constraints, a MPSoC ar-
chitecture specification, and generates generic traffic trace.
The traces are used by the PEs to initiate appropriate trans-
actions. Based on the settings of the tools it is possible
to generate self-checking programs, or rely on the run-time
protocol checker [14] to detect the protocol violations. Self-
testing programs can only be generated for deterministic
memory transaction, where it is possible to predict the cor-
rect outcome of a memory transaction during program gen-
eration phase. Self-checking programs are better than run-
time HW checkers for simulation or validation scheme, where
implementing a run-time protocol checker is infeasible (like
in emulators or prototype silicon). A very simple example to
illustrate the kind of output generated for a three CPU sys-
tem is shown in Fig. 4. Each of the PEs or traffic generators

CPU2CPU1CPU0

.

.

.

.
write(addr B);

.
read(addr B);

(other ops)

.

.
write(addr C);
(other ops)
.
.
read(addr C);

.

write(addr A);

.

.

.
read(addr A);

.

(other ops

.

check();
.
.
barrier(); ..

.

check();

barrier();

check();
.
barrier();.

Figure 4: Ilustration of kind of output generated by
ROMRPG

essentially performs various kinds of memory operations. If
we abstract these memory operations from the type of traffic
generators, we can classify these operations into one of the
following types:

1. simple write (attributes)
2. read and check (attributes)
3. read without check (attributes)
4. atomic write (attributes)
5. atomic read (attributes)
6. barrier sync (num cpu)

7. user defined operations (...)
The ROMRPG core generates memory operations in the
generic format (represented in Fig. 5), and the tool’s back-
end converts them from the generic format to an appropriate
format needed by the traffic generators or PEs.
The attributes (labed above as arguments in the generic
memory operations) are usually addresses, length of trans-
action, transaction type, array of data, data size, iteration
times etc. The constraints for each of the attributes are
specified using SystemC verification (SCV) constrained ran-
domization facilities[15]. The attribute ’transaction type’
could be cached, un-cached, and other types depending upon
what is supported by the underlying platform. By means of
the attribute ’iteration times’ we specify how many times the
given transaction need to be repeated. ’Iteration times’ at-
tribute is an important idea to automatically generate back
to back transaction of various types which are hard to gen-
erate using just simple randomization technique.
We briefly describe in this paragragh some non-intutive op-
erations classified above. In atomic write operation, only
one PE can update a memory location, and thus determin-
istic results can be ensured for more than one updates. In
read and check operation, along with the read transaction,
the ROMRPG supplies the expected value which need to
be checked against the result of this transaction. In case of
any mismatch between the expected data and the returned
data, the test code jumps to an error sub-routine with rel-
evant information for debugging. In barrier sync, a very
common scheme for inter-process synchronization used in
parallel programming, all the PEs waits until all the other
PEs reach and execute the barrier synch operation. Barrier-
based synchronization is very useful to generate determinis-
tic self-checking parallel programs involving true-sharing of
data[16]. Other than the given standard operations, user de-
fined operations are also supported to allow customization,
and generation of new sequence of transactions, which are
difficult to automatically generate using simple randomiza-
tion approach. An example for user-defined operation is a
sequence of back-to-back store/load operations on same ad-
dress. This kind of customization allows the verification en-
gineer to come out with interesting sequence patterns which
are almost impossible to generate by randomization.
The addresses within the data memory region or section
where various operations are performed can be configured
by user-defined constraints. The tool consists of certain
standard configured constraints or modes like aligned ad-
dressing, un-aligned addressing, interleaved addressing, L1
cache-boundary crossing addressing, un-restricted address-
ing etc. Alignment of the addressing is done with respect
to the L1 cache-line boundary (specified by the architecture
description). In ’interleaved addressing’, the first word of
an address is given to PE0, the next word to PE1, so on
until PEx and the assignment pattern repeats thereafter.
This scheme of addressing is useful for false-sharing based
MP programs [16]. In ’un-restricted mode’ no self-checking
is done as we do not impose any restriction or constraints
in addressing various data section of the memory region by
different PEs. The system should rely on the run-time co-
herency checking mechanism [14] to do the necessary mem-
ory coherency checking or use trace-driven checkers [4].

