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Abstract: 

New generation System-on-Chips will be extremely complex devices, 
composed from complex subsystems, relying on abstraction from 
implementation details. These chips will support the execution of a mix of 
concurrent applications that are not known in detail at chip design time. 
These SoCs require a significant degree of programmability to configure 
both the set of functions that must execute as well as the structure of the 
dataflow between these functions. To ease the programming effort 
multiprocessor computers have employed cache coherent share memory for 
decades, abstracting the average programmer from system complexity issues 
such as multiple processors and memory hierarchies. 

Memory coherency in multiprocessor computers has a history of decades, 
and has proven to be an indispensable abstraction from system complexity 
towards the application programmer. This chapter describes a next 
generation SoC for the consumer electronics domain (e.g. audio/video, 
vision, robotics). It features heterogeneous multiprocessor subsystems with a 
snooping cache coherence protocol, combined in a system with distributed 
memory employing a directory coherency protocol. It is explained why and 
how the coherent memory model is indispensable for implementing both 
data transport and synchronization for multi-tasking streaming applications 
in distributed memory systems. 
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1. INTRODUCTION 

The semiconductor industry is facing enormous challenges with the 
creation and marketing of every new generation of System-on-Chip (SoC) in 
the consumer electronics market segment. These consumers want trendy 
products loaded with modern features, matched with their personal taste. 
However the creation of such systems today with hundreds of millions of 
transistors in hardware and tens of megabytes of embedded software is a task 
of daunting complexity. The design process goes through stages of 
specification, implementation and verification both for the hardware itself as 
for the embedded software, with contributions of multiple design groups 
spread over the world and over multiple companies. These processes take 
several tens to a few hundred man-years of effort, stretched over a few years 
of elapsed time for major new products. This trend is shown for instance in a 
2003 analysis of IBS (Int. Business Strategies inc.), see Figure 1.

Figure 1 SoC development cost 
 In view of the fast changing and cost sensitive consumer market, such 

SoC products require a huge investment and carry high risk. This chapter 
describes the SoC architecture being created in the Philips Research ‘CAKE’ 
project [Str2001]. The project targets the consumer electronics media 
processing domain, aiming to address the SoC challenges mentioned above. 
The first implementation of this architecture is now in design. The following 
paragraphs describe a set of top-level design considerations that together 
form the key aspects of the CAKE architecture. 

Programmability: Programmability is a key property that allows late 
changes in the product functionality, as well as adaptations to local market 
needs. Similarly, programmability can be regarded as an insurance cost to 
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reduce the investment risk of creating a silicon product with features that 
mismatch with new demands at the time the product reaches the market. 
Programmability also allows the re-use of the same silicon across different 
products, maybe created by different companies. This is an important aspect, 
as for domain-specific SoCs the silicon design cost will not be negligible in 
comparison with the production cost. If the chip supports an industry-
standard programming model, functions can be created by re-use of standard 
software, which will give a tremendous reduction on system development 
cost and time. The main factor that opposes programmability is power 
consumption, leading to more specialized engines (or coprocessors) for some 
functions. 

Parallel processing: The employment of multiple small processors to 
match the large computation workload as represented by today’s streaming 
media processing, will be beneficial both for the silicon area as well as for 
the power consumption. The micro-architecture of current high-end 
microprocessors shows a clear problem of diminishing returns [Hen2003] 
[Die2003]. Our targeted products will typically have a system load 
consisting of a mixture of concurrently active tasks to occupy multiple 
CPU’s in parallel. Furthermore, according to our experience, the audio and 
video processing algorithms easily allow an additional (lower) layer of 
thread-level parallelism by operating on multiple blocks of data in parallel, if 
this were needed to obtain sufficient spreading of CPU load. The use of 
multi-threading applications is becoming more-and-more accepted as generic 
programming model, as the trend towards chip-multiprocessing and CPU’s 
with multi-thread facilities is picked up by all major processor developers 
[Hal2004]. To support re-use of industry-standard software, the CAKE 
architecture creates a global uniform and coherent memory view towards its 
processors, in accordance with the general-purpose computing world. 

