Lecture 2 Announcements:

- First assignment is assigned today and due next Wed. Assignment is linked to the daily schedule on the course webpage.
- You can turn in homework Wed in class, or in slot on wall across from 2202 Bren, by 1:50pm on due date. Make sure you use the slot for Stat 110.
- You will need R for the homework due next week, so make sure you install R and R Studio early enough to get help if needed. See course website links under heading related to computer accounts and information.
- More information on R and R Studio in Friday discussion. Bring laptop (with R and R Studio installed) if desired.

<table>
<thead>
<tr>
<th>Response</th>
<th>Explanatory</th>
<th>Procedure</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative</td>
<td>One quantitative</td>
<td>Simple linear regression</td>
<td>Chs 1 & 2</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Multiple</td>
<td>Multiple regression</td>
<td>Chs 3, 4</td>
</tr>
<tr>
<td>Quantitative</td>
<td>One categorical</td>
<td>One-way ANOVA</td>
<td>Ch 5</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Binary</td>
<td>Two-sample t</td>
<td>Stat 7</td>
</tr>
<tr>
<td>Categorical</td>
<td>Multiple cat.</td>
<td>ANOVA</td>
<td>Chs 6, 7</td>
</tr>
<tr>
<td>Categorical</td>
<td>Categorical</td>
<td>Chi-square</td>
<td>Stat 7</td>
</tr>
<tr>
<td>Categorical</td>
<td>Quantitative</td>
<td>Logistic regr.</td>
<td>Stat 111</td>
</tr>
<tr>
<td>Categorical</td>
<td>Multiple</td>
<td>Logistic regr.</td>
<td>Stat 111</td>
</tr>
</tbody>
</table>

TODAY:

- First half of lecture is finishing Chapter 0 (on white board)
- Then Sections 1.1 and 1.2 (these notes)

Simple Linear Regression, for relationship between Two Quantitative Variables

Motivation

Measure 2 quantitative variables on the same units.

- How strongly related are they?
- In the future, if we know value of one, can we predict the other?

Example: After the midterm exam, how well can we predict your final average (of homework, midterm, final) for this class?

Data: Last year’s Stat 110 class where both midterm and final average are known. Use it to create an equation to use in the future, to predict

\[Y = \text{Final Average}, \text{ when } X = \text{Midterm score is known.} \]
Scatter plot for the example (more later). Removed cases that did not do any homework and/or take final exam.

Algebra Review for Linear relationship
Equation for a straight line:
\[Y = \beta_0 + \beta_1 X \]
\(\beta_0 \) = \(y \)-intercept, the value of \(Y \) when \(X = 0 \)
\(\beta_1 \) = slope, the increase in \(Y \) when \(X \) goes up by 1 unit

Example (deterministic = exact relationship): One pint of water weighs 1.04 pounds. (“A pint’s a pound the world around.”)
Suppose a bucket weighs 3 pounds. Fill it with \(X \) pints of water. Let \(Y \) = weight of the filled bucket.

How can we find \(Y \), when we know \(X \)? Easy!

Deterministic Example, continued
\(\beta_0 \) = \(y \)-intercept, the value of \(Y \) when \(X = 0 \)
This is the weight of the empty bucket, so \(\beta_0 = 3 \)
\(\beta_1 \) = slope, the increase in \(Y \) when \(X \) goes up by 1 unit; this is the added weight for adding 1 pint of water, i.e. 1.04 pounds.

The equation for the line:
\[Y = \beta_0 + \beta_1 X \]
\[Y = 3 + 1.04 X \]
\(X = 1 \) pint \(\rightarrow Y = 3 + 1.04(1) = 4.04 \) pounds
\(X = 2.5 \) pints \(\rightarrow Y = 3 + 1.04(2.5) = 5.6 \) pounds

You have just seen an example of a *deterministic relationship* – if you know \(X \), you can calculate \(Y \) exactly.
Definition: In a statistical relationship there is variation in the possible values of \(Y \) at each value of \(X \).

If you know \(X \), you can only find an average or approximate value for \(Y \).

