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Abstract—Neural network simulators that take into account 

the spiking behavior of neurons are useful for studying brain 

mechanisms and for engineering applications. Spiking Neural 

Network (SNN) simulators have been traditionally simulated 

on large-scale clusters, super-computers, or on dedicated 

hardware architectures. Alternatively, Graphics Processing 

Units (GPUs) can provide a low-cost, programmable, and high-

performance computing platform for simulation of SNNs. In 

this paper we demonstrate an efficient, Izhikevich neuron 

based large-scale SNN simulator that runs on a single GPU.  

The GPU-SNN model (running on an NVIDIA GTX-280 with 

1GB of memory), is up to 26 times faster than a CPU version 

for the simulation of 100K neurons with 50 Million synaptic 

connections, firing at an average rate of 7Hz. For simulation of 

100K neurons with 10 Million synaptic connections, the GPU-

SNN model is only 1.5 times slower than real-time. Further, we 

present a collection of new techniques related to parallelism 

extraction, mapping of irregular communication, and compact 

network representation for effective simulation of SNNs on 

GPUs. The fidelity of the simulation results were validated 

against CPU simulations using firing rate, synaptic weight 

distribution, and inter-spike interval analysis. We intend to 

make our simulator available to the modeling community so 

that researchers will have easy access to large-scale SNN 

simulations.  

Keywords- Izhikevich Spiking Neuron; CUDA; Graphics 

Processor; STDP; Data Parallelism;  

1 INTRODUCTION  

Spiking neural network (SNN) models are emerging as a 

plausible paradigm for characterizing neural dynamics in the 

cerebral cortex [1][2]. Unlike firing rate-based models, SNN 

models incorporate the precise time structure of spike trains 

leading to many interesting properties such as temporal 

binding due to synchronized firing [3], and feed-forward 

propagation of spike pools as in syn-fire chains [4]. SNN 

models augmented with biologically accurate learning 

mechanisms such as competitive Hebbian learning [5] and 

axonal transmission delay have shown impressive learning, 

memory and adaptation capacities [6][7]. SNNs perform an 

event driven data processing to spike based events leading to 

faster system response [8]. The SNN models have high 

biological fidelity, and can model many characteristics of 

brain architecture [9]. 

For understanding different dynamics in the SNNs, and 

to use it in real-time applications such as in robotics, it is 

essential to have a large-scale network model that operates in 

almost near real-time. Conventional processors do not have 

enough parallelism and memory bandwidth for real-time 

simulation of SNNs. Modern parallel architectures (such as 

clusters, super-computers, or high-performance processors) 

promise powerful alternatives for speeding spiking network 

simulation, but require careful tuning of the applications to 

achieve good performance. Graphics Processing Units 

(GPUs) have emerged as a powerful and cheap 

computational platform for the acceleration of diverse 

applications. Some of the recently developed GPUs include 

IBM CELL, NVIDIA CUDA, and ATI Stream Processor 

[12]. The Compute Unified Device Architecture (CUDA) 

from NVIDIA allows programmers to more easily harness 

the parallel processing capability of GPUs with standard C 

code. Some characteristics of the CUDA GPU family that 

makes it suitable for simulating SNNs are: (1) extreme 

multithreading with thousands of threads running 

concurrently, (2) hardware mechanisms that allow automatic 

context switching between threads, minimizing idle time, 

and (3) specialized functional units that perform compute-

intensive mathematical calculations (e.g., trigonometric 

functions) in hardware. The above characteristics allow 

parallel simulation of hundreds of thousands of neurons as 

light weight threads on a GPU. One limitation of GPUs for 

simulating SNNs is the available memory bandwidth. Many 

biologically realistic SNN models tend to be memory-

bounded, with a very low ratio of computation to 

communication; hence the overall performance is restricted 

by the maximum bandwidth achievable by the GPUs rather 

than the peak floating point operations.  