5. ROMRPG: CONFIGURATION AND CASE-
STUDY

(* thread0 header *)
(* function0 header *)
/*step0:*/ operation function1 (arguments);
/*step1:*/ operation function2 (arguments);
....
/*step 20:*/ simple write (addrA, iter times, ...);
/*step 20:*/ simple write (addrB, iter times, ...);
....
/*step 29:*/ read and check (addrB, iter times, ...);
....
/*step 49:*/ read and check (addrA, iter times, ...);
(* jump to next function *)
(* function0 footer *)
....
barriers sync (num cpu); /* synchronization */
....
(* functionN footer *)

Figure 5: Generic Program Format. All the state-
ments between (*, *) and the operation functions
(like read and check) are in-lined into appropriate
code by the back-end of the tool. Statements within
/* */ are comments.

Application of the tool to uncover bugs in the MPSoC im-
plementation requires a systematic approach of going from a
simple configuration to detailed configuration. A systematic
verification process for a typical shared-memory MPSoC is
explained in the paper [16]. It consists of four modes of veri-
fication namely: Non-sharing, false-share, deterministic true
sharing and non-deterministic true sharing. Each of these
modes correspond to different ways of sharing data between
different processors. All these modes are easily configurable
in ROMRPG by proper selection of different configuration
parameters in the tool (explained below).
In order to simplify the allocation of memory region to dif-
ferent processor, and also to incorporate various modes of
sharing we use a generic memory allocation model shown
in Fig. 6(b). A sample memory configuration specification
is shown in Fig. 7(a). Similarly a part of the architecture
specification is shown in Fig. 7(b). The current specifica-
tion scheme is simple and consist of basic parameters to
understand the configuration of the MPSoC, and in future
we intend to use Architecture Description Language (ADL)
based description or XML for this purpose. We will briefly
explain some of the parameters associated with the memory
allocation model and specification. By controlling these pa-
rameters it is possible to apply different kinds of traffic to
the MPSoC.
The distinct part of memory which is allocated to each ini-
tiator is called a chunk. Every initiator owns the chunk of
memory on which it can perform different kinds of opera-
tions. The kind or type of traffic which can be generated on
each chunk of memory is called an operation. Each operation
(described in 4) has a number of attributes or arguments like
address, data, number of data, and others. For each write
operation a corresponding read and check is scheduled or de-
layed after some random number of steps, but less than the
maximum value specified by the user (called maximum step
delay). By controlling the maximum step delay parameter
it is possible to generate a realistic traffic like back-to-back

Banks
L2

TM1
Core

Chunk
One

Cache line

High Performance Interconnection Network
HPIN

L1 Cache L1 Cache L1 Cache

TM2
Core

TM0
Core

(a) Schematic representation of the access
pattern of L1 Cache by TM Core

Memory
region

Block
One

cache−line=64 Bytes, Chunk=48 Bytes
Block=144 Bytes, Memory region=32KB

ROM−RPG tool. Setting for an example,
(b) Memory region representation of the

TriMedia CPU (TM)

Figure 6: Example of ROMRPG tool customization
(a) Representation (b) Memory region and its set-
tings

traffic, sparse traffic etc.

num_cpus = 3

L2_cache_size = 1 MB
L1_line_size = 64 bytes
L2_line_size = 256 bytes
num_banks = 8

burst_size = {1:16}
HW_cache_coherence = true

(b)

L1_cache_size = 64 kbytes

bus_width = 64 bits

memory_region_size = 1 MB
chunk_size = 48 bytes
num_of_masters = 3

num_operations = 10 K
maximum_step_delay = 100
self_checking = true

memory region = A

ops_per_function = 1000
enable_barrier = true

(a)

Figure 7: (a) A sample memory configuration for
test generation. (b) A sample MPSoC configuration
specification

An example for the memory allocation, and the impact of
it on the given SoC platform is shown in Fig. 6. In this
example we have configured the ROMRPG to generate false-
sharing traffic. False-sharing happens in cache-coherent MP-
SoCs, if two processors access memory address which fall on
the same L1-cache line, but at different memory location.
The MPSoC in 6 consist of 3 Trimedia Processor with a L1-
cache line-size of 64Bytes. The memory map is configured
as follows:memory region = 32KB, chunk size = 48 Bytes.
The given chunk size causes cache-line conflict between three
processor as indicated in 6(a), causing false sharing between
TM0 and TM1, TM1 and TM2. To generate a configuration
without any sharing (non-sharing) we can set the chunk size
as 64 Bytes, so processors can make accesses to its L1 cache
content without causing any cache-coherence traffic.