We are interested in describing linear relationships between two quantitative variables. Usually we can identify one as the explanatory variable and one as the response variable. We always define:

\[
\begin{align*}
X &= \text{explanatory variable} \\
Y &= \text{response variable}
\end{align*}
\]

Examples:

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>Response Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Son's height based on parents</td>
<td>X = Average of mom’s and dad’s heights</td>
</tr>
<tr>
<td>2. Highway sign distance</td>
<td>X = Driver’s age</td>
</tr>
<tr>
<td>3. Grades</td>
<td>X = Midterm score</td>
</tr>
</tbody>
</table>

Relating two quantitative variables

1. Graph – “Scatter plot” – to visually see relationship
2. Regression equation – to describe the “best” straight line through the data, and predict \(y \), given \(x \) in the future.
3. Correlation coefficient – to describe the strength and direction of the linear relationship

Example 1: Can height of male student be predicted by knowing the average of his parents’ heights?

Example 2: Can the distance at which a driver can see a road sign be predicted from the driver’s age?

Example 3: Can final average be predicted from midterm score?

Creating a scatter plot:

- Create axes with the appropriate ranges for \(X \) (horizontal axis) and \(Y \) (vertical axis).
- Put in one “dot” for each \((x,y)\) pair in the data set.

Example 1: Scatterplot of 3 points, \(x = \text{avg parent ht} \), \(y = \text{height} \)
Scatterplot of all 73 individuals, with a line through them

What to notice in a scatterplot:
1. If the average pattern is linear, curved, random, etc.
2. If the trend is a positive association or a negative association
3. How spread out the y-values are at each value of x (strength of relationship)
4. Are there any outliers – unusual combination of (x,y)?

| 1. Average pattern looks linear |
| 2. It's a positive association (as x goes up, y goes up, on average) |
| 3. Student heights are quite spread out at each average parents' height |
| 4. There are no obvious outliers in the combination of (x,y) |

Example 1:
\[
\hat{y} = 16.3 + 0.809x
\]

For instance, if parents' average height \(x = 68 \) inches,
\[
\hat{y} = 16.3 + 0.809x
16.3 + 0.809(68) = 71.3 \text{ inches}
\]

Interpretation – the value 71.3 can be interpreted in two ways:
1. An estimate of the average height of all males whose parents' average height is 68 inches
2. A prediction for the height of a one male whose parents' average height is 68 inches

NOTE: It makes sense that we predict a male to be taller than the average of his parents. Presumably, a female would be predicted to be shorter than the average of her parents.

Interpreting the FIT: y-intercept and slope

\textbf{Intercept} = 16.3 is the estimated male height when parents' average height is 0. This makes no sense in this example!

\textbf{Slope} = +0.809 is the difference in estimated height for two males whose parents' average heights differ by 1 inch.

For instance, if parents' average height is 65 inches:
\[
\hat{y} = 16.3 + 0.809(65) = 68.9 \text{ inches}
\]

One inch higher parents' average height is 66 inches, and
\[
\hat{y} = 16.3 + 0.809(66) = 69.7 \text{ inches}
\]

Difference is .809 (rounded to .8)
Errors and Residuals

Individual Y values can be written as:

Population: Individual \(Y = \beta_0 + \beta_1 X + \varepsilon = \text{Model} + \text{Error} \)

So Error = Y – Model = Y – (\(\beta_0 + \beta_1 X \))

Sample: Individual \(y = \text{predicted value} + \text{residual} \)

Where predicted value = \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \)

So individual \(y \) is:

\(y = \hat{y} + \text{residual} = \hat{\beta}_0 + \hat{\beta}_1 x + \text{residual} \)

Definition: residual = \(y - \hat{y} \)

= “Observed \(y \) – predicted \(y \)”

Example: Suppose the average of a guy’s parents’ heights is 66 inches, and he is 69 inches tall.

Observed data: \(x = 66 \) inches, \(y = 69 \) inches.

Predicted height: \(\hat{y} = 16.3 + 0.809(66) = 69.7 \) inches

Residual = 69 – 69.7 = –0.7 inches

The person is just 0.7 inches shorter than predicted.

\(y = \text{predicted value} + \text{residual} \)

\(69 = 69.7 + (-0.7) \)

Each \(y \) value in the original dataset can be written this way.

Defining the “Best” Line

Basic idea: Minimize how far off we are when we use the line to predict \(y \) by comparing to actual \(y \).

For each individual in the data

Residual = \(y - \hat{y} \) = observed \(y \) – predicted \(y \)

Definition: The least squares regression line is the line that minimizes the sum of the squared residuals for all points in the dataset. The sum of squared errors \(= \text{SSE} \) is that minimum sum.

