

Efficient Simulation of Large-Scale Spiking Neural

Networks Using CUDA Graphics Processors
Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L Krichmar

1
, Alex Nicolau, Alex Veidenbaum

Center for Embedded Systems

Bren School of Information and Computer Science

University of California, Irvine, USA 92697

{jmoorkan,dutt,nicolau,alexv}@ics.uci.edu

1
 Department of Cognitive Sciences,

School of Social Science,

University of California, Irvine, USA 92697

jkrichma@uci.edu

Abstract—Neural network simulators that take into account

the spiking behavior of neurons are useful for studying brain

mechanisms and for engineering applications. Spiking Neural

Network (SNN) simulators have been traditionally simulated

on large-scale clusters, super-computers, or on dedicated

hardware architectures. Alternatively, Graphics Processing

Units (GPUs) can provide a low-cost, programmable, and high-

performance computing platform for simulation of SNNs. In

this paper we demonstrate an efficient, Izhikevich neuron

based large-scale SNN simulator that runs on a single GPU.

The GPU-SNN model (running on an NVIDIA GTX-280 with

1GB of memory), is up to 26 times faster than a CPU version

for the simulation of 100K neurons with 50 Million synaptic

connections, firing at an average rate of 7Hz. For simulation of

100K neurons with 10 Million synaptic connections, the GPU-

SNN model is only 1.5 times slower than real-time. Further, we

present a collection of new techniques related to parallelism

extraction, mapping of irregular communication, and compact

network representation for effective simulation of SNNs on

GPUs. The fidelity of the simulation results were validated

against CPU simulations using firing rate, synaptic weight

distribution, and inter-spike interval analysis. We intend to

make our simulator available to the modeling community so

that researchers will have easy access to large-scale SNN

simulations.

Keywords- Izhikevich Spiking Neuron; CUDA; Graphics

Processor; STDP; Data Parallelism;

1 INTRODUCTION

Spiking neural network (SNN) models are emerging as a

plausible paradigm for characterizing neural dynamics in the

cerebral cortex [1][2]. Unlike firing rate-based models, SNN

models incorporate the precise time structure of spike trains

leading to many interesting properties such as temporal

binding due to synchronized firing [3], and feed-forward

propagation of spike pools as in syn-fire chains [4]. SNN

models augmented with biologically accurate learning

mechanisms such as competitive Hebbian learning [5] and

axonal transmission delay have shown impressive learning,

memory and adaptation capacities [6][7]. SNNs perform an

event driven data processing to spike based events leading to

faster system response [8]. The SNN models have high

biological fidelity, and can model many characteristics of

brain architecture [9].

For understanding different dynamics in the SNNs, and

to use it in real-time applications such as in robotics, it is

essential to have a large-scale network model that operates in

almost near real-time. Conventional processors do not have

enough parallelism and memory bandwidth for real-time

simulation of SNNs. Modern parallel architectures (such as

clusters, super-computers, or high-performance processors)

promise powerful alternatives for speeding spiking network

simulation, but require careful tuning of the applications to

achieve good performance. Graphics Processing Units

(GPUs) have emerged as a powerful and cheap

computational platform for the acceleration of diverse

applications. Some of the recently developed GPUs include

IBM CELL, NVIDIA CUDA, and ATI Stream Processor

[12]. The Compute Unified Device Architecture (CUDA)

from NVIDIA allows programmers to more easily harness

the parallel processing capability of GPUs with standard C

code. Some characteristics of the CUDA GPU family that

makes it suitable for simulating SNNs are: (1) extreme

multithreading with thousands of threads running

concurrently, (2) hardware mechanisms that allow automatic

context switching between threads, minimizing idle time,

and (3) specialized functional units that perform compute-

intensive mathematical calculations (e.g., trigonometric

functions) in hardware. The above characteristics allow

parallel simulation of hundreds of thousands of neurons as

light weight threads on a GPU. One limitation of GPUs for

simulating SNNs is the available memory bandwidth. Many

biologically realistic SNN models tend to be memory-

bounded, with a very low ratio of computation to

communication; hence the overall performance is restricted

by the maximum bandwidth achievable by the GPUs rather

than the peak floating point operations.

In this article, we present strategies for efficient

simulation of biologically realistic large-scale SNN models

by incorporating Izhikevich neuron models [10] on the

NVIDIA GPU platform. The main challenges in simulating

SNNs using GPUs are: (i) effective parallelism to optimize

the GPU resources (processors, shared memory and memory

bandwidth), (ii) effective handling of large fan-in /fan-out

connections to neurons, and (iii) efficient usage of limited

GPU memory for simulating large networks (more than 10
5

neurons and 10
7
 synaptic connections) using sparse

representations. The main objective of this paper is to show

the implementation of biologically realistic SNNs using

CUDA GPUs, and various optimizations to achieve high

simulation performance. In addition, we perform fidelity

analysis of our GPU simulations (using measures such as

firing rate, inter-spike-intervals, and synaptic weight

distribution) to ensure that the GPU simulation results match

the CPU simulations. Even though the focus of this work is

on single GPU performance, we believe an approach that

combines GPU computing and cluster computing capabilities

can provide a cost-effective simulation platform for large-

scale simulation of up to 50 million neurons (i.e.,

approaching ‘rat-scale’ cortical models).