Tiling: Tiling creates an extra hierarchy layer in the system hardware 
architecture. The top-level architecture view shows a regular structure of 
homogenous tiles (subsystems) connected through (for instance) a two-
dimensional torus network (see Figure 2) (For more information see the 
section on ‘Static Networks’ in [Fly1995], or [Dal2001]). Such architecture 
allows a trivial instantiation of both large (expensive) and small (cheap) 
products with scalable compute performance for little silicon design effort. 
Tiles can simply be replicated in layout, without the need for extensive 
verification per product instantiation. 
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Figure 2 Tiling with a torus network 
Torus structures are trivially mapped on silicon without long wires, 

creating predictable and scalable performance. If torus links are made 
available off-chip, then current chips can serve to create a prototype for next-
generation silicon, to perform prototype software mapping and performance 
analysis. Inside a tile, a subsystem is created with a heterogeneous set of 
processors and an embedded memory, in complexity comparable with 
today’s large SoCs. Heterogeneous processors allow a choice of processors 
for different types of tasks, thereby improving the computational efficiency 
(energy required to execute the task). The embedded memory is needed to 
ensure that most memory accesses of the processors can be served by tile-
local memory, which avoids the access latency induced by the inter-tile 
network or off-chip access. The network latency would otherwise kill 
processor performance. Furthermore, having most data locally in the tile 
reduces power consumption for data transport, and saves precious bandwidth 
to off-chip bulk memory. With the growth of on-chip aggregate processor 
performance, it is almost inevitable that total on-chip memory needs to grow 
in capacity, taking an increasing percentage of chip area [Nai2002]. Proper 
use of streaming programming models for our media processing target 
domain, and support for tile-local stream-buffer allocation and stream-
management over the inter-tile network, will help to fight-back the growing 
on-chip memory needs and thereby have more effective compute resources 
on given silicon area. Automatic prefetching of streaming data into the cache 
will help to hide the latency of the memory hierarchy with little effort for the 
application programmer [Wae2005]. 

Redundancy and self-test: With SoC complexities now in few hundred 
millions of transistors, breaking the one billion transistor mark soon, it 
becomes unrealistic to expect that after fabrication every individual 
transistor will indeed work correctly as expected. Aiming for perfect 
products would result in an uneconomical loss after fabrication and test. The 
CAKE architecture advocates multiple identical processors and memory 
blocks in every tile, and multiple identical tiles on chip. Clearly, if one 
processor out of ten (or a hundred) would be defect, the chip can still serve a 
quite useful computational load. Also if a one-megabit memory instance is 
faulty (after trying to exploit its built-in redundancy), the remaining memory 
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blocks could still support useful program execution. Similarly, at the top-
level architecture, an entire faulty tile might not block overall use. Only a 
very small percentage of the chip area is really unique and indispensable, so 
there is only an extremely small chance that the chip will be really dead. A 
chip that is loaded with identical programmable compute facilities will have 
the intelligence and processing power to perform self-test at every cold boot-
up of the system, and can configure itself to avoid the use of its faulty parts. 
This allows the semiconductor vendor to sell perfect products for a premium 
price, and sell the other products for price-sensitive applications with hardly 
any production loss. The consumer could observe a small degradation of its 
appliance over time, and buy new equipment before a total break down 
occurs. In that sense, consumer electronic devices would ‘wear out’, and 
could be treated with an attitude similar as clothes, furniture, and cars. 

 
Creating chip multi-processors (CMPs) is a rapidly growing trend in 

industry: the trends as sketched above have broad applicability. Both old and 
modern examples are too numerous to list here [Hal2004]. A few nice 
examples that target the embedded market are the 4-core ARM module with 
L1-cache snooping [Kre2004], a 4-core PowerPC embedded in an FPGA 
[Kow2003], a 4-core MIPS with shared L2 cache and off-chip links for 
PCB-level  tiling [Won2002], and of course the Sony/IBM Cell architecture 
that also advocates tiling for scalability (publications regarding its 
architecture are expected during 2005) [Suz2002]. 

