Chapter 6 Randomized Block Design Two Factor ANOVA Interaction in ANOVA

Two factor (two-way) ANOVA

Two-factor ANOVA is used when:

- Y is a quantitative response variable
- There are two categorical explanatory variables, called Factors:
 - Factor A has K levels, k = 1, ..., K
 - Factor B has J levels, j = 1, ..., J
- The combination of level k for A and level j for B has sample size n_{kj} but if all equal, just use n.
- Use N for overall sample size.

Special case: Using "BLOCKS"

Definition: A <u>block</u> is a group of similar units, or the same unit measured multiple times.

Blocks are used to reduce known sources of variability, by comparing levels of a factor within blocks.

Examples (explained in detail in class):

- Factor = 3 methods of reducing blood pressure; Blocks defined using initial blood pressure.
- Factor = 4 methods for enhancing memory; Blocks defined by age.
- Factor = Impairment while driving (alcohol, marijuana, no sleep, control); Blocks = individuals.

Simple Block Design, all $n_{ki} = 1$

A simple block design has two factors with:

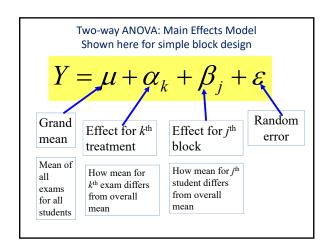
- Exactly one data value (observation) in each combination of the factors.
- Factor A is factor of interest, called *treatment*
- Factor B, called *blocks*, used to control a known source of variability

Main interest is comparing levels of the *treatment*.

Notation: Factor A (Treatments) has *K* levels Factor B (Blocks) has *J* levels

 $\rightarrow N = KJ$ data values

Example: Do Means Differ for 4 Exam Formats? Adam Brenda Cathy Dave Emily Mean 94 68 50 72 Exam #1: 87 95 93 97 63 87 Exam #2: 70 74 86 82 Exam #3: 28 68 77 73 79 89 47 73 Exam #4: 75 Mean 75 91 79 83 47 Treatments: 4 different exam formats, Blocks: 5 different students Question: Is there a difference in population means for the 4 exams? Use students as *blocks* because we know student abilities differ. Controls for that known source of variability.



Randomized Block—Calculations

- 1. Find the mean for each treatment (row means), each block (column means), and grand mean.
- 2. Partition the SSTotal into three pieces:

$$SSTotal = SSA + SSB + SSE$$

$$SSTotal = \sum (y - \overline{y})^2 = (n-1)s_y^2$$
 (As usual)

$$SSA = \sum J(\bar{y}_k - \bar{y})^2$$
 Compare row means (exams)

$$SSB = \sum K(\overline{y}_i - \overline{y})^2$$
 Compare column means (students)

$$SSE = SSTotal - SSA - SSB$$
 (Unexplained error)

Randomized Block ANOVA Table							
d.f.	S.S.	M.S.	t.s.	p-value			
<i>K</i> -1	SSTr	<i>SSTr/(K-1)</i>	MSTr/MSE				
<i>J</i> -1	SSB	SSB/(J-1)	MSB/MSE				
(K-1)(J-1)	SSE	SSE/(K-1)(J-1)	1				
<i>N</i> -1	SSTotal						
Testing TWO hypotheses:							
	d.f. K-1 J-1 (K-1)(J-1) N-1	d.f. S.S. K-1 SSTr J-1 SSB (K-1)(J-1) SSE N-1 SSTotal	d.f. S.S. M.S. K-1 SSTr SSTr/(K-1) J-1 SSB SSB/(J-1) K-1)(J-1) SSE SSE/(K-1)(J-1) N-1 SSTotal	d.f. S.S. M.S. t.s. K-1 SSTr SSTr/(K-1) MSTr/MSE J-1 SSB SSB/(J-1) MSB/MSE K-1)(J-1 SSE SSE/(K-1)(J-1) N-1 SSTotal SSTotal			

$$H_0$$
: $\alpha_1 = \alpha_2 = ... = \alpha_K = 0$
 H_2 : Some $\alpha_k \neq 0$

$$H_0$$
: $\beta_1 = \beta_2 = \dots = \beta_J = 0$
 H_a : Some $\beta_j \neq 0$

(Factor A: Difference in treatment means)

(Factor B: Difference in block means)

ANOVA Output in R

- > BlockMod=aov(Grade~as.factor(Exam)+Student)
- > summary(BlockMod)

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(Exam) 3 1030 343.33 5.7222 0.01144 *
Student 4 4480 1120.00 18.6667 4.347e-05 ***
Residuals 12 720 60.00

What if we ignored Blocks (Students) and treated it as a one-factor ANOVA? (See Lecture 15 – didn't take into account blocks!)