In the rest of this paper we outline the Izhikevich

simulation model (Section 2), present related work (Section

3), describe the GPU architecture (Section 4), present

strategies for efficient mapping of SNNs to GPUs (Section 5)

and describe experimental results (Section 6).

Figure 1: A simplifed illustration of the cortical network. The neurons are

indicated by the labels A,B,C,D and E. The axonal delays (in ms) are
annotated on the axonal connection between neurons. All axons of

inhibitory neurons (e.g., C) have a fixed delay of 1 ms. Synaptic

connections of a neuron are represented as small circles.

2 SIMULATOR

As shown in Figure 1, the main components for

simulation of large-scale SNNs are: neurons for spike

processing, axons and dendrites for spike communication,

and synapses for learning and storage. In our simulator, the

neuronal dynamics are modeled using Izhikevich’s simple

spiking neurons [10] as it can generate wide variety of neural

responses compared to classical integrate-and-fire (I&F)

neurons. At the same time the Izhikevich neuron incurs

much less computational cost compared to the Hodgkin-

Huxley model [10]. Izhikevich neurons are represented by

the following expressions:

v’ = 0.04v
2
 + 5v + 140 – u + I (1)

u’ = a(bv – u) (2)

if (v ≥ +30 mV) then { v = c and u = u + d } (3)

The variable v denotes the membrane potential of the neuron,

and u denotes the recovery variable. The variables a,b,c,d are

dimensionless constants taking different values according to

the type of neuron being simulated. Our SNN networks

consist of 80% regular spiking excitatory neurons

(a=0.02,b=0.2,c=-65,d=8), and 20% fast spiking inhibitory

neurons (a=0.1,b=0.2,c=-65,d=2). The membrane potential

response of these neurons is shown in Figure 2. The axons in

the simulator are modeled as loss-less cables with distance-

dependent conduction delay. An example for the axonal

conduction delay is shown in Figure 1. Whenever neuron A

fires, neuron D would receive the spike after a 2ms delay,

and neuron E after 8 ms. The axonal conduction delays

facilitate the generation of stable, and time locked spatial-

temporal neural firing patterns [6]. The point of contact

between two neurons, termed the synapse, provides a means

to adjust the strength of connection between two neurons. In

our simulator we have incorporated the long-term memory

changes by means of spike-timing dependent plasticity

(STDP) [11]. According to the STDP rule (also termed

Competitive Hebbian rule), the degree and sign of synaptic

modification is dependent on the exact timings between the

firing at the pre-synaptic and post-synaptic side. The STDP

mechanism forces the synaptic connections to compete with

each other to control the firing of the post-synaptic neuron.

This competition followed by potentiation of some synaptic

connections and depression of other synaptic connections is

one way for generating stable firing patterns in large-scale

SNNs [5].

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50
(A) Membrane potential from a regular spiking neuron (after 60 s)

M
e
m
b
ra
n
e
 P

o
te
n
ti
a
l
(m

V
)

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50
(B) Membrane potential from a inhibitory neuron (after 60 s)

time step(ms)

M
e
m
b
ra
n
e
 P

o
te
n
ti
a
l
(m

V
)

Figure 2: Membrane potential produced by Izhikevich neurons: (a) Regular
Spiking Neuron (b) Inhibitory Neuron.

3 RELATED WORK

Most previous efforts on accelerating SNN simulations

have mapped large-scale SNNs on distributed computers, or

on dedicated hardware architectures [15][23]. Some of the

earliest work used hyper-cubic parallel computers for

modeling SNNs based on I&F neurons [15][18]. Existing

SNN simulators such as NEST, PCSIM (see [2] for more

details on spiking neuron simulations) have demonstrated a

parallel version that runs on simple clusters [16][17]. The

IBM C2 simulator demonstrated a rat-scale cortical

simulation (55 Million neurons with 442 Billion synapses)

using a Blue-Gene supercomputer having more than 32K

processors [9]. Unfortunately the cost and development time

make these approaches impractical for general purpose,

large-scale simulations. The neuromorphic community has

also built dedicated hardware for simulating SNNs. The

Stanford Neurogrid [13] approach simulates one million

neurons using a multi-chip array, with each chip simulating

65K neurons. Vogelstein et al. [19] has demonstrated a

multi-chip SNN system using an analog integrate-and-fire

neuron chip (with 4800 neurons) and an FPGA for storing

the synaptic weights (4 Million synapses). Even though the

performance and power efficiency of these dedicated

hardware approaches is superior to other techniques, the

dedicated hardware approach suffers from limited

programmability, and high-cost. SpiNNaker [22] deploys an

application specific parallel processor interconnected by a

network-on-chip communication fabric, resulting in an

approach that combines the performance and ease of

programmability for realizing SNNs; our GPU approach is

general purpose and some of the techniques can be applied

directly on the SpiNNaker chip. To the best of our

knowledge, our work is the first to demonstrate a general-

purpose approach for simulation of biologically realistic

spiking neural networks using the CUDA GPU platform.