The first test-chip that is currently designed according to the CAKE 
architecture, will contain a single tile only. Off-chip links allow the creation 
of a multi-tile system at PCB (printed circuit board) level. The on-chip (tile) 
memory is currently designed as a shared level-2 cache, which allows 
flexible use through software configuration. For processors, a recent version 
of Philips’ TriMedia processor is used [Wae2005]. The TriMedia processor 
is optimized for audio and video media processing, and features a high 
computational density and power efficiency in its application domain. 

Section 2 will provide more information on the CAKE architecture, in 
particular regarding the tile-local network and its cache coherency. Section 3 
will describe approaches towards parallel programming, and shows some 
benchmarking results. Section 4 summarizes the current state of the project.  

2. CAKE TILE ARCHITECTURE 

The CAKE tile architecture comprises of multiple CPUs, various IP 
blocks, a shared L2 cache, and the interconnect network, see Figure 3 below. 
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IP blocks may be simple coprocessors (e.g. image enhancements, video 
scalars, MPEG decoders, etc.), programmable processors, or complete 
subsystems with multiple processing units and on-chip memory.  

 

CAKE SoC
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Figure 3 CAKE Tile architecture 
 
CAKE’s tile-local coherent interconnect network is capable of serving 

multiple concurrent transactions from the attached L1 caches and 
coprocessors. These transactions follow Philip’s ‘MTL’ or ARM’s ‘AXI’ 
protocols for memory requests, typically transferring a sequence of data-
words per request. The tile network supports multiple outstanding request 
per port, with out-of-order completion. The block-transfers are supported 
with ‘critical word first’ delivery to reduce the CPU stall time (cache miss 
penalty). The interconnect network is created by a set of ‘hour glass’1

structures between the various groups of components. The ‘hour glass’ 
structures provide sufficient parallel data transfers to sustain processor 
performance, without unnecessary overhead of a fully-connected switch 
matrix. These ‘groups of components’ are (a) components that connect to the 
network: 

 
1 An ‘hour glass’ network provides connections between two sets of ports, through two switch 

matrices and intermediate set of ‘n’ ports. This allows to dynamically configure paths 
between any of the two sets of ports, up to a maximum of ‘n’ simultaneous paths. 
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– The various CPUs and IP modules (co-processors). 
– DMA engines that create data transport through inter-tile links. 
– Different ports of the DRAM controller. 
and (b) components internal in the network: 
– Multiple L2 cache banks, selected through address interleaving. 
– Merge tunnels, used for direct (demand driven) inter-processor 

communication. 
The main objective of this network is to provide a low-latency access from 
processors to their requested data. The RTL code for this interconnect 
network is generated from a set of parameters, to create different CAKE 
instances from the same code base. The chip that is currently in design will 
probably connect 9 TriMedias, one ARM or MIPS processor, 4 function-
specific (video-) coprocessors, 4 PCI-Express interfaces, and 8 L2 cache 
banks, through 64-bit data paths. All processors and the tile-network are 
targeted to run at a 350MHz to 450MHz clock rate in a CMOS 65-nm 
process. (The achievable clock rate is strongly influenced by the SRAM 
performance, which is -at the time of writing- not accurately known for the 
targeted 65-nm process.) 

To maintain sustained throughput, the interconnect and L2 control 
implements hit-under-miss. According to this policy the system does not 
block on an L2 miss. In fact, the interconnect keeps serving subsequent 
transaction(s) from other CPUs, in parallel with handling L2 refills. 
Furthermore, if the L2 miss is not caused by a demand load (but, for 
instance, a prefetch), the corresponding CPU does not get blocked either. To 
enable seamless integration of diverse CPUs running at various clock 
frequencies in respective islands of synchronicity, the interconnect network 
talks to the CPUs and IPs via asynchronous clock domain bridges. To avoid 
clock skew problems during back-end design, source-synchronous 
communication channels are employed to connect CPUs and IPs that are 
located further away from the central coherency controller and L2. 