- > model=aov(Grade~as.factor(Exam))
- > model=aov(Grade
 > summarv(model)

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(Exam) 3 1030.0 343.3 1.0564 0.395
Residuals 16 5200.0 325.0

Ignoring "student effect," exams don't seem to differ; but including student effect, exams do differ. SS(Student) becomes part of SSE if Blocks are ignored,

which inflates the estimate of the standard deviation.

95% CI's for each group mean are shown in blue.

Fisher's LSD CIs After Two-Way ANOVA in a Simple Block Design

Same as one-way, but we know that

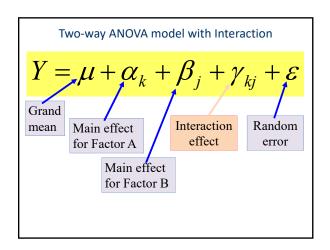
$$\frac{1}{n_i} + \frac{1}{n_j} = \begin{cases} 2/J & \text{for row means} \\ 2/K & \text{for column means} \end{cases}$$

For treatment (row) means:

$$LSD = t * \sqrt{MSE} \sqrt{\frac{2}{J}}$$

For block (column) means

$$LSD = t * \sqrt{MSE} \sqrt{\frac{2}{K}}$$



What's an Interaction Effect?

An *interaction effect* occurs when differences in mean level effects for one factor *depend* on the level of the other factor.

Example: Y = GPA

Factor A = Year in School (FY, So, Jr, Sr) Factor B = Major (Psych, Bio, Math)

FY is hard. $\Rightarrow \alpha_1 < 0$ (Main effect)

Bio is easy. $\Rightarrow \beta_2 > 0$ (Main effect)

Jr in Math is harder than just Jr $\Rightarrow \gamma_{33} < 0$ (Interaction effect)

or just Math

Example

Fire extinguishers tested to see how quickly they put out fires.

Factor A: 3 different chemicals in the extinguishers A_1 , A_2 , A_3 Factor B: 2 types of fires, B_1 = wood, B_2 = gas

 Y_{kj} = time to put out the fire of type B_j with chemical A_k

Questions of interest:

- Do the 3 chemicals differ in mean time required? (If so, there is a Factor A effect.)
- Does mean time to put out fire depend on the type of fire? (If so, there is a Factor B effect.)
- Do the differences in times for the 3 chemicals depend on the type of fire? (If so, there is an interaction between chemical type and fire type.)

Example: Putting out fires

Factor A Chemical (A_1, A_2, A_3) Factor B Fire type (wood, gas)

Response: Time until fire is completely out (in seconds)

Data:	Wood (j=1)	Gas (j=2)	K=3
A1 (k=1)	52 64	72 60	J = 2 $n = 2$
A2 (k=2)	67 55	78 68	N = 12
A3 (k=3)	86 72	43 51	

Interpreting Interaction

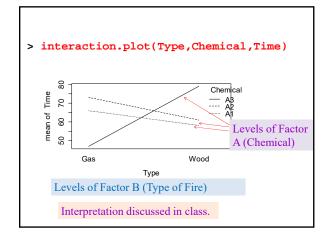
Cell means plot (Interaction plot)

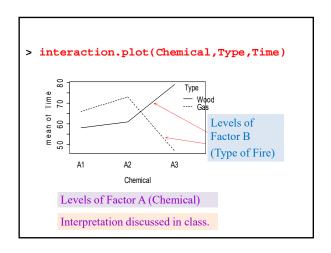
Data:	Wood	Gas
A1	58.0	66.0
A2	61.0	73.0
A3	79.0	47.0

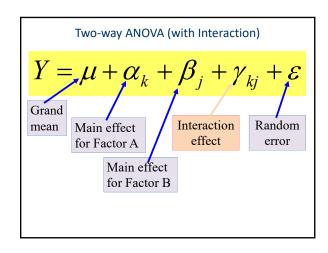
Interaction Plot via R

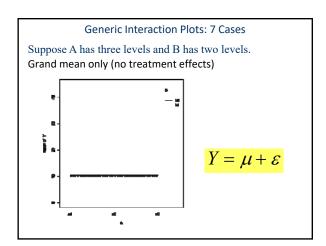
Generic

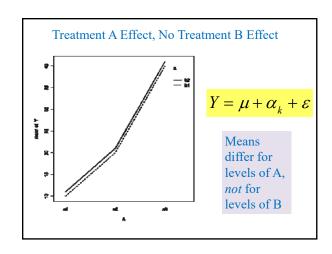
- > interaction.plot(FactorA,FactorB,Y)
- > interaction.plot(Chemical,Type,Time)
 OR
- > interaction.plot(Type,Chemical, Time)