Although prior work exists in applying older generation

GPUs for simulating spiking neural networks [20][21], most

of these previous approaches use simple integrate-and-fire

neurons, and are without biologically realistic neural network

features (such as STDP and axonal conduction delay).

Adding these features into the SNN simulation is essential

for generating various brain dynamics; and these features

make the model memory bandwidth intensive. In the

remaining sections we analyze the modeling and

performance aspects of simulating SNNs on GPUs.

4 GPU ARCHITECTURE

Figure 3 shows a simplified view of the CUDA GPU

architecture from NVIDIA [14]. It contains an array of

Streaming Multiprocessors (SMs). Each SM consists of

eight floating-point Scalar Processors (SPs), a Special

Function Unit (SFU), a multi-threaded instruction unit, a

16KB user-managed shared memory, and 16KB of cache

memory (8KB constant cache and 8 KB texture cache).

Figure 3: Simplified architectural view of CUDA GPU

In our experiments we use a single NVIDIA GTX280

GPU card that consists of 240 scalar processors grouped

into 30 SMs (each operating at 1.2 GHz). The sustained

performance of the GTX280 GPU card is approximately

350 GFLOPS. Each SM has a hardware thread scheduler

that selects a group of threads (called a 'warp') for

execution. If any one of the threads in the group issues a

costly external memory operation, then the thread scheduler

automatically switches to a new thread group. At any instant

of time, the hardware allows a very high number of threads

(768 threads per SM in GTX280) to be active

simultaneously. By swapping thread groups, the thread

scheduler can effectively hide costly memory latency. Each

GTX 280 GPU contains a 512-bit DDR3 interface to the

graphics memory with a peak theoretical bandwidth of

143GB/s. In comparison, the standard Pentium chipset with

a 64-bit quad-pumped DDR3 interface gives a peak

theoretical bandwidth of about 28 GB/s (i.e., 5.1 times

slower than a GPU).

Like all GPUs, there are many features in CUDA that

trade-off generality and ease of programming for achieving

very high-processing efficiency in certain circumstances

that occur frequently in graphics applications. Fortunately,

these same circumstances can be replicated, with some code

transformations, in SNN implementations, and thus we can

also take advantage of these features in GPUs. Now we

discuss some of the metrics that influence the performance

of SNNs on CUDA GPUs:

(1) Parallelism: To effectively use the GPU resources, the

application needs to be mapped in a data-parallel fashion;

each thread should operate on different data. Also, a large

number of threads (in the thousands) need to be launched by

the application to effectively hide the stalling effects caused

while accessing GPU memory.

(2) Memory bandwidth: To achieve peak memory

bandwidth, each processor should have uniform memory

access (e.g., thread0 accesses address0, thread1 accesses

addr0+4, thread2 accesses addr0+8 etc.). If memory

accesses are uniform, it is possible to group many memory

accesses into a single large memory access (termed

coalescing operation) achieving high memory bandwidth. In

CUDA 1.2 compatible GPUs (and future families) memory

coalescing is performed if all SPs within an SM accesses the

same memory segment in any ordering [14]; the approaches

suggested in this paper is still applicable as it improves

coalesced operation.

(3) Memory usage: The memory used by various data

structures in the simulator strongly influences the memory

bandwidth and scale of SNN simulations. In our approach,

we employ techniques that minimize memory usage by

incorporating sparse connectivity and by using reduced

Address-Event-Representation (AER) format for storing

firing information (see Sections 5.4 and 5.3). Other

compression techniques for eliminating redundancy can be

applied to further reduce the memory usage [17].

(4) Minimize thread divergence: By design, the current

CUDA GPUs selects a warp of 32 threads, and executes

them using a single instruction register. Maximum

performance can be achieved if all the threads within the

warp execute the same instruction. If different threads

within the warp follow different branches, which are termed

divergent warps, then this will lead to sub-optimal

performance.

It is important to note that the above factors are

interrelated, and all four factors need to be optimized for

effective execution on GPUs. For example a technique that

improves the memory usage may reduce the overall

parallelism resulting in lower effective performance.

8

Streaming Multiprocessors 1 (SM1)

SP

Shared

memory

Cache

 SFU

(Special

Func. Unit)

233 240

Graphics Memory (1GB, 512 bit)

1

2

1

30

Scalar

Processor

5 GPU MAPPING

We now present strategies for efficient mapping of SNNs

onto GPUs.

5.1 Parallelism analysis

An SNN can be mapped onto an array of processing

elements using three different approaches [15]:

(a) Neuronal parallelism (N-parallel) [9]-[17]: Each neuron

is mapped on a processing element and computed in

parallel. The synaptic computation for each neuron is

carried out sequentially on its processing element. This

mapping leads to warp divergence and is ineffective for

GPUs. As an example, consider that neuron 1 (with 100 pre-

synaptic connections) is mapped on thread1, and neuron 2

(with 200 pre-synaptic connections) is mapped on thread2.