6. ALGORITHM AND RESULTS
Here we will sketch the algorithm used in the ROMRPG

core (boxed in Fig. 3 as A) to generate the generic traffic
format shown in Fig. 5. Pseudo-Code:1 describes the algo-
rithm for generation of MP program with N threads. In
case of hardware based traffic generator that does not have
the notion of thread and context-switching, one thread is as-
signed to one initiator permanently. In simple terms, each
MP program has a number of threads. Each thread is fur-

Pseudo-Code 1 ROMRPG Core Implementation

1: stepQueue ⇐ NULL

2: sparseMemory ⇐ 0
3: finishQueue ⇐ NULL

4: {generate thread header for all threads}
5: while stepNo < MAX STEP do
6: for i = 1 to N do
7: funcStepNo = stepNo%STEPS PER FUNCTION ;
8: if funcStepNo == 0 then
9: {generate function header}

10: end if
11: {get operation type for this step from stepQueue}
12: if opType == readType then
13: {get address from stepQueue}
14: {get recent data from the sparseMemory}
15: {get other atributes satisfying constraints}
16: {get additional constraints based on output format}
17: {generate appropriate read operation with attributes}
18: {put operation into finishQueue}
19: else
20: {select suitable write type simple write, atomic write}
21: {select suitable attributes statisfying constraints}
22: {check more constraints from finishQueue based on

output format}
23: {generate the write operation with attributes}
24: {Find a free step from stepQueue within maximum step

delay}
25: {Schedule read operation by putting into stepQueue}
26: end if
27: if funcStepNo == STEPS PER FUNCTION

then
28: {if enabled generate barrier operation}
29: {generate function footer}
30: end if
31: end for
32: end while
33: {generate thread footer for all threads}

ther split into number of functions having a function header
and footer. Each function has M number of steps. In each
step we generate one operation of a particular type. The
various arguments of the operation should satisfy the con-
straints and adhere to the SoC architecture specified by the
user. SytemC verification library returns appropriate at-
tributes statisfying the given user-defined constraints. We
now briefly discuss the important data structures used in
Pseudo-code:1. We have two linked list data structure for
each thread. One linked list corresponding to the scheduled
operations (stepQueue, and arranged based on step number.
Another linked list corresponding to the executed operations
(finishQueue), and is used for checking dependency which
is useful for generating Dtree[13] based code. We also have
a global sparse memory data structure (sparceMemory),
which maintains the value of different memory location at
given time, and is used for generating checking operation to
validate memory coherency.
The tool was applied for verification of different implemen-
tation of MPSoC like in simulator, various MPSoC RTL
implementation. The generic interface allows to customize
the tool for new simulation platforms or simulation accel-
erators. A detailed application-level coverage statistics is
generated by the tool after each test-case generation. The

detailed coverage statistics consist of percentage of different
operations generated for each thread and also address re-
lated statistics. These informations are useful in fine-tuning
the various configuration parameters. We discovered vari-
ous kinds of bugs related to deadlocks, and incorrect memory
coherency in the simulator, and the MPSoC RTL implemen-
tation in the Wasabi project. Since many of the bugs which
were discovered involves detailed description of the archi-
tecture we omit the details of the bug scenario description
in this paper. With simple configurations we could achieve
more than 90% code coverage without much effort. Further
configurations and constraints are necessary to achieve 100
% line, and state machine coverage.
We also noticed some short-coming in the methodology pro-
posed in this paper. Firstly, detecting the error condition
or bug is only one aspect of the design verification. From
this point of mis-match between the expected result and
the actual result, we need to detect the point in the RTL
code where the actual bug occurs. This is a challenging and
a tedious task which is not addressed in this methodology.
Alternative approaches presented in [10, 19] can be used
in combination this flow to address the problem. Secondly,
adapting the constraint and traffic pattern after analysing
the code-coverage and output statistics result is still a man-
ual process. New approaches are required to complete the
feedback loop and ensure efficient generation of traffic pat-
tern so that better coverage can be achieved without much
manual intervention.