CAKE SoC interconnect network scales up to about 20 or 30 CPUs/IPs: 
beyond that the routing area and cache snooping traffic becomes harder to 
manage. To enable scalability beyond that we employ tiling with distributed 
shared memory (DSM) across multiple tiles (See for instance the section on 
“Scalable Multiprocessors” in [Fly1995]). Inter-tile communication is 
controlled by a directory-based coherence protocol with some support from 
firmware to handle remote misses. Each tile maintains a directory table. 
Each entry of the table specifies where the corresponding memory block 
resides (locally or remotely). By employing a cache snooping protocol inside 
a tile, and supporting a directory-based protocol between tiles, we believe 
the system is scalable to support beyond a hundred processors for the 
applications in our targeted domain (which in general have little data 
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dependency). In case of an L2 miss on a memory block from another tile, the 
hardware calls a firmware routine that orchestrates the inter-tile transfer. 
Such a transfer is typically carried out as message passing via DMA links 
and takes a few hundred cycles in our simulation model. The first CAKE 
chip will implement the inter-tile links as off-chip point-to-point PCI-
Express channels. Using the global inter-tile coherent memory view is 
functionally transparent for the application programmer. 

Compared to many prior-art embedded SoC designs [Oli2003][Intel] the 
CAKE SoC features the L2 cache, which boasts many advantages. First, it 
saves the off-chip DRAM bandwidth and associated power dissipation by 
serving many data accesses from L1 caches and coprocessors and keeping 
communication on-chip. Second, the L2 cache decreases the latency of 
memory accesses to a few dozens of cycles. Third, the L2 cache efficiently 
transfers data on and off the chip automatically in chunk sizes appropriate 
for the off-chip DDR, independent of smaller request sizes of the individual 
CPU’s and coprocessors. This allows efficient use of DDR bandwidth, while 
re-using older (co-)processor designs that still employ smaller block sizes. 

An SoC has multiple on-chip memories and CPUs with caches. Hence, 
the inevitable cache coherence problem [Hen2003]. For example: 
a) If a process in CPU ‘A’ stores a value to a memory address, this updated 

value might remain inside A’s cache for a while. If later a process on 
CPU ‘B’ wants to read the value in this address, it might miss in its cache 
and fetch an out-dated value from main memory. 

b) A process in CPU ‘A’ has stored a new value to a memory address, and 
also (after a while) copied this data back to main memory. If a process on 
CPU ‘B’ wants to read this value, it might find a hit in its local cache and 
still use an out-dated value. 

Note that this cache coherency problem even persists with a single process 
(or thread) without any inter-process communication: An SMP process 
scheduler might stop and later re-schedule the process on different CPU 
causing similar cache coherency problems. 

The CAKE SoC architecture provides hardware cache coherence, 
exposing a simple shared memory model to the programmer. Our cache 
coherency is implemented using snooping in the tile interconnect, according 
to the standard MSI protocol outlined in Figure 4 below. Each L1 cache line 
can be found in one of the three states: Invalid, Shared or Modified. The 
state changes are caused by activities of the attached CPU (shown in solid 
lines) and by snoop requests that arrive from the other CPU’s (shown in 
dashed lines). The cache coherence protocol ensures only a single exclusive 
copy of the cache line being modified. There can, however, be multiple 
copies of a cache line in the Shared state. (For more information, see the 
section “Memory Coherence in Shared Memory Multiprocessors” in 
[Fly1995].) 
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Figure 4 MSI protocol state transitions 