Because all threads within a warp should execute together

(using a single instruction register), thread1 will be busy

waiting for thread2 to finish, leading to poor performance.

(b) Synaptic Parallelism (S-parallel) [15][18]: For a given

neuron each synaptic connection is updated in parallel by

different processing element. Thus synaptic information is

distributed over all processing elements. The neuron

computation is carried out sequentially. The maximum

parallelism is limited by the number of synaptic connection

that need to be updated in a given time step.

(c) Neuronal-Synaptic Parallelism (NS-parallel): Uses both

N-parallel and S-parallel techniques but at different stages

in the simulation. We employ the NS-parallel approach

since it is a good fit for the GPU architecture. At each time

step where the neuron information needs to be updated, the

N-parallel strategy is adopted. Thus, every thread within the

GPU updates different neuron information in parallel.

Whenever a spike is generated, the S-parallel mapping is

deployed where the synapses need to be updated. S-parallel

mapping can be easily applied within SMs due to the

availability of shared memory and fast synchronization.

When performing S-parallel computation, a group of 16 or

32 threads coordinate to simulate all synaptic operations for

one neuron, and the next group implements the synaptic

computation for next neuron and so on. This leads to

coalesced memory access of synaptic information that

improves the overall memory bandwidth performance.

5.2 Minimizing impact of warp divergence

Warp divergence can occur in the SNN simulation if

different threads within the same warp take different paths

after a branch condition. If the code executed after a

diverging condition is simple, then the impact due to warp

divergence is minimal. On the other hand if the diverging

condition takes a large number of cycles, then other threads

in the warp go into a busy waiting mode.

Figure 4(a) shows an example in which the GPU code

(with a large diverging loop) calls the function do_firing()

whenever a neuron exceeds its threshold potential. Since

do_firing() takes 100-200 cycles, all threads (within the

warp) which did not have a firing event wait for the fired

threads to finish the do_firing() code. We reduce the impact

of warp divergence by buffering the information for

diverging loop execution, and delaying the execution until

sufficient data is available for all the threads to execute.

Figure 4(b) shows an example for this buffered scheme,

where each thread stores the fired neuron id in a local buffer

(Line 3). After evaluating all the neurons for firing condition,

each thread concurrently executes the do_firing() function

(Line 7) using different ids (Line 5 and 8). This optimization

leads to much better performance when evaluating fired

neurons, and has been incorporated in our simulator. One

main requirement for this optimization is the availability of

shared memory within SMs with atomic operations for

synchronization.

Figure 4: Pseudo code showing the technique to minimize the impact of
warp divergence by local buffering, (a) Normal code with large diverging

warps (b) Buffered scheme with small diverging warps.

5.3 Sparse Representation of Network Parameters

Simulating large-scale SNNs require large amount of

memory to represent the network, and store its parameters.

Without sparse-representation techniques the amount of

required memory can be Ο(NDM), where N=number of

neurons, M=number of synaptic connection, and

D=maximum axonal delay. By means of sparse-matrix

representation the memory requirement can be brought down

to Ο(N(M+D)). A schematic of the data structures that are

used for this representation is shown in Figure 5. The

representation is similar to adjacency list for directed graphs.

Each neuron has a unique neuron id, the number of post-

synaptic connections, and a list of post-synaptic connections.

Each synaptic connection is identified by the (neuron id,

synapses id) pair. The synapses id represents the position of

the synapses in the post-synaptic neuron. For example

whenever neuron 8 fires it has to send the spike to three post-

synaptic neurons (length=3, neuron id 1 at synaptic

connection 1, neuron id 4 at synaptic connection 3, and

neuron id 6 at synaptic connection 2). The synaptic

connection for each neuron is sorted based on the delay to

the destination neuron. Each spike is not transferred

instantaneously, but reaches the destination neurons after a

certain axonal delay corresponding to the axonal length of

the connection. The delay information is stored in the

(a) Large computation within diverging loop

1. i = threadIdx.x + blockIdx.x*blockDim.x

2. if (membraneV[i] >= 30.0) {

3. do_firing (i) // 100-200 cycles

4. } // repeat for other neurons

….

(b) Small computation within diverging loop

1. k=0;i= threadIdx.x + blockIdx.x*blockDim.x

2. if (membraneV[i] >= 30.0) {

3. p=atomicAdd(&k,1);buffer[p]=i //5-10 cycles

4. } // repeat for other neurons

.... __syncthreads();

5. offset = threadIdx.x;

6. while (offset < k)

7. do_firing (buffer[offset])

8. offset=offset+blockDim.x

parameters delay count, and delay start. The delay count at

index k indicates the number of neurons with a delay of k ms.

The k
th
 element of delay start identifies the first synaptic

connection with a delay of k millisecond in the list of post-

synaptic connections. As an example (See Figure 5), we can

identify all synaptic connections that have a delay of 20 ms

for neuron id 8 using the parameters delay_start(8,20) = 2,

and delay_count(8,20) = 1 that corresponds to neuron id 6 at

connection number 2. By using the parameters delay count

and delay start we can efficiently represent any arbitrary

SNN model, and also retrieve the connection information

quickly.