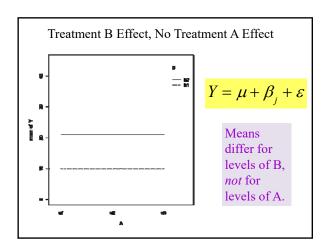


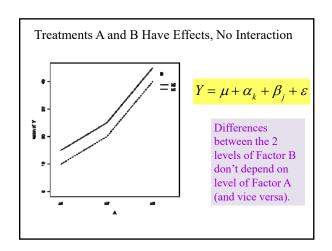


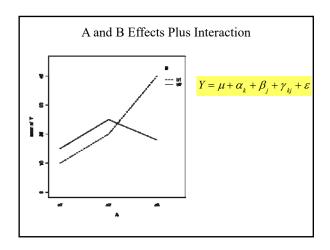


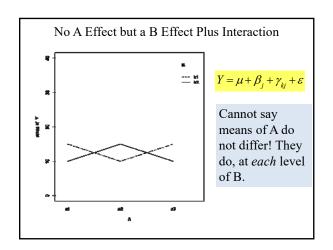


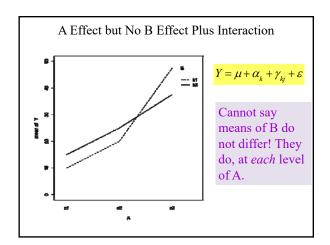


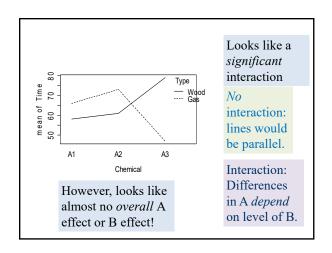




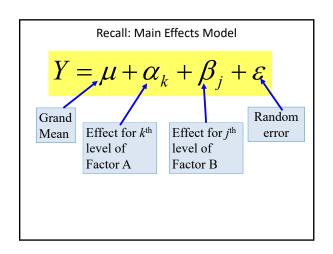








Chapter 6 Section 6.3 The Gory Details!



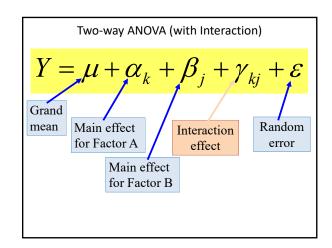
Factorial Anova—Example: Putting out fires

Factor A: Chemical (A1, A2, A3)

Factor B: Fire type (wood, gas)

Response: Time required to put out fire (seconds)

Data:	Wood	Gas	Row mean
A1	52 64	72 60	62
A2	67 55	78 68	67
A3	86 72	43 51	63
Col mean	66	62	



Factorial Design

Factor A has *K* levels, Factor B has *J* levels.

To estimate an interaction effect, we need more than one observation for each combination of factors.

Let n_{ki} = sample size in (k,j)th cell.

Definition: For a balanced design, n_{ki} is constant for all cells.

$$n_{kj} = n$$
 $n = 1$ in a typical randomized block design
 $n > 1$ in a balanced factorial design

Fire Extinguishers

Factor A Chemical (A1, A2, A3)

Factor B Fire type (wood, gas)

Response: Time required to put out fire (seconds)

Data:	Wood	Gas
A1	52 64	72 60
A2	67 55	78 68
A3	86 72	43 51

K = 3J=2n = 2N = 12

Estimating Factorial Effects

 \overline{y}_{kj} = mean for $(k, j)^{th}$ cell \overline{y}_k = mean for k^{th} row

 $\overline{y}_j = \text{mean for } j^{th} \text{ column}$ $\overline{y} = \text{Grand mean}$

$$y = \mu + \alpha_k + \beta_j + \gamma_{kj} + \varepsilon$$

$$(y - \overline{y}) = (\overline{y}_k - \overline{y}) + (\overline{y}_j - \overline{y}) + (\overline{y}_{kj} - \overline{y}_k - \overline{y}_j + \overline{y}) + (y - \overline{y}_{kj})$$

$$(y - \overline{y}) = (\overline{y}_k - \overline{y}) + (\overline{y}_j - \overline{y}) + (\overline{y}_{kj} - \overline{y}_k - \overline{y}_j + \overline{y}) + (y - \overline{y}_{kj})$$