 
The network broadcasts a snoop request upon receiving a transaction 

request from a CPU or an IP. Then the coherent CPUs reply to the requests 
with the status of the cache line in question. Our design can sustain a new 
snoop request every clock cycle. To have a snoop-answer within a few clock 
cycles, without disturbing the normal processing of the snooped CPU’s, the 
L1 cache tags are duplicated into ‘shadow tag’ structures that are stored in 
the clock domain of the network (as opposed to the clock domains of the 
respective CPU’s). Adding the copied shadow tags and snoop logic creates 
about 3% area overhead relative to a TriMedia CPU. For this small overhead 
the SoC obtains an industry-standard programming model, and time-
consuming programmer effort is saved by avoiding complex SW porting 
issues and intriguing (non-reproducible) software bugs. 

Snooped CPU’s might need to start a snoop action, according to the MSI 
protocol, shown as dashed arrows in Figure 4. For example, if the snoop 
request asks the exclusive rights for a cache line and the line is found dirty in 
another CPU, then that other CPU performs the snoop action of write-back 
and invalidate of that line. Note that non-coherent CPUs and IPs also benefit 
from the coherent network, when they stream in data produced by the 
coherent CPU cluster. The inter-CPU communication (such as streaming 
data) is naturally realized by accessing the shared memory. First, the 
producer CPU creates data in its local L1 cache. Then, the consumer CPU 
asks for this data from the interconnect, which finds it in the L1 of the 
producer CPU through snooping. Finally, the interconnect network streams 
the data to the consumer CPU via a ‘merge tunnel’ (see Figure 3). The merge 
tunnel can combine several cache lines from different sources (L1, L2, 
DRAM), depending on the requested block size. The programmer does not 
have to explicitly program the data transport. 
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The L2 cache is currently targeted to have a capacity of 2 MByte, 
requiring about 16mm2 for high-density SRAM. For high-definition video 
applications, embedded DRAM is an attractive option, allowing significantly 
larger capacity in the same silicon area. Unfortunately, availability of 
embedded DRAM is -at the moment of this writing- uncertain at our targeted 
tape-out date, but can be reconsidered for a later product. The L2 
implementation furthermore requires a tag storage of 0.25mm2 and 
negligible cache control logic. These area figures are to be considered 
relative to the CPU area, which is roughly 3mm2 for each TriMedia or ARM 
processor, depending on instantiated CPU variation and L1 cache 
parameters. 

Task synchronization heavily relies on coherency too. The coherent 
CPUs may rely on two well-known operations LL (Load Linked) and SC 
(Store Conditional) [Hen2003] to perform synchronization without stalling 
the memory subsystem. In particular, these operations allow to easily create 
memory-mapped semaphores. The implementation of the LL/SC operations 
relies on cache coherency, which provides the LL operation with the freshest 
data without interfering with other CPUs. SC in turn consults the cache line 
status and reuses the snooping mechanism to complete the atomic LL/SC 
pair. These two operations have been added to the TriMedia instruction set, 
to support efficient inter-thread synchronization and easy porting of external 
software that relies on memory-mapped semaphores. 

CAKE SoC enables a predictable compositional system design through 
advanced resource management. The resource management ensures that 
integration and use of many software and hardware components that share 
resources (caches, DRAM bandwidth, CPU cycles) does not affect the 
expected performance of the individual components, or at least protects the 
performance of critical components by proper management. The resource 
management in CAKE includes DRAM bandwidth and cache footprint 
management by explicit partitioning of the cache space [Ote2005] 
[Mol2005]. All data transfers from the CPUs are accompanied by the task id, 
which selects a way-mask for the L2 cache. This way-mask protects a subset 
of the ways for victim assignment upon a cache miss. In other words, a L2 
cache refill on behalf of one task can be prevented to evict a cache line of 
another critical task. Hence, task interference in the L2 cache is minimized. 
Note that cache hit detection uses all ways, thus enabling inter-task 
communication. 

way0 way1
(shared)

way2 way3 way4 way5 …

quant idct OS

way0 way1
(shared)

way2 way3 way4 way5 …

quant idct OS

Figure 5 Way partitioning among the tasks 
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Task descriptors also identify the bandwidth domain the task belongs to. 