Figure 5: Synaptic connections with axonal delays (a) Connectivity graph
for a simple network. Few synaptic numbers indicated near arrow head, (b)

Neuron ids and the corresponding post-synaptic connections represented as

(neuron id, synaptic number), (c) Delay information for neuron 8. Neuron
8’s delays: 3,5,20ms.

5.4 Improved Event queue representation

A circular event queue mechanism is most commonly

used in large-scale spiking network simulations [9][16] to

store the firing information. In this mechanism, whenever a

neuron fires, the next set of synaptic events is added into the

event queue. For a standalone application this approach is

effective and has been incorporated in the simulator. For

detailed fidelity analysis of the firing pattern, we store the

firing information by means of the AER format [13].

Figure 6: Reduced AER Format for representing firing information. In the
left table we indicate how many neurons have fired. In the right table, we

indicate which neurons have fired. D is the maximum axonal delay.

In the AER format, each spike is represented by an

address-time pair. But this approach leads to high memory

overhead as we need to store the time of firing along with

each address. In our current implementation we use a

reduced AER format for representing the firing information

(See Figure 6). This approach consists of two tables: firing

count table, and firing event table. The firing count table

consists of the number of excitatory neurons that have fired

up until the current time step. The firing event table consists

of a list of ids for the recently fired excitatory neurons. This

approach requires about half of the memory compared to the

traditional AER storage scheme. We adjust both the tables

after every second of simulation by discarding older values

and storing only the recent firing information.

5.5 Supporting Large Fan-in connection

In our SNN model, the number of input connections per

neuron can range from 100 to 1000. In some neurons (e.g.,

Purkinje fibers) the number of input connections per neuron

can be as large as 10,000. Such a large fan-in of synaptic

inputs needs to be calculated for each neuron concurrently. A

simple approach would have each fired neuron update the

synaptic current of the post-synaptic neuron atomically.

Atomic operation is essential because two neurons can

simultaneously update the synaptic current to the same post-

synaptic neuron. This approach is infeasible in current GPUs

due to the lack of atomic floating point operations. Instead,

we use a bit-vector based approach outlined in Algorithm 1

to realize the post-synaptic current calculation.

We term the bit vector as I_fire vector, which represents the

input firing status of each neuron. Each bit of the I_fire

represents the presence (I_fire[x]=1) or absence

(I_fire[x]=0) of firing at the input synaptic connection x.

The most common scenario is that either 0, 1 or 2 bits of

I_fire vector is set in every time step, indicating a sparse

input firing. Algorithm 1 first scans the I_fire at the word

level, then at the byte level and finally at bit level. If none of

1
2

3

4
8 5

6
7

9

1

2

3

4

5

6

7

8

5,1

8,1

4,2

9,1

7,1

5,2

6,1

1,1

3,1

4,1

8,2

4,3

2,1

6,2

(a)

(b)

Synapses

(neuron id,

synaptic

number)

Delay Count 0 0 1 0 1 �� �� 1
(c)

3

2

1

1

1

6

2

3

0 0 0 0 1 �� �� 2 Delay Start

(1)

(1)

(2)

3ms

5ms

20ms

Neuron Id Outgoing connections

(1)

 1 2 3 4 20 Axonal delays

10

���
���

90
235

900

10
620

���

9003

97

31
���

fired

neuron's id

cumulative

firing count

at time step=5
290
335

-D

-D+1

 .. 3

4

Time

Step

5

6

7

Excitatory firing

count table Excitatory firing

event table

Algorithm 1: Synaptic Current Calculation in GPU

Inputs: nid => Neuron Id,

 I_fire => Input Fired Vector

 s[i][j] => weight of i
th
 neuron, j

th
 synapses

 len[i] => number of synaptic connections

Output: I_sum => Total synaptic current

Require: find_one[x] => pre-computed 256 entry

table that returns the position of the first set bit in a

given byte (e.g. find_one[0x10]=4, find_one[0x77]=0

 0. I_sum=0, y_end = ceil(len[i]/32)

 1. for y=0:(y_end-1)

 2. part_I = read32(I_fire, y) // Read y
th
32 bit

 // from I_fire vector

 3. x = 0;

 4. while part_I ≠ 0

 5. byte_I = byte(part_I, x) // Read x
th
 byte

 6. while byte_I ≠ 0

 7. idx = find_one[byte_I]

 8. set byte_I(idx) ←‘0’

 9. I_sum = I_sum + s[nid][y*32+x*8+idx]

10. part_I(x) ← 0; x = x+1;

11. return I_sum

the inputs are firing this approach incurs a small overhead of

about 8 instruction cycles (for an input synaptic count of

128 and 32-bit loading and comparison operations). This

approach is memory efficient and has low computation

overhead for a moderate number of input connections.

