Scalable process network based application modeling
for multiprocessors

Abstract

Kahn process network (KPN) is a model of computation used in modeling sig-
nal processing and media applications. The application is split into concurrently
executing tasks and the communication is made explicit in a KPN model and hence
it is suitable for implementation using multiprocessor. This paper describes the
techniques for modeling applications using KPN for efficient execution on multipro-
cessor platform. We propose the scheme of scalable KPN models using the concept
of data dependency graph which enables easy exploration of data parallelism in
any application modeled using KPN. An MPEG-2 Encoder was taken as case study
and modeled as a Kahn process network and various optimization techniques sug-
gested in this paper were applied on that model. The model was simulated on a
multiprocessor platform and shows good scalability and performance compared to
the base model.

1 Introduction

Rapid advancement in VLSI technology has made the concept of high performance mul-
tiprocessor on a single chip a feasible and attractive solution for many applications.
Other than scientific computing common applications are large database servers, graph-
ics rendering processors, video servers, set-top boxes, video games and multimedia based
content delivery systems.

One main bottleneck in widespread adaptation of multiprocessor is the difficulty in
programming it. In most of the approaches [1, 2, 3] the application modeling is tightly
coupled with the final target implementation. Such low-level abstract programming re-
sults in limited portability of the model across different architectures. Also, current SoC
multiprocessors[4] are heterogeneous in nature with both hardware and software com-
ponent. Thus parallel programming model should be implementable in both hardware
& software system. Hence it is absolutely essential to hide all the architecture details
during the modeling stage for implementation on SoC multiprocessors. KPN model is
an abstract model independent of the underlying architecture which could be either im-
plemented as complete hardware or as tasks in multiprocessor. Thus application can be
modeled and evaluated separately and the mapping on the target architecture (namely
multiprocessor) could be done at later stages[5].
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Figure 1: A sample KPN model

Kahn Process Network (KPN)[6, 7] offers a convenient method for modeling of stream
based applications. KPN model partitions an application into concurrently executing
tasks and hence implementing KPN on multiprocessor is an attractive solution. Even
though KPN captures the task level parallelism available in any application, data par-
allelism has to be explored manually and intuitively. This is a serious limitation of the
KPN model and has been addressed in this paper and scalable KPN model for 3D Recur-
sive Search(3DRS) block matching algorithm (BMA) for motion estimation was derived.
Earlier parallelization techniques were reported[1, 8, 9] only for simple motion estimation
algorithm and not for 3DRS-BMA. In this paper we also discuss modeling optimization
which has to be carried out in the KPN model for efficient execution on multiprocessors.
An MPEG-2 decoder was implemented using KPN model as the framework in [10] but
data parallelism was applied on a limited scale.

2 Background

Kahn process network (KPN) model consists of number of concurrently executing pro-
cesses! communicating via point-to-point unbounded FIFO channels (Fig.1). KPN ex-
plicitly models task level parallelism (or pipelining) and inter-task communication in
the application. Thus, it is easy to map KPN model onto any multiprocessor architec-
ture. Kahn|[6] has proved that these networks are deterministic i.e they exhibit the same
input /output behavior irrespective of their scheduling. An application modeled using
KPN can exhibit task, data and functional parallelism. Functional parallelism exist in
a model, if same input data is processed by two or more different processes. Data par-
allelism exist if different data is processed by different instance of same process at any
instant. An example of a KPN model with all types of parallelism is shown in Fig.1.
Any KPN model exhibits task level parallelism but exploring the application for data
and functional parallelism is non-trivial. This paper addresses the issue of identifying
the data parallelism in any application(Sec.5) modeled using KPN.

In order to simulate the behavior of KPN, the C++ class library called YAPI[5, 7]
was used. Throughout the paper we denote the tool as YAPI (Y-chart Application
Programmers Interface) and the model as KPN. A KPN process blocks if no data is
available for reading from its input FIFO (read blocking). If all the processes in a KPN

Lthe terms process, task and thread are similar in KPN



model blocks on read, it is termed real deadlock. KPN model assumes FIFO of infinite
size. As it is practically not possible to allocate FIFO of unbounded size, YAPI restricts
the FIFO size. If a process attempts to write into a full FIFO it gets write blocked. This
inherently results in an artificial deadlock where atleast one process is write blocked[7].
YAPI provides a mechanism to detect these artificial deadlocks and adjust the FIFO
sizes accordingly.