In this article, we present strategies for efficient 

simulation of biologically realistic large-scale SNN models 

by incorporating Izhikevich neuron models [10] on the 

NVIDIA GPU platform. The main challenges in simulating 

SNNs using GPUs are: (i) effective parallelism to optimize 

the GPU resources (processors, shared memory and memory 

bandwidth), (ii) effective handling of large fan-in /fan-out 

connections to neurons, and (iii) efficient usage of limited 

GPU memory for simulating large networks (more than 10
5
 

neurons and 10
7
 synaptic connections) using sparse 

representations.  The main objective of this paper is to show 

the implementation of biologically realistic SNNs using 

CUDA GPUs, and various optimizations to achieve high 

simulation performance. In addition, we perform fidelity 



 

analysis of our GPU simulations (using measures such as 

firing rate, inter-spike-intervals, and synaptic weight 

distribution) to ensure that the GPU simulation results match 

the CPU simulations. Even though the focus of this work is 

on single GPU performance, we believe an approach that 

combines GPU computing and cluster computing capabilities 

can provide a cost-effective simulation platform for large-

scale simulation of up to 50 million neurons (i.e., 

approaching ‘rat-scale’ cortical models).  

In the rest of this paper we outline the Izhikevich 

simulation model (Section 2), present related work (Section 

3), describe the GPU architecture (Section 4), present 

strategies for efficient mapping of SNNs to GPUs (Section 5) 

and describe experimental results (Section 6).  

 

Figure 1: A simplifed illustration of the cortical network. The neurons are 

indicated by the labels A,B,C,D and E. The axonal delays (in ms) are 
annotated on the axonal connection between neurons. All axons of 

inhibitory neurons (e.g., C) have a fixed delay of 1 ms. Synaptic 

connections of a neuron are represented as small circles. 

2 SIMULATOR 

As shown in Figure 1, the main components for 

simulation of large-scale SNNs are: neurons for spike 

processing, axons and dendrites for spike communication, 

and synapses for learning and storage.  In our simulator, the 

neuronal dynamics are modeled using Izhikevich’s simple 

spiking neurons [10] as it can generate wide variety of neural 

responses compared to classical integrate-and-fire (I&F) 

neurons. At the same time the Izhikevich neuron incurs 

much less computational cost compared to the Hodgkin-

Huxley model [10]. Izhikevich neurons are represented by 

the following expressions: 

v’ = 0.04v
2
 + 5v + 140 – u + I   (1) 

u’ = a(bv – u)     (2) 

if ( v ≥ +30 mV)   then { v = c and u = u + d } (3) 

The variable v denotes the membrane potential of the neuron, 

and u denotes the recovery variable. The variables a,b,c,d are 

dimensionless constants taking different values according to 

the type of neuron being simulated. Our SNN networks 

consist of 80% regular spiking excitatory neurons 

(a=0.02,b=0.2,c=-65,d=8), and 20% fast spiking inhibitory 

neurons (a=0.1,b=0.2,c=-65,d=2). The membrane potential 

response of these neurons is shown in Figure 2. The axons in 

the simulator are modeled as loss-less cables with distance-

dependent conduction delay. An example for the axonal 

conduction delay is shown in Figure 1. Whenever neuron A 

fires, neuron D would receive the spike after a 2ms delay, 

and neuron E after 8 ms. The axonal conduction delays 

facilitate the generation of stable, and time locked spatial-

temporal neural firing patterns [6]. The point of contact 

between two neurons, termed the synapse, provides a means 

to adjust the strength of connection between two neurons. In 

our simulator we have incorporated the long-term memory 

changes by means of spike-timing dependent plasticity 

(STDP) [11]. According to the STDP rule (also termed 

Competitive Hebbian rule), the degree and sign of synaptic 

modification is dependent on the exact timings between the 

firing at the pre-synaptic and post-synaptic side. The STDP 

mechanism forces the synaptic connections to compete with 

each other to control the firing of the post-synaptic neuron. 

This competition followed by potentiation of some synaptic 

connections and depression of other synaptic connections is 

one way for generating stable firing patterns in large-scale 

SNNs [5].  
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Figure 2: Membrane potential produced by Izhikevich neurons: (a) Regular 
Spiking Neuron (b) Inhibitory Neuron.  

3 RELATED WORK 

Most previous efforts on accelerating SNN simulations 

have mapped large-scale SNNs on distributed computers, or 

on dedicated hardware architectures [15][23]. Some of the 

earliest work used hyper-cubic parallel computers for 

modeling SNNs based on I&F neurons [15][18]. Existing 

SNN simulators such as NEST, PCSIM (see [2] for more 

details on spiking neuron simulations) have demonstrated a 

parallel version that runs on simple clusters [16][17]. The 

IBM C2 simulator demonstrated a rat-scale cortical 

simulation (55 Million neurons with 442 Billion synapses) 