5.6 GPU Simulation Flow

The overall flow of the GPU version of the SNN

simulator is shown in Figure 7. The C function that is

executed on the GPU is termed as ‘kernel’. Each kernel is

executed in parallel by all the threads in the GPU. The host

CPU interfaces with the GPU to control the creation,

execution, and termination of the kernel. In this version of

the simulator, the GPU and CPU work in blocking mode

(also called synchronous mode). In blocking mode, the CPU

launches one kernel, and waits till the completion of the

kernel call. In the future we plan to incorporate an

asynchronous (or non-blocking) mode that allows the CPU

to do more tasks concurrently along with the GPU. For each

kernel, we experimented with various block sizes in the range

of 30 to 120, with 128 threads in each block. The change in

performance was very small for block sizes greater than 60.

The simulation flow corresponds to the minimal spiking
neural network model [6]. The network consist of N
randomly connected excitatory (80%) and inhibitory (20%)
neurons. For our experiments N ranges from 50K to 225K
neurons. Each neuron has M post-synaptic connections,
where M ranges from 100 to 1000. The amount of change in
the synaptic weight (using STDP rule) is accumulated during
each time step; and the weight is updated once a second by
Kernel5 (Figure 7) such that synaptic weight changes at a
slower-rate than the neurons [6].

Figure 7: Flowchart of the simulation using GPU showing various kernels.
LTP (Long-Term Potentiation) represents the potentiation part of STDP.

LTD (Long-Term Depression) represents the depression part of STDP

6 RESULTS

6.1 Memory Analysis

For an SNN model with N neurons, M number of

synaptic connections per neuron, and maximum axonal delay

of D, the memory required for representing different

elements of the model is shown in Table 1. We used a 32-bit

representation for floating point numbers, and large integers.

Further saving in memory can be achieved by using half-

floats (16-bit floating point numbers), or fixed-point

representations [23], which will be explored in our future

work. Based on the expressions in Table 1, the total memory

required for various configurations is shown in Figure 8.

Each configuration is represented by the value of N (number

of neurons), and M (number of post-synaptic connection per

neuron). The value of N ranges from 50K to 250K (steps of

25K) for each value of M shown in the x-axis. The 1GB limit

line indicates the available memory in GTX-280 CUDA

GPU. Using a GTX 280 CUDA GPU card with 1GB of

graphics memory, we were able to simulate a network with

225K neurons with M=200.

Table 1: Memory Requirement

(N=number of neurons, D=axonal delay,

M=number of synapses per neuron)

SNN Components
Memory required

in words

Neuron information

(5N: u,v,a,d, firing time, and

firing bit for current)

+

32
5

MN
N

Synaptic weights and STDP

(s,sd, synapses firing time)
(3NM)

Network representation, delays

(post-synaptic ids, delays and

counts)

(NM+ND+3N)

Firing info (reduced AER)

(maximum firing rate = 50Hz)
(50N)

Firing info

(circular buffer)
(5N)

Figure 8: Memory requirement for different configurations of SNNs on
GPU. Each point represents a specific configuration M (number of post-

synaptic connection per neuron) and N (number of neurons). The 4GB limit
corresponds to the maximum memory supported by a single high-

performance TESLA GPU. A 4GB Tesla GPU card allows an SNN

simulation of up to 225K neurons with 225M synapses.

6.2 Scalability Analysis

The performance of the simulator was evaluated by

scaling the number of neurons, and by scaling the number of

synaptic connections. The CPU version of the simulator

(written in standard ‘C’ language) was based on the previous

work reported in [6]. We investigated all the optimizations

proposed in Section 5, comparing their potential for the

single CPU machine. We included those that can help the

Update Synaptic
weights
(Kernel5)

Input Random Synaptic Current
(Kernel0)

Find Firing Neurons & LTP
(Kernel1)

Update Excitatory Synaptic Current
& LTD (Kernel2)

Update Inhibitory Synaptic Current
(Kernel3)

Update Global Neuron State
(Kernel4)

Increment
timestep

(stepsize = 1ms)

Done next
1 sec ?

No

Yes

CPU version as well, namely: sparse representation of

network parameters discussed in Section 5.3, and improved

event-queue representation discussed in Section 5.4. The

CPU version was run on a DELL workstation with an Intel

Core2 CPU 6400, operating at 2.13 GHz and having 4 GB of

memory. An NVIDIA GTX 280 graphics card was used for

running the GPU code. The system boots on a 64-bit version

of Windows XP professional with CUDA 1.3 drivers. Both

the GPU and CPU versions were compiled using Microsoft

Visual Studio 2005 with the compiler options “/arch:SSE2

/Ox /Ob2 /Oi /Ot /Oy /fp:fast”. For obtaining the speedup

curves the simulator was configured to run in the GPU mode

until the synaptic weight distribution becomes bimodal [5].

A snapshot of the simulator state is taken and then run

separately in CPU only mode, and in GPU mode. The

speedup curves were obtained by dividing the time taken by

the CPU only mode and GPU mode for simulating 10

seconds of model time (10,000 times steps with 1ms

resolution) from the steady condition.