CAKE SoC provides bandwidth monitor registers keeping track of the 
DRAM bandwidth utilization per domain. When a domain has exhausted its 
allocated bandwidth budget, this is signaled to the (software) Quality of 
Service manager. The Quality of Service manager can decide to scale down 
the service of the violating domain or to leave its service level unaffected if 
the domain is meeting its deadlines. Task sharing of the DRAM bandwidth is 
limited by the respective bandwidth budgets controlled by dedicated 
bandwidth monitor registers. The hardware facilities to allow bandwidth and 
cache space control are now in detailed design, the management methods are 
clear [Ote2005], but actual verification of the overall system behavior and its 
tuning has still to be performed. 

3. PROGRAMMING METHODLOGY 

Application programming models are highly evolving area of research 
[Lee2002] and each type of programming model is tailor-made to exploit 
certain properties, which are essential for a particular class of applications 
and the targeted hardware. The multiprocessor features in CAKE can be 
exploited by parallellizing a single application or running many applications 
concurrently and using the underlying cache coherent network for 
communication. Various types of programming models had been proposed 
which can be broadly classified into streaming models (detailed reference to 
various models in [Wol2004]) and non-streaming models like series-parallel 
graph, Finite State Machine (FSM). 
 
Kahn Process Network (KPN) [Wol2004] and its variants are one class of 
programming models appropriate for modeling streaming multimedia and 
signal processing applications. KPN based models have simple and well 
defined interfaces for high-level abstract specification of the application and 
thus are suitable for running on heterogeneous systems. The simple interface 
provided by KPN based models facilitates reuse of the component in the 
model for different applications. Unfortunately, KPN based models might 
have unpredictable execution time, deadlocks, or overuse of resources like 
memory. Another method of expressing concurrency is POSIX thread or 
Pthread [Nic1998]. Pthread provides a number of low-level, low-overhead 
primitives supporting multithreading and flexible communication between 
threads. Pthreads assume that all threads share a uniform address space and 
the underlying architecture should support this shared memory concept. 
Pthreads support highly dynamic thread creation depending upon the 
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application requirements and is a widely used industry standard for shared 
memory machines. But Pthreads have a very low-level of abstraction and 
increases the burden on programmers for both task management and thread 
communication. Yet another model called SDF (Synchronous Data 
Flowgraph) [Sri2000] is popular within DSP community because of the 
useful property that deadlock and resource requirements are decidable or 
determinable. But not all class of applications can be efficiently expressed 
by means of SDF with reasonable effort. 

 
Consequently we see that a platform such as CAKE to be widely usable 

across a range of application domain, the underlying architecture should 
efficiently run a wide variety of programming models. Currently the CAKE 
architecture can support parallel models like TSSA[Oli2003], C-heap, YAPI, 
TTL[Wol2004] and Pthreads. Restricting an architecture or platform to run 
only one kind of programming model like SDF seriously hinders wider 
acceptance of the platform, because other models will run inefficiently and 
thus shut the door to the proponents of other programming models. Also 
complex applications need the support of mixed programming models 
because different parts of the application might be expressed more naturally 
by different programming models [Lee2002]. These application modeling 
issues prompted the CAKE architecture to support a shared-memory concept 
both inside and over the tile, as well as explicit streaming for more efficient 
inter-tile communication. Also the cache-coherency eases the burden on 
programmer to bother about the location of the latest data in the system. 

 
The application design trajectory or flow shown in Figure 7 starts by 

explicitly capturing the parallelism or expressing the parallelism possible in 
the application. CAKE architecture uses the Trimedia compiler, which is 
very good in extracting the Instruction Level Parallelism (ILP), but 
extracting higher levels of parallelism is either manual or semi-automatic. 
Once the parallelism possible in the application is analyzed it can be 
captured using some of the programming models like KPN, Pthreads etc 
mentioned in the previous paragraph. 

