Creating Indicator Variables in Stata

Example from Appendix C4 includes
Y = GPA for 1st year, X1 = ACT test score (taken before admission)
Categorical variable = “Year” = year of admission, from 1996 to 2000 (5 categories)

Here are separate plots of Y = GPA and X = ACT for each admission year:
. twoway (scatter GPA ACT) (lfit GPA ACT), by(Year)

To create four indicator variables:
. xi i.Year
i.Year _IYear_1996-2000 (naturally coded; _IYear_1996 omitted)

To create indicator variables and run the regression analysis at the same time:
. xi: regress GPA ACT i.Year
i.Year _IYear_1996-2000 (naturally coded; _IYear_1996 omitted)

Source | SS df MS Number of obs = 705
-------------+------------------------------ F(5, 699) = 22.12
Model | 38.7250909 5 7.74501817 Prob > F = 0.0000
Residual | 244.723315 699 .350104886 R-squared = 0.1366
-------------+------------------------------ Adj R-squared = 0.1304
Total | 283.448406 704 .402625577 Root MSE = .5917

--
GPA | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
ACT | .0579188 .0055663 10.41 0.000 .0469901 .0688475
_IYear_1997 | .0791562 .0717559 1.10 0.270 -.0617266 .220039
_IYear_1998 | .0822289 .0688475 1.19 0.233 -.0529438 .2174016
_IYear_1999 | .0887545 .0703506 1.26 0.208 -.0493693 .2268834
_IYear_2000 | .034314 .0708633 0.48 0.628 -.1048164 .1734444
 _cons | 1.498709 .1461276 10.26 0.000 1.211808 1.785611
To test whether the year of admission is needed in the equation – this tests all years together:

Method 1: List all four of the indicator variables by name:

```bash
```

(1) _IYear_1997 = 0
(2) _IYear_1998 = 0
(3) _IYear_1999 = 0
(4) _IYear_2000 = 0

\[
F(4, 699) = 0.60 \\
Prob > F = 0.6648
\]

Method 2: Use shorthand code that includes them all:

```bash
.testparm _IYear*
```

(1) _IYear_1997 = 0
(2) _IYear_1998 = 0
(3) _IYear_1999 = 0
(4) _IYear_2000 = 0

\[
F(4, 699) = 0.60 \\
Prob > F = 0.6648
\]

To create separate intercepts and slopes in the regression:

```bash
.xi: regress GPA ACT i.Year*ACT
```

```
Source |       SS       df       MS              Number of obs =     705
-------------+------------------------------           F(  9,   695) =   12.33
Model |  39.0234908     9  4.33594343           Prob > F      =  0.0000
Residual |  244.424915   695  .351690526           R-squared     =  0.1377
-------------+------------------------------           Adj R-squared =  0.1265
Total |  283.448406   704  .402625577           Root MSE      =  .59304
------------------------------------------------------------------------------
GPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ACT |   .0522815   .0128546     4.07   0.000     .0270431    .0775199
_Year_1997 |   .0821589   .4622083     0.18   0.859    -.8253331    .9896509
_Year_1998 |  -.1078284   .4254001    -0.25   0.800    -.9430518    .7273956
_Year_1999 |  -.0590787   .4311573    -0.14   0.891    -.9056057    .7874483
_Year_2000 |  -.3325866   .4748162    -0.70   0.484    -1.264833    .5996595
ACT |  (dropped)
_YearXACT_1997 |  -.0002628   .0187286    -0.01   0.989    -.0370342    .0365085
_YearXACT_1998 |   .0077131   .0170561     0.45   0.651    -.0257745    .0412008
_YearXACT_1999 |   .0059855   .0171826     0.35   0.728    -.0277506    .0397216
_YearXACT_2000 |   .0149111   .0171826     0.84   0.403    -.0225339    .0523561
_cons |   1.637894   .3212589     5.10   0.000      1.00714    2.268649
------------------------------------------------------------------------------
```

To test whether the interaction terms (separate slopes) are needed:

```bash
.testparm _IYearXACT*
```

(1) _IYearXACT_1997 = 0
(2) _IYearXACT_1998 = 0
(3) _IYearXACT_1999 = 0
(4) _IYearXACT_2000 = 0

\[
F(4, 695) = 0.21 \\
Prob > F = 0.9317
\]
To test whether year is needed at all – separate intercepts and/or slopes:

```
. testparm _IYear* _IYeaXACT*

   ( 1)  _IYear_1997 = 0
   ( 2)  _IYear_1998 = 0
   ( 3)  _IYear_1999 = 0
   ( 4)  _IYear_2000 = 0
   ( 5)  _IYeaXACT_1997 = 0
   ( 6)  _IYeaXACT_1998 = 0
   ( 7)  _IYeaXACT_1999 = 0
   ( 8)  _IYeaXACT_2000 = 0

F(  8,   695) =    0.40
   Prob > F =    0.9189
```

It looks like it does not help to take year of admission into account. Here is the regression without it; compare Adj R-squared and Root MSE for this fit with the ones that included year:

```
. regress GPA ACT

Source |       SS       df       MS              Number of obs =     705
-------------+------------------------------           F(  1,   703) =  108.47
Model |  37.8888841     1  37.8888841           Prob > F      =  0.0000
Residual |  245.559522   703  .349302308           R-squared     =  0.1337
-------------+------------------------------           Adj R-squared =  0.1324
Total |  283.448406   704  .402625577           Root MSE      =  .59102

------------------------------------------------------------------------------
GPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ACT |   .0578005   .0055498    10.41   0.000     .0469044    .0686966
    _cons |   1.558702   .1380167    11.29   0.000     1.287728    1.829676
------------------------------------------------------------------------------
```