In Figure 9 we show the speedup for different values of

N and M=200. For M > 300, the scale of the simulated

network is limited to 100,000 neurons, and hence is not

included in measuring the network scalability. For each

network configuration, the average firing rate obtained is

also represented. We can observe that the overall speedup

does not vary significantly for various values of N (N>10
5
)

and given value of M. The variation in the speedup curve is

mainly due to the variation in the firing rate. An increase in

the firing rate causes slight improvement in the speedup. The

speedup remains steady because the performance is mainly

determined by the memory bandwidth and it saturates for

large value of N (N>10
5
).

Figure 9: Speedup of GPU with respect to a single CPU for different

network size (N) and different synaptic connections per neuron (M).

Simulations were run 5 times with different random number seed. The
notation f=n Hz denotes the mean firing rate of 5 simulations. Error bar

denotes the standard deviation of the speedup.

The performance of the SNN simulator for scaling synaptic

connections per neuron is shown in Figure 10. For M=100

and N=10
5
, the speedup is limited to 18. The GPU takes 15

seconds to simulate 10 seconds of model time. For larger

values of M the speedup jumps from 18 to around 25 due to

increases in the available synaptic parallelism. For N=100K

and for large values of M (M>300) it can be observed that

the speedup curve flattens due to saturation in the mapped

synaptic parallelism and memory bandwidth.

Figure 10: Speedup of GPU over CPU for a network with 100K neurons
and varying number of synaptic connection. A maximum speedup of 25

times can be achieved for a network with 100K neurons and 30 million

synapses. A minimum speedup of 18 times can be achieved for a network
with 100K neurons and 10 million synapses. Simulations were run 5 times

with different random number seed. Error bar denotes the standard

deviation of the speedup. The average firing rate is reported as f = n Hz.

6.3 Fidelity Analysis

The GPU model we implemented differs from the

reference model [6] in the following ways: implementation

of STDP calculations (we use exponential functions

supported by the GPU hardware), network representation,

firing information representation, etc. (as detailed in Section

5). Also the GPUs only support single-precision floating

point arithmetic, and not all operations meet the IEEE 754

standard. Thus direct comparison of the SNN state (e.g.,

membrane potentials and synaptic weights) between the

reference implementation [6] and the GPU simulation is

difficult because the SNN state can change significantly even

if one spike is altered [24].

To ensure the accuracy and fidelity of our GPU

implementation, we compared various neuronal metrics with

the original MATLAB implementation. The metrics are:

difference in average firing rate, difference in the synaptic

weights of excitatory connections, and difference in the

inter-spike intervals (ISI) for excitatory neurons and for

inhibitory neurons. Since the reference model itself (written

in Matlab) is significantly slow, we evaluated the fidelity

metrics only for a small set of configurations (N=1000, 3000

with M=100). The metrics were collected for 20 seconds of

model time after allowing the simulations to run for 900

seconds (15 minutes of model time). All metrics have been

consolidated after running each configuration 5 times. We

observed that the firing rates were similar in both cases (see

Table 2). We also tested the fidelity using inter-spike interval

(ISI) and synaptic weight distributions as metrics and

verified that the two implementations were not significantly

different (see Table 3).

Table 2: Comparison of Firing Rate between Matlab and GPU

simulation (mean and standard deviation collected from 5 runs of
simulation)

N=1000, M=100 N=3000, M=100 Firing Rate

Metrics (Hz)
Matlab GPU Matlab GPU

Excitatory

Neurons

3.1423

(0.4934)

3.1693

(0.7034)

3.8242

(0.1413)

3.3855

(0.0843)

Inhibitory

Neurons

24.95

(3.3683)

22.0345

(4.5293)

31.5863

(1.0140)

24.9593

(0.5713)

Table 3: Comparison of distribution of synaptic weights and

inter-spike-interval (ISI) between Matlab and GPU (p-value

using Kolmogorov-Smirnov test. Data consolidated from 5 runs of
simulation)

Metrics N=1000, M=100 N=3000, M=100

Synaptic Weights 0.992 0.099

ISI (Excitatory) 0.799 0.144

ISI (Inhibitory) 0.677 0.261

7 CONCLUSION

In this paper we presented strategies for efficient

mapping of realistic, large-scale spiking neural network

simulation models on GPUs. We believe this is the first

piece of work that demonstrates efficient mapping of realistic

SNNs to the GPU platform, and opens the door for

ubiquitous use of the GPU platform for this class of

simulations. The performance of the simulator was analyzed

for different configurations of the network. Also, the fidelity

of the GPU SNN implementation was analyzed using

different metrics (like firing rate and synaptic weight

distribution) ensuring the accuracy of the simulations. The

GPU based spiking network simulator provides high

flexibility, performance and low-cost for large-scale

simulation (of up to 250,000 neurons). The simulator was

only 1.5 times slower than a real-time for a network of 10
5

neurons having 10
7
 synaptic connections with an average

firing rate of 9Hz. The GPU implementation (on one

NVIDIA GTX-280 with 1GB of memory) was up to 24

times faster than a CPU version for simulation of 100K

neurons with 50 million synaptic connections, firing at an

average rate of 7Hz. The performance is limited by the

memory bandwidth supported by the GPU hardware rather

than the number of scalar processors. For simulation of

larger networks (around 1-10 Million neurons) a cluster of

GPUs can be employed, building upon the strategies outlined

in this paper. In the near future we plan to release APIs that

allow GPU-SNN models to be used in diverse simulation

environment (MATLAB, C/C++). Our approach and the

subsequent release of an API should make large-scale SNN

simulations available to a wider audience of modelers.