using a Blue-Gene supercomputer having more than 32K 

processors [9]. Unfortunately the cost and development time 

make these approaches impractical for general purpose, 

large-scale simulations. The neuromorphic community has 

also built dedicated hardware for simulating SNNs. The 

Stanford Neurogrid [13] approach simulates one million 

neurons using a multi-chip array, with each chip simulating 

65K neurons. Vogelstein et al. [19] has demonstrated a 

multi-chip SNN system using an analog integrate-and-fire 

neuron chip (with 4800 neurons) and an FPGA for storing 



 

the synaptic weights (4 Million synapses). Even though the 

performance and power efficiency of these dedicated 

hardware approaches is superior to other techniques, the 

dedicated hardware approach suffers from limited 

programmability, and high-cost.  SpiNNaker [22] deploys an 

application specific parallel processor interconnected by a 

network-on-chip communication fabric, resulting in an 

approach that combines the performance and ease of 

programmability for realizing SNNs; our GPU approach is 

general purpose and some of the techniques can be applied 

directly on the SpiNNaker chip. To the best of our 

knowledge, our work is the first to demonstrate a general-

purpose approach for simulation of biologically realistic 

spiking neural networks using the CUDA GPU platform. 

Although prior work exists in applying older generation 

GPUs for simulating spiking neural networks [20][21], most 

of these previous approaches use simple integrate-and-fire 

neurons, and are without biologically realistic neural network 

features (such as STDP and axonal conduction delay). 

Adding these features into the SNN simulation is essential 

for generating various brain dynamics; and these features 

make the model memory bandwidth intensive. In the 

remaining sections we analyze the modeling and 

performance aspects of simulating SNNs on GPUs. 

4 GPU ARCHITECTURE 

Figure 3 shows a simplified view of the CUDA GPU 

architecture from NVIDIA [14]. It contains an array of 

Streaming Multiprocessors (SMs). Each SM consists of 

eight floating-point Scalar Processors (SPs), a Special 

Function Unit (SFU), a multi-threaded instruction unit, a 

16KB user-managed shared memory, and 16KB of cache 

memory (8KB constant cache and 8 KB texture cache).  

 

Figure 3: Simplified architectural view of CUDA GPU 

In our experiments we use a single NVIDIA GTX280 

GPU card that consists of 240 scalar processors grouped 

into 30 SMs (each operating at 1.2 GHz). The sustained 

performance of the GTX280 GPU card is approximately 

350 GFLOPS. Each SM has a hardware thread scheduler 

that selects a group of threads (called a 'warp') for 

execution. If any one of the threads in the group issues a 

costly external memory operation, then the thread scheduler 

automatically switches to a new thread group. At any instant 

of time, the hardware allows a very high number of threads 

(768 threads per SM in GTX280) to be active 

simultaneously. By swapping thread groups, the thread 

scheduler can effectively hide costly memory latency. Each 

GTX 280 GPU contains a 512-bit DDR3 interface to the 

graphics memory with a peak theoretical bandwidth of 

143GB/s. In comparison, the standard Pentium chipset with 

a 64-bit quad-pumped DDR3 interface gives a peak 

theoretical bandwidth of about 28 GB/s (i.e., 5.1 times 

slower than a GPU).  

Like all GPUs, there are many features in CUDA that 

trade-off generality and ease of programming for achieving 

very high-processing efficiency in certain circumstances 

that occur frequently in graphics applications. Fortunately, 

these same circumstances can be replicated, with some code 

transformations, in SNN implementations, and thus we can 

also take advantage of these features in GPUs. Now we 

discuss some of the metrics that influence the performance 

of SNNs on CUDA GPUs: 

(1) Parallelism: To effectively use the GPU resources, the 

application needs to be mapped in a data-parallel fashion; 

each thread should operate on different data. Also, a large 

number of threads (in the thousands) need to be launched by 

the application to effectively hide the stalling effects caused 

while accessing GPU memory. 

(2) Memory bandwidth: To achieve peak memory 

bandwidth, each processor should have uniform memory 

access (e.g., thread0 accesses address0, thread1 accesses 

addr0+4, thread2 accesses addr0+8 etc.). If memory 

accesses are uniform, it is possible to group many memory 

accesses into a single large memory access (termed 

coalescing operation) achieving high memory bandwidth. In 

CUDA 1.2 compatible GPUs (and future families) memory 

coalescing is performed if all SPs within an SM accesses the 

same memory segment in any ordering [14]; the approaches 

suggested in this paper is still applicable as it improves 

coalesced operation. 