 
It is widely known that parallelism can be extracted by functional-, data- or 
mixed partitioning. In a functional partitioned model each task (thread) 
performs a distinct function in a pipelined fashion and communication 
between tasks is made explicit (see Figure 7). A functional partitioned model 
– Facilitates easy reuse of the functional modules for other similar 

applications.  
– Intuitively fits with the streaming application description. 
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– Is an appropriate model for systems where some tasks  are implemented 

on function-specific coprocessors.  
The main disadvantages are:  
– Possibility for load imbalanced partitioning where a single task limits the 

speedup.  
– Inter-task communication might consume high bandwidth, since 

streaming data needs to travel between processors. 
– Large human effort is required for conversion of a monolithic sequential 

application into a functional parallel application because all 
communication between the functional modules need to be made explicit. 
This effort in practice limits the amount of obtainable parallelism.  

 

Figure 6 Functional versus Data Partitoning 
 
On the other hand in data partitioned application models different input 

data is simultaneously processed by different threads executing the same 
function (see Figure 6). A data partitioned model has various advantages 
– Good scalability: When the available number of processors changes than 

only the data distribution needs to change without changing the function 
implementation. Often, no code changes are needed at all, as the number 
of threads might be dynamically determined.  

– Efficient usage of cache resources: The size of data partition can be 
selected to maximize data cache hit ratio.  

– Allows natural load balancing depending upon the workload. 
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But also data parallelism extraction needs thorough study of each 
application and is algorithm specific. The exact scheme by which the data is 
partitioned and distributed to different tasks determines the performance. 
Still a major part of the data parallel models can be reused across various 
applications if within each data partitioned model some kind of modularity 
exists with a clean interface and encapsulation. So from our experiments we 
found out that data parallel models scale well for increasing or decreasing 
resources and also varying input streams resulting in natural load balancing 
and resource utilization. In practice a combination of functional and data 
parallellism will be applied. We foresee functional parallelism at course 
granularity, such as a video codec, an audio codec, or an image improvement 
algorithm. Inside those functions, multi-threaded data-level parallelism can 
be exploited if needed to achieve real-time throughput. 
 

Figure 7: Application development trajectory 
 
Once the parallel model of the application is developed, a mapping or 
binding process is carried out. Earlier the CAKE architecture was running a 
dedicated distributed, light-weight operating system kernel called the TRT 
(Tile RunTime) [Str2001], which supports fine-grain synchronization and 
fast context switching but lacked real-time support. Recently we successfully 
ported the SMP (Symmetric Multi Processing) version of the open-source, 
embedded real-time, operating system eCos [Mas2002]. Currently, the 
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CAKE software implements static task partitioning across the tiles and 
dynamic task scheduling inside the tiles. But other kinds of scheduling like 
static or quasi-static [Sri2000] etc can also be implemented, since the thread-
scheduler is a well-separated functionality of the eCos system. Many 
applications where real-time constraints are not involved, dynamic 
scheduling offers the best usage of available CPU resources with quickest 
possible design integration. Other applications, where real-time deadlines 
and throughput constraints are more difficult to meet, applications need to be 
tuned for reserving shared resources (CPU cycles, DDR memory bandwidth, 
L2 cache footprint), improving the ILP (Instruction Level Parallellism) by 
source-code optimizations, and modifying the data or function thread-level 
parallellism. Even with a fully programmable SMP, sufficient real-time 
guarantees could still be achieved by means of efficient resource 
management provided by the CAKE architecture (see also [Ote2005]). 

We mapped various applications like an MPEG-2 decoder [Str2001], an 
MPEG-2 encoder, 3D-TV rendering algorithms, an Open-GL 3D-GFX 
library, an H.264 decoder [Tol2003] and the SPLASH-2 benchmark 
[Woo1995], and found good scalability and performance on the CAKE 
architecture. Furthermore, the ‘Archtest’ program [Col1992] was mapped to 
thoroughly verify our memory consistency. 