Reactivity is an important concept for application modeling but KPN does not sup-
port this. Reactivity is present, when we might not be able to predict the sequence of
operation which will be performed on user input data. Also, during data parallelism we
cannot predict the execution time for each processes (which is data dependent). In these
cases, YAPI provides mechanism to check FIFOs for availability of data (called probing)
and then select a particular FIFO before a read or write operation. This mechanism helps
in modeling reactivity and results in a non-deterministic behavior dependening upon the
execution sequence of KPN processes. Hence YAPI simulates a bounded FIFO, deter-
ministic and non-deterministic KPN model.

3 Modeling Techniques

Once an application is broken into concurrent processes, several techniques need to be
applied for efficient execution of a KPN model on multiprocessor platform:

1. Processes granularity:

Execution time of a model on a multiprocessor depends on the total communication
and also on the number of parallel process. A model with fine grain processes shows
improved parallelism but at the cost of increased context switching, communication and
congestion. On the other hand a model with few course grain process shows less com-
munication, congestion and context switching also has less parallelism. The granularity
of processes thus effects the performance of model on multiprocessors. Attempts should
be made to break the KPN model for more parallelism but without changing the total
tokens transferred for improving the performance on multiprocessor.

2. Scalability:

Every process developed in the base model has to be explored for improved parallelism
and the whole model has to be refined to scale easily. A scalable model ensures that
given architecture resources are effectively utilized. The scalability directly effects the
amount of parallelism, congestion in communication and context switching. The need
for scalable application model for multiprocessor is because of the following:

a) KPN modelling is independent of final architecture, hence fine tuning during ar-
chitecture mapping to efficiently utilize the resources (processors) would be possible only
if the model is scalable.

b) When using the model to build a bigger application it would be necessary to
partition the resources and hence the model need to be scaled down to prevent resource
conflict. In this case a static model would not allow this flexibility and hence the final
implementation would not exhibit good performance, which would require redesigning
and /or modification of the entire model.



¢) Scalable models allow fine tuning and grouping of process to trade-off between
communication and computation costs. When these models are needed for application
where QoS is of main consideration, scalability would offer sufficient leverage to fine tune
the model for specified QoS constraints.
3. Uniform Load Characteristics:
If one or two processes have very high computational time compared to other processes in
the model then they dominate the total execution time. These processes can be called as
bottleneck processes. Such models are clearly inefficient because beyond two processors,
the model will not show any speed-up for more processors. If the whole model has more
or less uniform execution time for each process, it would be efficient for multiprocessor.
4. Minimum handshake between Processes:
In handshake based implementation effectively only few processes will be performing the
job while others wait for response. Since after each computation the sender process puts
a request and waits for response from the other process resulting in a context switch
for each computation. As demonstrated in [10], handshake based KPN implementation
would reduce the effective parallelism present in the model and in turn would increase
the number of context switches reducing the streaming behavior of the application. Also,
number of tokens transferred between processes for handshaking increases the commu-
nication load. Thus KPN model should be more uni-directional with less handshake.
5. Shared memory communication:
One main issue at the modeling stage is, how to utilize shared memory available in mul-
tiprocessor architectures. Current YAPI does not have explicit constructs to show that
two or more processes are communicating by a shared memory. One possible solutions
is to use pointer communication. But this makes the entire model non-portable to other
architectures. Another possible solution is introduce a new shared memory channel be-
tween the processes, along with the FIFO channels.
6. Optimum buffer size:
In a multiprocessor architecture every data written into a FIFO is converted into a
semaphore or snoop operation . We can also group a number of write and perform a
single vector write operation which has only one semaphore or one snoop operation. If
larger vector write is performed to reduce semaphore operations, it results in increased
FIFO memory usage, deadlocks and also increased cache miss. So selecting an optimum
size of data transfer between process is essential to trade-off communication load and
cache misses / memory size.

4 A Base MPEG-2 Encoder model

MPEG-2 encoder was taken as a case to study the behavior and performance of KPN
models on multiprocessor platform. Direct mapping of important blocks suggested in
[11],[12],[13] as KPN tasks would give a MPEG-2 KPN encoder model shown in Fig.2.
We call this model as the base model[14]. The bubbles indicate processes or tasks and
the arcs indicate the FIFO. The most important part of this model is the centralized
anchor frame memory manager. The motion estimator process (Tme) finds out the



Figure 2: Base Encoder Model

best matching macroblock (MB) in the reference frame, for the input MB. The motion
compensated subtract process (Tsub) decides the type of encoding for a B/P picture
(intra, forward, backward, interpolated). Also Tsub process determines the quantisation
factor which has to be applied for the MB. The motion compensated add process(Tadd)
reconstructs the I/P frame, which will be the reference for the next B/P picture. The
anchor frame memory manager (Tmemman) stores the reference frame in the memory
and returns the suitable macroblock requested by the Tsub,Tadd and Tme process.
The remaining processes are self explanatory. Among all the tasks, the DCT/IDCT was
executing for more than 60% of the time. Because of the execution complexity, regular
structure and efficient algorithms, DCT /IDCT task were implemented as hardware tasks.
The motion estimation(Tme) is the next dominant task interms on execution time. The
remaining part of the paper discusses, scalable implementation of motion estimator and
the transformations in the model with properties suggested in Sec.3 for efficient execution
on multiprocessors.