(3) Memory usage: The memory used by various data 

structures in the simulator strongly influences the memory 

bandwidth and scale of SNN simulations. In our approach, 

we employ techniques that minimize memory usage by 

incorporating sparse connectivity and by using reduced 

Address-Event-Representation (AER) format for storing 

firing information (see Sections 5.4 and 5.3). Other 

compression techniques for eliminating redundancy can be 

applied to further reduce the memory usage [17]. 

(4) Minimize thread divergence: By design, the current 

CUDA GPUs selects a warp of 32 threads, and executes 

them using a single instruction register. Maximum 

performance can be achieved if all the threads within the 

warp execute the same instruction. If different threads 

within the warp follow different branches, which are termed 

divergent warps, then this will lead to sub-optimal 

performance. 

It is important to note that the above factors are 

interrelated, and all four factors need to be optimized for 

effective execution on GPUs.  For example a technique that 

improves the memory usage may reduce the overall 

parallelism resulting in lower effective performance.  
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5 GPU MAPPING 

We now present strategies for efficient mapping of SNNs 

onto GPUs.  

5.1 Parallelism analysis 

An SNN can be mapped onto an array of processing 

elements using three different approaches [15]: 

(a) Neuronal parallelism (N-parallel) [9]-[17]: Each neuron 

is mapped on a processing element and computed in 

parallel. The synaptic computation for each neuron is 

carried out sequentially on its processing element. This 

mapping leads to warp divergence and is ineffective for 

GPUs. As an example, consider that neuron 1 (with 100 pre-

synaptic connections) is mapped on thread1, and neuron 2 

(with 200 pre-synaptic connections) is mapped on thread2. 

Because all threads within a warp should execute together 

(using a single instruction register), thread1 will be busy 

waiting for thread2 to finish, leading to poor performance.  

(b) Synaptic Parallelism (S-parallel) [15][18]: For a given 

neuron each synaptic connection is updated in parallel by 

different processing element. Thus synaptic information is 

distributed over all processing elements. The neuron 

computation is carried out sequentially. The maximum 

parallelism is limited by the number of synaptic connection 

that need to be updated in a given time step. 

(c) Neuronal-Synaptic Parallelism (NS-parallel):  Uses both 

N-parallel and S-parallel techniques but at different stages 

in the simulation. We employ the NS-parallel approach 

since it is a good fit for the GPU architecture. At each time 

step where the neuron information needs to be updated, the 

N-parallel strategy is adopted. Thus, every thread within the 

GPU updates different neuron information in parallel. 

Whenever a spike is generated, the S-parallel mapping is 

deployed where the synapses need to be updated. S-parallel 

mapping can be easily applied within SMs due to the 

availability of shared memory and fast synchronization. 

When performing S-parallel computation, a group of 16 or 

32 threads coordinate to simulate all synaptic operations for 

one neuron, and the next group implements the synaptic 

computation for next neuron and so on. This leads to 

coalesced memory access of synaptic information that 

improves the overall memory bandwidth performance.   

5.2 Minimizing impact of warp divergence 

Warp divergence can occur in the SNN simulation if 

different threads within the same warp take different paths 

after a branch condition. If the code executed after a 

diverging condition is simple, then the impact due to warp 

divergence is minimal. On the other hand if the diverging 

condition takes a large number of cycles, then other threads 

in the warp go into a busy waiting mode.  

Figure 4(a) shows an example in which the GPU code 

(with a large diverging loop) calls the function do_firing() 

whenever a neuron exceeds its threshold potential. Since 

do_firing() takes 100-200 cycles, all threads (within the 

warp) which did not have a firing event wait for the fired 

threads to finish the do_firing() code. We reduce the impact 

of warp divergence by buffering the information for 

diverging loop execution, and delaying the execution until 

sufficient data is available for all the threads to execute. 

Figure 4(b) shows an example for this buffered scheme, 

where each thread stores the fired neuron id in a local buffer 

(Line 3). After evaluating all the neurons for firing condition, 

each thread concurrently executes the do_firing() function 

(Line 7) using different ids (Line 5 and 8). This optimization 

leads to much better performance when evaluating fired 

neurons, and has been incorporated in our simulator. One 

main requirement for this optimization is the availability of 

shared memory within SMs with atomic operations for 

synchronization. 

 

Figure 4: Pseudo code showing the technique to minimize the impact of 
warp divergence by local buffering, (a) Normal code with large diverging 

warps (b) Buffered scheme with small diverging warps. 