7. CONCLUSION
A thorough verification plan should use a mix of different

approaches, and an RPG approach is essential to identify
weakly tested parts of the SoC design. It is almost impos-
sible to generate all the corner-case, and detect bugs using
truly or fully random programs. Constraining and target-
ing ROMRPG tool towards specific modules or functionality
can only detect potential bugs. Hence it is essential for any
RPG tool to support various configuration and constraints
during program generation by which different part of the
design can be stressed. Ideally an RPG tool should come
during the later stage of the verification flow when all the
directed and performance test-suites were successfully run
on the RTL. Thus all the elementary or simple bugs are fixed
before RPG, and RPG should mainly be used for continuous
regression to reveal verification loopholes. Another aspect
which was observed during various exercise is that the RPG
tool should ideally match the module or design component
verified. For example, if we are verifying an interconnection
network, the RPG traffic should be the traffic directly driv-
ing the interconnection network and not coming as a side
effect of other hardware component like processor etc. By
this way we can directly stress the module and control the
test pattern needed for verification.

8. ACKNOWLEDGMENTS
The authors thank the entire Wasabi design and verifica-

tion team at Philips Research for their support and technical
help.

9. REFERENCES
[1] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer,

29(12):66–76, 1996.

[2] M. G. Bartley, D. Galpin, and T. Blackmore. A
comparison of three verification techniques: Directed
testing, pseudo-random testing and property checking.
In DAC, pages 819 – 823, 2002.

[3] J. Bergeron. Writing testbenches: Functional
verification of HDL Models. Kluwer, 2003.

[4] J. Bhadra, E. Trofimova, and et. al. A trace-driven
validation methodology for multi-processor socs. In
IEEE SoC Conference, 2006.

[5] Cadence/Verisity. E-verification component.
http://www.verisity.com.

[6] H. Chang, L. Cooke, and et. al. Surviving the SoC
Revolution. Kluwer, 1999.

[7] W. H. Collier. ARCHTEST by multiprocessor
diagnostics. www.mpdiag.org.

[8] S. Cox, M. Glasser, W. Grundmann, and et. al.
Creating a C++ library for transaction-based test
bench authoring. In FDL forum, France, 2001.

[9] D. E. Culler, J. P. Singh, and A. Gupta. Parallel
Computer Architecture, a hardware/software approach.
Morgan Kaufmann Publishers, 1999.

[10] S. Fine, S. Ur, and A. Ziv. Probabilistic regression
suites for functional verification. In DAC, pages 49–54,
2004.

[11] L. Fournier, Y. Arbetman, and M. Levinger.
Functional verification methodology of
microprocessors using the genesys test-program
generator. In DATE, 1999.

[12] T. Grotker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Springer, 2002.

[13] J. Hoogerbrugge and L. Augusteijn. Instruction
scheduling for TriMedia. Journal of Instruction-level
Parallelism, 1999.

[14] R. Raghavan, J. Kreulen, and et. al. Mutiprocessor
system verification through behavioral modeing and
simulation. In IEEE Phoenix Conf. on Computer and
Communication, 1995.

[15] J. Rose and S. Swan. Systemc verification
randomization.
http://www.openverificationfoundation.org/.

[16] M. Typaldos and B. Cavanaugh. Random test
generation for multi-processor systems. White paper
at www.obsidiansoftware.com.

[17] J. van de Waerdt and S. Vassiliadis. Instruction set
architecture enhancements for video processing. In
Proc. of the 16th Int. Conf. on Application-specific
Systems, Architectures and Processors, July 2005.

[18] J. van Eijndhoven, J. Hoogerbrugge, M. N. Jayram,
and et. al. Cache-coherent heterogeneous
multiprocessing as basis for streaming applications. In
Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices, volume 3,
pages 61–80. Springer, 2005.

[19] I. Wagner, V. Bertacco, and T. Austin. Stresstest: An
automatic approach to test generation via activity
monitors. In DAC, 2005.

[20] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying
a multiprocessor cache controller using random test
generation. IEEE Design and Test of Computers,
August 1990.