4.1 3DRS Motion Estimation

In our MPEG-2 encoder model, motion estimation was implemented by 3DRS algorithm[15].
In MPEG encoding, spatial macro-blocks(MB) are MBs which lie in the current frame
(Fig.3) and temporal MBs are MBs which belong to its reference frame. A candidate
MB is defined as the MB whose already calculated motion vector is used by the current
MB for block matching. 3D Recursive search (3DRS) is an progressive approach, which
uses information from spatial and temporal neighborhood candidate MBs to calculate
the motion vector for the current MB[15]. In the original implementation, [15] each MB
had 2 spatial candidates and 2 temporal candidates (called as convergence accelerator)
and one zero motion vector. The fifth candidate was added to improve the accuracy of
motion vector and was not present in the original 3DRS algorithm.

3DRS algorithm has good performance and less complexity over all the existing mo-
tion estimation algorithm[15]. Fig.4 shows the comparison of the encoding time for
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different motion estimation algorithms. Also as seen in the Fig.4-case 1, 3DRS is atleast
6-10 faster than other algorithms. The prediction distance is defined as the distance (in
frames) between the current frame and the reference frame. As the current frame moves
away from the reference frame(as prediction distance increases) the search region also in-
creases in other algorithms and so the encoding time increases significantly (Fig.4-case2).
In contrast, the 3DRS algorithms encoding time is almost independent of the prediction
distance. Full-search algorithms encoding efficiency was on an average only 5% better
than 3DRS algorithm. Even though 3DRS motion estimator is a promising candidate
for real-time implementation the algorithm is not fully scalable unlike full-search and
hierarchical search algorithms[1, 8]. This is because, the motion estimation(ME) for the
current macro block is dependent on the ME of other blocks. The main challenge is to
model a partially scalable 3DRS motion estimator in the MPEG-2 model which shows
better performance on multiprocessors.

5 Scalable KPN model

The Data dependency graph(DDG) is useful to find out the maximum parallelism pos-
sible for each process in a KPN model. It shows the data dependency for execution of a
process for sequence of inputs applied.

Representation:A DDG for a process consists of edges and nodes. A node represents
an instance of process execution and the edges represent the dependency between the
execution of that process and execution of another instance of the same process but at
a different time (different input). An edge exist in a DDG if some data dependency



exists between two different execution of a particular process. A DDG for 3DRS motion
estimator is shown in Fig.6.

5.1 Scheduling

The DDG by itself does not explain the details of possible parallelism in the application.
The technique of scheduling alters the DDG such that all tasks which are independent and
which exhibit data parallelism are easily identified and the execution order determined.
The method of scheduling a DDG is similar to the scheduling of a data-flow graph (DFG)
in high level synthesis of digital circuit. A particular node of a DDG can be scheduled
to operate at a slot, if all the inputs for that DDG is available. The KPN FIFO reacts
immediately on availability of data in its empty input FIFO, so we need to adopt ASAP
(As Soon As Possible) algorithm[16] to find the execution sequence of DDG. The final
scheduled graph would indicate the maximum parallelism possible, execution schedule
and also minimum time needed for the execution of a particular input with infinite
resources. The main advantages of scheduled DDG (SDDG) are:

1. By using SDDG, we can find the scalability of a particular algorithm and trade-off to
select an algorithm depending on the available resources.

2. Determine the maximum scalability and speed-up which is possible for an algorithm.
3. Also the amount of resources needed for achieving a particular parallelism can be
found out. In fact using the SDDG we can easily extend the KPN model and explore
for data parallelism for more complex processes. Constructing such a SDDG helps in
building scalable model.

4. Construction of scalable hierarchical KPN model is simple with DDG. If a group
of consecutive (adjacent) processes has the same DDG (isomorphic), then they can be
grouped into a single process network having the same DDG structure.