5.3 Sparse Representation of Network Parameters 

Simulating large-scale SNNs require large amount of 

memory to represent the network, and store its parameters. 

Without sparse-representation techniques the amount of 

required memory can be Ο(NDM), where N=number of 

neurons, M=number of synaptic connection, and 

D=maximum axonal delay. By means of sparse-matrix 

representation the memory requirement can be brought down 

to Ο(N(M+D)). A schematic of the data structures that are 

used for this representation is shown in Figure 5. The 

representation is similar to adjacency list for directed graphs. 

Each neuron has a unique neuron id, the number of post-

synaptic connections, and a list of post-synaptic connections. 

Each synaptic connection is identified by the (neuron id, 

synapses id) pair. The synapses id represents the position of 

the synapses in the post-synaptic neuron. For example 

whenever neuron 8 fires it has to send the spike to three post-

synaptic neurons (length=3, neuron id 1 at synaptic 

connection 1, neuron id 4 at synaptic connection 3, and 

neuron id 6 at synaptic connection 2). The synaptic 

connection for each neuron is sorted based on the delay to 

the destination neuron. Each spike is not transferred 

instantaneously, but reaches the destination neurons after a 

certain axonal delay corresponding to the axonal length of 

the connection. The delay information is stored in the 

(a) Large computation within diverging loop 

1.  i = threadIdx.x + blockIdx.x*blockDim.x 

2.  if ( membraneV[i] >= 30.0 ) { 

3.     do_firing (i)       // 100-200 cycles 

4.  }  // repeat for other neurons  

…. 

(b) Small computation within diverging loop 

1.  k=0;i= threadIdx.x + blockIdx.x*blockDim.x 

2.  if ( membraneV[i] >= 30.0 ) { 

3.  p=atomicAdd(&k,1);buffer[p]=i //5-10 cycles 

4.  } // repeat for other neurons 

....  __syncthreads();  

5.  offset = threadIdx.x; 

6.  while (offset < k)  

7.        do_firing (buffer[offset]) 

8.        offset=offset+blockDim.x 



 

parameters delay count, and delay start. The delay count at 

index k indicates the number of neurons with a delay of k ms. 

The k
th
 element of delay start identifies the first synaptic 

connection with a delay of k millisecond in the list of post-

synaptic connections. As an example (See Figure 5), we can 

identify all synaptic connections that have a delay of 20 ms 

for neuron id 8 using the parameters delay_start(8,20) = 2, 

and delay_count(8,20) = 1 that corresponds to neuron id 6 at 

connection number 2. By using the parameters delay count 

and delay start we can efficiently represent any arbitrary 

SNN model, and also retrieve the connection information 

quickly. 

 

Figure 5: Synaptic connections with axonal delays (a) Connectivity graph 
for a simple network. Few synaptic numbers indicated near arrow head, (b) 

Neuron ids and the corresponding post-synaptic connections represented as 

(neuron id, synaptic number), (c) Delay information for neuron 8. Neuron 
8’s delays: 3,5,20ms. 

5.4 Improved Event queue representation 

A circular event queue mechanism is most commonly 

used in large-scale spiking network simulations [9][16] to 

store the firing information. In this mechanism, whenever a 

neuron fires, the next set of synaptic events is added into the 

event queue. For a standalone application this approach is 

effective and has been incorporated in the simulator. For 

detailed fidelity analysis of the firing pattern, we store the 

firing information by means of the AER format [13]. 

 

Figure 6: Reduced AER Format for representing firing information. In the 
left table we indicate how many neurons have fired. In the right table, we 

indicate which neurons have fired. D is the maximum axonal delay. 

In the AER format, each spike is represented by an 

address-time pair. But this approach leads to high memory 

overhead as we need to store the time of firing along with 

each address. In our current implementation we use a 

reduced AER format for representing the firing information 

(See Figure 6). This approach consists of two tables: firing 

count table, and firing event table. The firing count table 

consists of the number of excitatory neurons that have fired 

up until the current time step. The firing event table consists 

of a list of ids for the recently fired excitatory neurons. This 

approach requires about half of the memory compared to the 

traditional AER storage scheme. We adjust both the tables 

after every second of simulation by discarding older values 

and storing only the recent firing information. 

5.5 Supporting Large Fan-in connection 

In our SNN model, the number of input connections per 

neuron can range from 100 to 1000. In some neurons (e.g., 

Purkinje fibers) the number of input connections per neuron 

can be as large as 10,000. Such a large fan-in of synaptic 

inputs needs to be calculated for each neuron concurrently. A 

simple approach would have each fired neuron update the 

synaptic current of the post-synaptic neuron atomically. 