High-definition MPEG-2 decoding was easily parallellized by forking a 
new thread for the decoding of every slice. MPEG-2 ensures that slices can 
be decoded in parallel, and that slices span at most 16 video lines. As result, 
an HD image (1920x1080 pixels) can be processed with 68 threads in a data-
parallel mode with very minor code changes. 

Figure 8 shows the performance of the CAKE architecture for the 
SPLASH-2 benchmark suite. The simulations were performed with different 
numbers of TriMedia processors, that share an 8-bank 12MB L2 cache. The 
individual processors were configured with 16KB of L1 data cache with 
128-byte line size. The benchmark code was run straight out-of-the-box, 
without any adaptation. We can see from the Figure 8 that even without any 
optimization the benchmark scales well. Further study is still needed to 
evaluate the details of these results. 

 



16 Chapter #
 

Figure 8 Out-of-the-box SPLASH-2 benchmark results 
 
Clearly, many possible systems can be created with mixing HW 

architectural features with programming paradigms. In our view however, 
two particular combinations seem to fit naturally together: 
a) Homogeneous multi-processors, in a shared-memory architecture, 

employing data-parallellism, and relying on dynamic task-to-CPU 
mapping. 

b) Heterogeneous multi-processors, in a message-passing architecture, 
employing function-level parallellsim, using static task mapping. 

Philips’ SoCs for the embedded consumer-electronics (CE) domain have 
traditionally used the latter (b) style, mainly because of the high efficiency of 
function-specific processors. The  (a) style has become prominent in general-
purpose computing because of its flexibility and ease of programming. With 
the growing transistor-count per die, and the growing amounts of embedded 
software, we foresee a growing trend towards (a) also for the embedded CE 
market. 
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4. STATUS AND CONLUSIONS 

The CAKE project has a tool suite up and running, partially consisting of 
standard tools, partially newly created software. The complete suite operates 
in a Linux environment and contains: 
– A TriMedia compiler chain, a MIPS compiler, and a shared-object linker. 
– Embedded software for a low-level boot-up of the chip, and the eCos 

embedded OS with our own HAL (hardware abstraction layer) for 
support of timers, interrupt controllers, and other device drivers. 

– Application software to be executed by the embedded processors for: 
a) Testing correct behavior of the hardware. Besides basic CPU tests, 
multi-processors data exchange test are used, such as the generic 
‘Archtest’ program [Col1992].  
b) Media processing application software that is used for performance 
measurements. 

– The parameterized simulator with an almost cycle-accurate system 
model, built on top of the SystemC simulation kernel. 

– Several (interactive graphical) tools for evaluating the simulated system 
performance based on off-line visualization of generated trace files. 

 
Currently RTL (Verilog) code is being made for a first test-chip that 

implements a single tile of the CAKE architecture concepts. Individual 
Verilog modules are tested through co-simulation, embedded in the overall 
SystemC system model. Tape-out is expected in a CMOS 65-nm technology 
by the end of 2005. Creating this chip and its initial applications is done as a 
cooperative effort between Philips Research, Philips Semiconductors and 
Philips Consumer Electronics. 

 
Parallel benchmarks like SPLASH-2 and Archtest did run on the CAKE 
platform without any modification. eCos itself was ported, including its 
optional libraries such as the Posix layer, with full multi-processing and real-
time support, requiring only little effort for its platform-specific HAL. This 
proves that the project created a platform with industry-standard 
programmability, of which cache-coherency is an indispensable ingredient. 
As such, this platform paves the way for the software re-use as demanded by 
future embedded systems. The concepts and the architecture realized in this 
project will establish a strong basis for evolutionary product growth well into 
the next decade, reaching billions of transistors and hundreds of processors 
on a single die, in an economically sound way. 
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