ACKNOWLEDGMENT

This work was supported in part by DARPA subcontract

801888-BS. We thank the NVIDIA University Program for

donating the 9800GX2 and GTX280 boards.

REFERENCES

[1] W. Maass, C.M. Bishop, “Pulsed neural networks”, MIT Press

Cambridge, MA, USA, 1999

[2] R. Brette, et al. "Simulation of networks of spiking neurons: A

review of tools and strategies," Journal of Computational

Neuroscience, 23: 349-398, 2007

[3] Wolf Singer,“Binding by synchrony”, Scholarpedia, 2(12):1657, 2007

[4] Abeles M, "Corticonics, Neural Circuits of the Cerebral Cortex",
Cambridge University Press, New-York, 1991

[5] Song S; Miller K D; Abbott L F, "Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity", Nature

neuroscience, 3(9):919-26, 2000

[6] E. M. Izhikevich, "Polychronization: Computation with spikes,"
Neural Computation, vol. 18, no. 2, pp. 245-282, February 2006

[7] S . Song , and L . Abbott , "Cortical Development and Remapping
through Spike Timing-Dependent Plasticity", Neuron , Volume 32(2),

339 - 350

[8] Thorpe Simon, Delorme A, Van Rullen R., "Spike-based strategies
for rapid processing", Neural Netwosrks 14: 715-25, 2001

[9] Rajagopal Ananthanarayanan, Dharmendra S. Modha: "Anatomy of a
cortical simulator", SuperComputing ,2007

[10] E. M. Izhikevich, "Simple model of spiking neurons," Neural

Networks, IEEE Transactions on, vol. 14, no. 6, pp. 1569-1572, 2003

[11] Kepecs etal., 2002, “Spike-timing-dependent plasticity: Common

themes and divergent vistas”, Biological Cybernetics. v87. 446-458

[12] Kayvon Fatahalian and Mike Houston, "A Closer Look at GPUs",

Communications of the ACM. Vol. 51, No. 10 (October 2008)

[13] P Merolla, J Arthur, B E Shi and K Boahen, “Expandable Networks

for Neuromorphic Chips”, IEEE Transactions on Circuits and

Systems I, vol 54, No 2. pp. 301-311, February 2007

[14] NVIDIA Programming manual Version 2.0. See Appendix A for

technical specifications

[15] A. Jahnke, T. Schönauer, U. Roth, K. Mohraz, H. Klar, "Simulation

of Spiking Neural Networks on Different Hardware Platforms",

International Conference on Artificial Neural Networks (ICANN),
pps: 1187-1192, 1997

[16] Plesser H.E., Eppler J.M., Morrison A., Diesmann M., Gewaltig M.O,
"Efficient parallel simulation of large-scale neuronal networks on

clusters of multiprocessor computers", Euro-Par, 2007

[17] Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,
"Advancing the boundaries of high-connectivity network simulation

with distributed computing",. Neural Computing. 2005

Aug;17(8):1776-801

[18] Ernst Niebur, Dean Brettle, "Efficient Simulation of Biological

Neural Networks on Massively Parallel Supercomputers with
Hypercube Architecture", NIPS 1993, pp: 904-910

[19] R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs, R.

Etienne-Cummings, et. al, "A Multi-Chip Neuromorphic System for
Spike-Based Visual Information Processing,," , Neural Computation,

vol. 19 (9), pp. 2281-2300, 2007

[20] Bernhard, F. and Keriven, R, “Spiking neurons on GPUs”,

International Conference on Computational Science: Workshop on

GPGPU, May 2006

[21] J.Moorkanikara Nageswaran, Yingxue Wang, Nikil Dutt, Tobi

Delbrueck, “Computing Spike-based Convolution on GPUs”,
Accepted for IEEE Intl Symposium on Circuits and Systems (ISCAS),

2009

[22] Khan M.M, et. al, “SpiNNaker: Mapping Neural Networks onto a
Massively-Parallel Chip Multiprocessor”, Int’l Joint Conf. on Neural

Networks (IJCNN), 2008.

[23] Xin Jin, S.B.Furber, J.V.Woods, “Efficient Modelling of Spiking

Neural Networks on a Scalable Chip Multiprocessor” , Proceedings

2008 Intl Joint Conf. on Neural Networks (IJCNN), 2008

[24] E. M. Izhikevich and G. M. Edelman, "Large-scale model of

mammalian thalamocortical systems", Proceedings of the National

Academy of Sciences, February 2008