Atomic operation is essential because two neurons can 

simultaneously update the synaptic current to the same post-

synaptic neuron. This approach is infeasible in current GPUs 

due to the lack of atomic floating point operations. Instead, 

we use a bit-vector based approach outlined in Algorithm 1 

to realize the post-synaptic current calculation.  

 

We term the bit vector as I_fire vector, which represents the 

input firing status of each neuron. Each bit of the I_fire 

represents the presence (I_fire[x]=1) or absence 

(I_fire[x]=0) of firing at the input synaptic connection x. 

The most common scenario is that either 0, 1 or 2 bits of 

I_fire vector is set in every time step, indicating a sparse 

input firing. Algorithm 1 first scans the I_fire at the word 

level, then at the byte level and finally at bit level. If none of 
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Algorithm 1: Synaptic Current Calculation in GPU 

Inputs:     nid      =>  Neuron Id,  

        I_fire  =>  Input Fired Vector 

        s[i][j]  => weight of i
th
 neuron, j

th
 synapses 

        len[i]  =>  number of synaptic connections 

Output:   I_sum  => Total synaptic current 

Require: find_one[x] => pre-computed 256 entry 

table that returns the position of the first set bit in a 

given byte (e.g. find_one[0x10]=4, find_one[0x77]=0 

 

 0.  I_sum=0, y_end = ceil(len[i]/32) 

 1.  for y=0:(y_end-1)              

 2.       part_I = read32(I_fire, y)     // Read y
th
32 bit   

                    // from I_fire vector 

 3.       x = 0; 

 4.       while  part_I ≠ 0 

 5.           byte_I = byte(part_I,  x)     // Read x
th
 byte 

 6.           while byte_I ≠ 0 

 7.               idx = find_one[byte_I] 

 8.               set byte_I(idx) ←‘0’ 

 9.               I_sum = I_sum + s[nid][y*32+x*8+idx] 

10.          part_I(x) ← 0; x = x+1; 

11.   return I_sum 



 

the inputs are firing this approach incurs a small overhead of 

about 8 instruction cycles (for an input synaptic count of 

128 and 32-bit loading and comparison operations). This 

approach is memory efficient and has low computation 

overhead for a moderate number of input connections. 

5.6 GPU Simulation Flow 

The overall flow of the GPU version of the SNN 

simulator is shown in Figure 7. The C function that is 

executed on the GPU is termed as ‘kernel’. Each kernel is 

executed in parallel by all the threads in the GPU. The host 

CPU interfaces with the GPU to control the creation, 

execution, and termination of the kernel. In this version of 

the simulator, the GPU and CPU work in blocking mode 

(also called synchronous mode). In blocking mode, the CPU 

launches one kernel, and waits till the completion of the 

kernel call.  In the future we plan to incorporate an 

asynchronous (or non-blocking) mode that allows the CPU 

to do more tasks concurrently along with the GPU. For each 

kernel, we experimented with various block sizes in the range 

of 30 to 120, with 128 threads in each block. The change in 

performance was very small for block sizes greater than 60. 

The simulation flow corresponds to the minimal spiking 
neural network model [6]. The network consist of N 
randomly connected excitatory (80%) and inhibitory (20%) 
neurons.  For our experiments N ranges from 50K to 225K 
neurons. Each neuron has M post-synaptic connections, 
where M ranges from 100 to 1000. The amount of change in 
the synaptic weight (using STDP rule) is accumulated during 
each time step; and the weight is updated once a second by 
Kernel5 (Figure 7) such that synaptic weight changes at a 
slower-rate than the neurons [6]. 

  

Figure 7: Flowchart of the simulation using GPU showing various kernels. 
LTP (Long-Term Potentiation) represents the potentiation part of STDP. 

LTD (Long-Term Depression) represents the depression part of STDP 

6 RESULTS  

6.1 Memory Analysis 

For an SNN model with N neurons, M number of 

synaptic connections per neuron, and maximum axonal delay 

of D, the memory required for representing different 

elements of the model is shown in Table 1. We used a 32-bit 

representation for floating point numbers, and large integers. 

Further saving in memory can be achieved by using half-

floats (16-bit floating point numbers), or fixed-point 

representations [23], which will be explored in our future 

work. Based on the expressions in Table 1, the total memory 

required for various configurations is shown in Figure 8. 