See picture on next page.

Illustrating the Least Squares Line

Example 1:

This picture shows the residuals for 4 of the individuals. The blue line comes closer to all of the points than any other line, where “close” is defined by \(\text{SSE} = \sum \text{residuals}^2 \).

\(\text{SSE} = 376.9 \) (average of about 5.16 per person, or about 2.25 inches when take square root)
R does the work for you!

You will learn how to do this in discussion. The results look like this:

```r
lm(formula = Height ~ AvgHt, data = UCDavisM)
```

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5.48</td>
<td>-1.335</td>
<td>-0.286</td>
<td>1.243</td>
<td>5.714</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|---------|
| (Intercept) | 16.3001 | 6.3188 | 2.580 | 0.0120 * |
| AvgHt | 0.8089 | 0.0954 | 8.479 | 2.16e-12 *** |

Residual standard error: 2.304 on 71 degrees of freedom

EXAMPLE 2: A NEGATIVE ASSOCIATION

- A study was done to see if the distance at which drivers could read a highway sign at night changes with age.
- Data consist of $n = 30$ (x, y) pairs where $x = \text{Age}$ and $y = \text{Distance at which the sign could first be read (in feet)}$.

![Scatterplot of Distance vs Age](image1)

The regression equation is $\hat{y} = 577 - 3x$

Notice negative slope

<table>
<thead>
<tr>
<th>Age</th>
<th>Pred. distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 years</td>
<td>517 feet</td>
</tr>
<tr>
<td>50 years</td>
<td>427 feet</td>
</tr>
<tr>
<td>80 years</td>
<td>337 feet</td>
</tr>
</tbody>
</table>

Interpretation of slope and intercept?

Example 3: Predicting final average from midterm

- Relationship is linear, positive association
- Regression equation: $\hat{y} = 46.45 + 0.4744x$ (Interpretation?)
- For instance, here are predictions for $x = 80, 50, 100$

<table>
<thead>
<tr>
<th>Midterm</th>
<th>Predicted avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 80$</td>
<td>$\hat{y} = 70.17$</td>
</tr>
<tr>
<td>$x = 100$</td>
<td>$\hat{y} = 93.9$</td>
</tr>
</tbody>
</table>

![Scatterplot of Final average vs Midterm](image2)
MORE ABOUT THE MODEL: CONDITIONS and ASSUMPTIONS
(Next time we will learn how to check and correct these, in the “ASSESS” step)

1. Linearity: The linear model says is that a straight line is appropriate.
2. The variance (standard deviation) of the Y-values is constant for all values of X in the range of the data.
3. Independence: The errors are independent of each other, so knowing the value of one doesn’t help with the others.

Sometimes, also require:
4. Normality assumption: The errors are normally distributed
5. Random or representative sample, if we want to extend the results to the population.

Putting this all together, the Simple Linear Regression Model (for the Population) is:

\[Y = \beta_0 + \beta_1 X + \epsilon \]

where \(\epsilon \sim N(0, \sigma) \) and all independent and \(\sigma = \text{standard deviation errors} = \text{standard deviation of all Y values at each X value} \)

Picture of this model:

Another part of the FIT: Estimating \(\sigma \)

- Use the residuals to estimate \(\sigma \).
- Call the estimate the regression standard error

\[
s = \hat{\sigma} = \sqrt{\frac{\text{Sum of Squared Residuals}}{n - 2}} = \sqrt{\frac{SSE}{n - 2}} = \sqrt{\frac{\sum(y_i - \hat{y}_i)^2}{n - 2}}
\]

NOTE: Degrees of freedom = \(n - 2 \)

Example: Highway Sign Distance

\[s = \frac{\sqrt{SSE}}{\sqrt{n - 2}} = \frac{\sqrt{69334}}{28} = 49.76 \text{ feet} \]

Interpretation:
At each age, \(X \), there is a distribution of possible distances (Y) at which sign can be read. The mean is estimated to be \(\hat{y} = 577 - 3x \)

The standard deviation is estimated to be about 50 feet. For instance, for everyone who is 30 years old, the distribution of sign-reading distances has approximately:

Mean = 577 – 90 = 487 feet and st. dev. = 50 feet.
See picture on white board.
For Ex 3 (grades), \(s = 5 \). Interpretation?