5.2 Data dependency graph for ME algorithms

1. DDG of Full search (FS) ME
As it is clear from Fig.5 the DDG does not have any edge between the nodes of ME. This
is because the ME for one MB is independent of the motion estimation of the other MB.
If M x N MB exists in a frame, it is possible to schedule all the M x N MB in a single
time slot, which means if we have M x N processors, all can operate concurrently to
encode a MB separately to complete the entire motion estimation in a single time slot.
Even though, ME using F'S can achieve full scalability, the complexity of F'S is very high
and it requires large number of candidates for motion estimation hence not feasible for
real-time implementation.

The concurrency is determined by Parallelism factor(P), It indicates the maximum
number of node\process which can exist\execute in a single time slot.

P(Parallelismfactor) = M x N (1)

2. DDG of ME using 3DRS search
From the description of the 3DRS algorithm it looks like parallelisation is not possible
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using the data parallel approach because of the recursive dependency for ME of a par-
ticular MB. But from Fig.6 we can see that it is possible to concurrently execute some
ME of different MB at a single time-slot after scheduling. The P factor for 3DRS with
candidates shown in Fig.3 for a picture consisting of M x N macro-block is

P(Parallelism factor) = min (N, V;ﬂ) (2)
The maximum parallelisation(P) possible is 23 for 720x588 frame(16x16 macro-block
size). If we apply the original 3DRS candidates list[15], then the P factor was found
out to be 45. The reduced P factor in new model is because of the candidate 5 in Fig.3
which reduces the effective parallelisation within a slice. The KPN model of the scalable
3DRS motion estimator is shown in Fig.7. This figure also indicates the Pel partitioning
with separate motion estimator and half-pel refinement unit.

6 Improvements in Base model

6.1 Handshake elimination

In Sec.3, a bottleneck process was defined as the one which affects the performance of the
overall model. One such process in the encoder (Fig.8.a) is the frame memory manager.
Even though the computation time for frame memory manager is small compared to other
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processes, it is responsible to serve requests from 3 complex processes. This bottleneck
is because of the presence of centralized frame memory manager. The above KPN model
was refined into a equivalent structure shown in (Fig.8.b). Here most of the handshake
based implementation has been eliminated resulting in a more unidirectional dataflow
model. This transformation is based on the functionality of each KPN processes and is
not an automatic transformation.

6.2 Critical Path for B and P picture

This method is similar to the approach used in circuit analysis to increase the operating
frequency by reducing the critical path delay. The encoding time for I/B/P pictures are
different, and so the input frame sampling rate is dependent on the slowest encoding
time. The critical path for B and P pictures is shown in Fig.9. Since the B picture needs
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to do two motion estimations (with forward and backward reference I/P frames), the
critical delay for B pictures was almost two times the critical delay for P picture. If we
use an input frame sampling period smaller than the critical delay for B picture, the size
of the input FIFO would increase for each B frame applied at the input. We need to
speed up encoding time for B frame, to get almost same critical delay as P frame.

The method which has been adopted to reduce this difference is to use two motion
estimators (Fig.6.2), one using forward reference frame(I/P) and other using backward
reference frame(I/P). Hence by using two motion estimators(MEr) the overall critical
path delay could be reduced by one MEr delay. This parallelisation is specific to B
picture and the second MEr is not used in P encoding. The final simulation result
(Fig.12) shows that output delay for all P/B picture was nearly constant by this scheme.
This type of parallelisation where the same MB is applied to two motion estimator, which
does search in parallel for same input data but with different reference frame is a kind
functional parallelism.

7 Refined MPEG-2 Encoder Model

Based on the step by step approach suggested in earlier sections, a scalable parallel
model was derived as shown in Fig.11. The 3DRS motion estimation process unit is
shown in Fig.7. The basic atomic unit of scalability for motion estimation is a slice.
Because of the recursive dependency between MBs of a single slice, no parallelisation is
possible within a slice. Scalabiility could be extended to frame level (B frames encoding
in parallel) and GOP level (two GOP encoding in parallel). At present we have done
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slice level parallelisation only. The main features of our model are 1) a unidirectional
flow of data across the model 2) parallel motion estimation for B-pictures with respect
to each reference frame and 3) partially scalable 3DRS motion estimator. The MPEG-2
encoder model shown does not implement adaptive quantisation techniques and complies
only with main profile of MPEG-2 standard[11].