Each configuration is represented by the value of N (number 

of neurons), and M (number of post-synaptic connection per 

neuron). The value of N ranges from 50K to 250K (steps of 

25K) for each value of M shown in the x-axis. The 1GB limit 

line indicates the available memory in GTX-280 CUDA 

GPU. Using a GTX 280 CUDA GPU card with 1GB of 

graphics memory, we were able to simulate a network with 

225K neurons with M=200. 

Table 1: Memory Requirement 

(N=number of neurons, D=axonal delay, 

M=number of synapses per neuron) 

SNN Components 
Memory required 

in words 

Neuron information 

(5N: u,v,a,d, firing time, and 

firing bit for current) 









+

32
5

MN
N  

Synaptic weights and STDP 

(s,sd, synapses firing time) 
(3NM)  

Network representation, delays 

(post-synaptic  ids, delays and 

counts) 

(NM+ND+3N)  

Firing info (reduced AER) 

(maximum firing rate = 50Hz) 
(50N) 

Firing info  

(circular buffer) 
(5N) 

 

Figure 8: Memory requirement for different configurations of SNNs on 
GPU. Each point represents a specific configuration M (number of post-

synaptic connection per neuron) and N (number of neurons). The 4GB limit 
corresponds to the maximum memory supported by a single high-

performance TESLA GPU. A 4GB Tesla GPU card allows an SNN 

simulation of up to 225K neurons with 225M synapses.  

6.2 Scalability Analysis 

The performance of the simulator was evaluated by 

scaling the number of neurons, and by scaling the number of 

synaptic connections. The CPU version of the simulator 

(written in standard ‘C’ language) was based on the previous 

work reported in [6]. We investigated all the optimizations 

proposed in Section 5, comparing their potential for the 

single CPU machine. We included those that can help the 
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CPU version as well, namely: sparse representation of 

network parameters discussed in Section 5.3, and improved 

event-queue representation discussed in Section 5.4. The 

CPU version was run on a DELL workstation with an Intel 

Core2 CPU 6400, operating at 2.13 GHz and having 4 GB of 

memory. An NVIDIA GTX 280 graphics card was used for 

running the GPU code. The system boots on a 64-bit version 

of Windows XP professional with CUDA 1.3 drivers. Both 

the GPU and CPU versions were compiled using Microsoft 

Visual Studio 2005 with the compiler options “/arch:SSE2 

/Ox /Ob2 /Oi /Ot /Oy /fp:fast”. For obtaining the speedup 

curves the simulator was configured to run in the GPU mode 

until the synaptic weight distribution becomes bimodal [5]. 

A snapshot of the simulator state is taken and then run 

separately in CPU only mode, and in GPU mode. The 

speedup curves were obtained by dividing the time taken by 

the CPU only mode and GPU mode for simulating 10 

seconds of model time (10,000 times steps with 1ms 

resolution) from the steady condition.   

In Figure 9 we show the speedup for different values of 

N and M=200. For M > 300, the scale of the simulated 

network is limited to 100,000 neurons, and hence is not 

included in measuring the network scalability. For each 

network configuration, the average firing rate obtained is 

also represented. We can observe that the overall speedup 

does not vary significantly for various values of N (N>10
5
) 

and given value of M.  The variation in the speedup curve is 

mainly due to the variation in the firing rate. An increase in 

the firing rate causes slight improvement in the speedup. The 

speedup remains steady because the performance is mainly 

determined by the memory bandwidth and it saturates for 

large value of N (N>10
5
). 

 
Figure 9: Speedup of GPU with respect to a single CPU for different 

network size (N) and different synaptic connections per neuron (M). 

Simulations were run 5 times with different random number seed. The 
notation f=n Hz denotes the mean firing rate of 5 simulations. Error bar 

denotes the standard deviation of the speedup. 

The performance of the SNN simulator for scaling synaptic 

connections per neuron is shown in Figure 10. For M=100 

and N=10
5
, the speedup is limited to 18. The GPU takes 15 

seconds to simulate 10 seconds of model time. For larger 

values of M the speedup jumps from 18 to around 25 due to 

increases in the available synaptic parallelism. For N=100K 

and for large values of M (M>300) it can be observed that 

the speedup curve flattens due to saturation in the mapped 

synaptic parallelism and memory bandwidth.  