Total = Factor A + Factor B + Interaction + Error

$$SSTotal = SSA + SSB + SSAB + SSE$$

Partitioning Variability (Balanced)

$$SSTotal = \sum (y - \overline{y})^2 = (N - 1)s_Y^2 \text{ (As usual)}$$

$$SSA = \sum_{k} \overline{Jn(\overline{y}_k - \overline{y})^2}$$
 (Row means)

$$SSB = \sum_{i}^{k} Kn(\overline{y}_{i} - \overline{y})^{2}$$
 (Column means)

$$SSAB = \sum_{k,j} n(\overline{y}_{kj} - \overline{y}_k - \overline{y}_j + \overline{y})^2 \quad \text{(Cell means)}$$

$$SSE = \sum (y - \overline{y}_{k_i})^2 = SSTotal - SSA - SSB - SSAB$$

$$SSTotal = SSA + SSB + SSAB + SSE$$
 (Error)

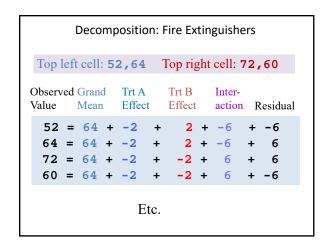
Total = Factor A + Factor B + Interaction + Error

Decomposition: Fire extinguishers

Data:	Wood	Gas
A1	52 64	72 60
A2	67 55	78 68
A3	86 72	43 51

Cell Means:	Wood	Gas	Row mean	Trt A effect
A1	58.0	66.0	62	-2
A2	61.0	73.0	67	+3
A3	79.0	47.0	63	-1
Col mean	66	62	64	
Trt B effect	+2	-2		

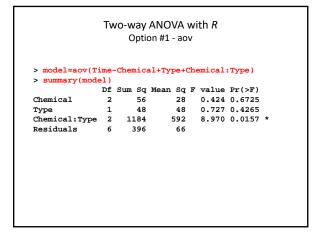
Interaction effects	Wood	Gas	Row mean	Trt A effect
A1	-6	6	62	-2
A2	-8	8	67	+3
A3	14	-14	63	-1
Col mean	66	62/	64	
Trt B effect	-2	_2		



Two-way ANOVA Table (with Interaction)							
Source	d.f.	S.S.	M.S.	t.s.	p		
Factor A	<i>K</i> −1	SSA	SSA/(K-1)	MSA/MSE			
Factor B	<i>J</i> –1	SSB	SSB/(J-1)	MSB/MSE			
A × B	(K-1)(J-1)	SSAB	SSAB/df	MSAB/MSE			
Error	<i>KJ</i> (<i>n</i> -1)	SSE	SSE/df				
Total	<i>N</i> -1	SSY	H_0 : $\alpha_1 =$	$\alpha_2 = \dots = \alpha_K$	= 0		
$H_0: \beta_1 = \beta_2 = \dots = \beta_J = 0$							
	H_0 : All $\gamma_{ki} = 0$						
				,			

(Looking back) If $n = 1$ then df(interaction) = 0						
R	ecall: R	andomiz	ed Block ANC	VA Table	9	
Source	d.f.	S.S.	M.S.	t.s.	p-value	
Trts/A	K-1	SSTr	SSTr/(K-1)	MSTr/MSE		
Block	J-1	SSB	SSB/(J-1)	MSB/MSE		
Error	(K-1) (J-1)	SSE	SSE/(K-1)(J-1)			
Total	N-1	SSTotal				

Fire Example: Two-way ANOVA Table, with Interaction							
Source	d.f.	S.S.	M.S.	t.s.	p		
Chemical	2	56	28.0	0.42	0.672		
Туре	1	48	48.0	0.73	0.426		
A × B	2	1184	592.0	8.97 /	0.016		
Error	6	396	66.0	///			
Total	11	1684	H_0 : $\alpha_1 = \alpha$	$\alpha_2 \neq \dots \neq \alpha_n$	$\alpha_K = 0$		
			H_0 : $\beta_1 = 1$	$\beta_2 = 1 = 1$	$\beta_J = 0$		
			H_0 : All				
				J			



Two-way ANOVA with R
Option #2 - anova(lm), when predictors are categorical

> anova(lm(Time-Chemical+Type+Chemical:Type))
Analysis of Variance Table

Response: Time

Df Sum Sq Mean Sq F value Pr(>F)
Chemical 2 56 28 0.4242 0.67247
Type 1 48 48 0.7273 0.42649
Chemical:Type 2 1184 592 8.9697 0.01574 *
Residuals 6 396 66

If sample sizes are <u>not</u> equal, order matters.

New example (on website): Y = GPA Explanatory variables are: Seat location (front, middle, back) Alcohol consumption (none, some, lots)