8 Experimental results

The refined encoder model(RM) with scalable 3DRS motion estimator was modeled as
KPN using YAPI/C++ library[5] and verified to generate a bit-true output stream when
compared to the existing base encoder model. Once the model was verified at functional
level, it was mapped on the simulation model of CAKE multiprocessor architecture[4].
The basic unit of CAKE is a tile. Each tile is a symmetric multiprocessor system con-
sisting of processor, shared memory banks, hardware engines and interconnect. Within
a tile processors communicate using shared memory and MSI snoop based protocol is
implemented for cache coherency[17]. Many such identical tiles were interconnected by
a torus network and communicates by message passing between tiles. The number of
processors used for simulations were 24,8 and only a single tile was used in our ex-
periments. The behavior of CAKE multiprocessor architecture was modeled using T'SS
(Tool for system simulation), which is a C-based hardware description language. For
comparison with base model(BM), the refined model(RM) with 3 slice parallelisation
was applied so that encoding of 3 MB belonging to different slice will go on in parallel.
The input sequence for our experiments was the ISO table sequence of size 320x 288 with
group of picture(GOP) size=4 and prediction distance=2. Thus the sequence pattern in
IBPBPBP...

The total number of cycles required to encode a particular I/P /B frame is the latency.
It is clear from Fig.12 that base model latency is 3 times that of refined model, which
is because of the 3 level slice parallelism. Also the latency for P and B pictures are
almost same in the refined model because of parallel motion estimation for B-pictures in
the refined model. In contrast, the base model shows constant latency for B/P pictures
independent of the number of processors, which proves that task level parallelism alone
is not enough for good performance on multiprocessors.

Communication workload (Fig.13) could be characterized by the total number of
snoop request[17] put to the snoop controller by all the CPUs in a multiprocessor and
the total number of snoop request serviced by the CPU caches. The refined model has
been optimised for communication by vector read/write operation, local buffering to
reduce semaphore operations, shared frame memory communication and reduced hand-
shake tokens. Hence refined model shows considerably reduced communication workload
compared to the base model. The Cache miss rate (Fig.14) has also reduced significantly
because of optimised buffering and reduced handshake in the refined model. Handshake
implementation results in increased context switching and hence destructive interference
of one process on another increases cache miss rate.

11



3

£
g
£
3
T

manager

(Tmemman)

frame

Frame
memory
manager

(Tmemman)

_point

frame_point

Slice unit
(Tsliceunit)

w1 -
vec_point mb,_pred mb_pred vec_point
3
8 Eig EE2
< B CE o 4 B CE
> EEs 5 EEg
g g2 2 5 g2 !
g Ezc = £ f S%°< =gz
@« 2 s B o B g
2| %: _ _ £et
g | & \—prop_pic—] {1 prop_s 2
| BL——— prop mb—p—}—f——prop mb J b
£ T U mb_pixels——}—| b_pixcl
&
5%
58
22
g =
‘e
prop ¢
lice_pixels—"
5
£
£2
s
E£E
prop pic prop pic

color filter
(Tpreproc)

Figure 11: MPEG-2 Encoder Process Network

800 T T T T T ; r T
Refined Model-B Latency ——e—
e Model-B Latency ===
Refined Model-P Latency «

700 |- Base Model-B Latency R

600 |- g
o

S s00 |- R
5
E

£ 400 B
T
E
£

2 300 |- 4
5
s

200 |- g

100 |- R

° . . . . . . . .
o 1 2 3 4 5 6 7 8 °

No. of CPU

Figure 12: Latency cycles

12



Total Snoop (in millions)

No. of CPU

Figure 13: Total snoop request to bus

9 Conclusion

From the experimental results described the following conclusions was derived:

e The refined model show good scalability and improved execution time compared
to the MPEG-2 base model (Section 4). Refined model captures all levels of par-
allelism present in the MPEG-2 encoding with optimised communication between
process. All metrics (cache miss rate, latency, bus snoops) show improved perfor-
mance in the refined model. One main result of our experiment is that task-level
parallelism alone is not sufficient for good performance on multiprocessor but data
and functional parallelism are also essential. Another important point is that there
must be more parallelism in the program than in the designated architecture to en-
sure that processors are not idle. Such a property is called as parallel slackness[18].

e One main factor considered for analysis was the latency for P and B pictures which
scales linearly with the amount of slice parallelism present in the new model. For
the new model consisting of 3 slice level parallelism, latency of P/B pictures was
reduced by a factor of 3 compared to the base model (Fig.12). Also, both P and
B picture shows almost same latency because of parallel motion estimation for B
pictures.

e The Data Dependency Graph(DDG) (Sec.5) provides a simple method to apply
data parallelism in any KPN model to convert it into a scalable KPN model.
DDG was applied to many motion estimation algorithms, the maximum scalability
possible for each was studied and a scalable 3DRS motion estimation KPN model
was implemented for MPEG-2 encoder.
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