 

Figure 10: Speedup of GPU over CPU for a network with 100K neurons 
and varying number of synaptic connection. A maximum speedup of 25 

times can be achieved for a network with 100K neurons and 30 million 

synapses. A minimum speedup of 18 times can be achieved for a network 
with 100K neurons and 10 million synapses. Simulations were run 5 times 

with different random number seed. Error bar denotes the standard 

deviation of the speedup. The average firing rate is reported as f = n Hz.  

6.3 Fidelity Analysis 

The GPU model we implemented differs from the 

reference model [6] in the following ways: implementation 

of STDP calculations (we use exponential functions 

supported by the GPU hardware), network representation, 

firing information representation, etc. (as detailed in Section 

5). Also the GPUs only support single-precision floating 

point arithmetic, and not all operations meet the IEEE 754 

standard. Thus direct comparison of the SNN state (e.g., 

membrane potentials and synaptic weights) between the 

reference implementation [6] and the GPU simulation is 

difficult because the SNN state can change significantly even 

if one spike is altered [24].   

To ensure the accuracy and fidelity of our GPU 

implementation, we compared various neuronal metrics with 

the original MATLAB implementation. The metrics are: 

difference in average firing rate, difference in the synaptic 

weights of excitatory connections, and difference in the 

inter-spike intervals (ISI) for excitatory neurons and for 

inhibitory neurons. Since the reference model itself (written 

in Matlab) is significantly slow, we evaluated the fidelity 

metrics only for a small set of configurations (N=1000, 3000 

with M=100). The metrics were collected for 20 seconds of 

model time after allowing the simulations to run for 900 

seconds (15 minutes of model time). All metrics have been 

consolidated after running each configuration 5 times. We 

observed that the firing rates were similar in both cases (see 

Table 2). We also tested the fidelity using inter-spike interval 

(ISI) and synaptic weight distributions as metrics and 

verified that the two implementations were not significantly 

different (see Table 3).  



 

Table 2: Comparison of Firing Rate between Matlab and GPU 

simulation (mean and standard deviation collected from 5 runs of 
simulation) 

N=1000, M=100 N=3000, M=100 Firing Rate 

Metrics   (Hz) 
Matlab GPU Matlab GPU 

Excitatory 

Neurons   

3.1423 

(0.4934) 

3.1693 

(0.7034) 

3.8242 

(0.1413) 

3.3855 

(0.0843) 

Inhibitory 

Neurons 

24.95 

(3.3683) 

22.0345 

(4.5293) 

31.5863 

(1.0140) 

24.9593 

(0.5713) 

Table 3: Comparison of distribution of synaptic weights and 

inter-spike-interval (ISI) between Matlab and GPU (p-value 

using Kolmogorov-Smirnov test. Data consolidated from 5 runs of 
simulation) 

Metrics N=1000, M=100 N=3000, M=100 

Synaptic Weights 0.992 0.099 

ISI (Excitatory) 0.799 0.144 

ISI (Inhibitory) 0.677 0.261 

7 CONCLUSION 

In this paper we presented strategies for efficient 

mapping of realistic, large-scale spiking neural network 

simulation models on GPUs.  We believe this is the first 

piece of work that demonstrates efficient mapping of realistic 

SNNs to the GPU platform, and opens the door for 

ubiquitous use of the GPU platform for this class of 

simulations. The performance of the simulator was analyzed 

for different configurations of the network. Also, the fidelity 

of the GPU SNN implementation was analyzed using 

different metrics (like firing rate and synaptic weight 

distribution) ensuring the accuracy of the simulations. The 

GPU based spiking network simulator provides high 

flexibility, performance and low-cost for large-scale 

simulation (of up to 250,000 neurons). The simulator was 

only 1.5 times slower than a real-time for a network of 10
5
 

neurons having 10
7
 synaptic connections with an average 

firing rate of 9Hz. The GPU implementation (on one 

NVIDIA GTX-280 with 1GB of memory) was up to 24 

times faster than a CPU version for simulation of 100K 

neurons with 50 million synaptic connections, firing at an 

average rate of 7Hz. The performance is limited by the 

memory bandwidth supported by the GPU hardware rather 

than the number of scalar processors. For simulation of 

larger networks (around 1-10 Million neurons) a cluster of 

GPUs can be employed, building upon the strategies outlined 

in this paper. In the near future we plan to release APIs that 

allow GPU-SNN models to be used in diverse simulation 

environment (MATLAB, C/C++). Our approach and the 

subsequent release of an API should make large-scale SNN 

simulations available to a wider audience of modelers. 
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