DEFINING THE “BEST” LINE

Basic idea: Minimize how far off we are when we use the line to predict y by comparing to actual y.

For each individual in the data
Residual $= \hat{y} - y = \text{observed } y - \text{predicted } y$

Definition: The least squares regression line is the line that minimizes the sum of the squared residuals for all points in the dataset. The sum of squared errors $= \text{SSE}$ is that minimum sum.

See picture on next page.
ILLUSTRATING THE LEAST SQUARES LINE

SSE = 376.9 (average of about 5.16 per person, or about 2.25 inches when take square root)

Example 1:
This picture shows the residuals for 4 of the individuals. The blue line comes closer to all of the points than any other line, where “close” is defined by SSE = \[\sum \text{residual}^2 \text{ all values} \]
R does the work for you!

You will learn how to do this in discussion. The results look like this:

```r
lm(formula = Height ~ AvgHt, data = UCDavisM)

Residuals:
  Min  1Q Median  3Q Max
-5.4768 -1.3305 -0.2858 1.2427 5.7142

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.3001     6.3188   2.580   0.0120 *
AvgHt       0.8089     0.0954   8.479 2.16e-12 ***

Residual standard error: 2.304 on 71 degrees of freedom
```
EXAMPLE 2: A NEGATIVE ASSOCIATION

- A study was done to see if the distance at which drivers could read a highway sign at night changes with age.
- Data consist of \(n = 30 \) \((x, y)\) pairs where \(x = \text{Age} \) and \(y = \text{Distance at which the sign could first be read (in feet)}\).

<table>
<thead>
<tr>
<th>Age</th>
<th>Pred. distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 years</td>
<td>517 feet</td>
</tr>
<tr>
<td>50 years</td>
<td>427 feet</td>
</tr>
<tr>
<td>80 years</td>
<td>337 feet</td>
</tr>
</tbody>
</table>

The regression equation is

\[
\hat{y} = 577 - 3x
\]

Notice negative slope

Ex: \(577 - 3(20) = 577 - 60 = 517 \)

Interpretation of slope and intercept?
Not easy to find the best line by eye!

Applets:

http://www.rossmanchance.com/applets/RegShuffle.htm

(Try copying and pasting data from other examples.)

http://illuminations.nctm.org/Activity.aspx?id=4187
Example 3: Predicting final average from midterm

- Relationship is linear, positive association
- Regression equation: $\hat{y} = 46.45 + 0.4744x$ (Interpretation?)
- For instance, here are predictions for $x = 80, 50, 100$
 - Midterm = $x = 80$, predicted avg = $46.45 + 0.4744(80) = 84.4$
 - $x = 50$, $\hat{y} = 70.17$, $x = 100$, $\hat{y} = 93.9$
MORE ABOUT THE **MODEL**: CONDITIONS and ASSUMPTIONS
(Next time we will learn how to check and correct these, in the “ASSESS” step)

1. **Linearity**: The *linear model* says is that a straight line is appropriate.
2. **The variance** (standard deviation) of the Y-values is *constant* for all values of X in the range of the data.
3. **Independence**: The *errors* are independent of each other, so knowing the value of one doesn’t help with the others.

Sometimes, also require:

4. **Normality** assumption: The errors are normally distributed
5. **Random or representative sample**, if we want to extend the results to the population.
Putting this all together, the Simple Linear Regression Model (for the Population) is:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

where $\varepsilon \sim N(0, \sigma)$ and all independent and $\sigma = $ standard deviation errors

= standard deviation of all Y values at each X value

Picture of this model:
Another part of the FIT: Estimating σ

- Use the *residuals* to estimate σ.
- Call the estimate the *regression standard error*

$$s = \hat{\sigma}_e = \sqrt{\frac{\text{Sum of Squared Residuals}}{n - 2}}$$

$$= \sqrt{\frac{SSE}{n - 2}} = \sqrt{\sum \frac{(y_i - \hat{y}_i)^2}{n - 2}} = \sqrt{MSE}$$

NOTE: Degrees of freedom = $n - 2$
Example: Highway Sign Distance

\[s = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{69334}{28}} = 49.76 \text{ feet} \]

Interpretation:
At each age, \(X \), there is a distribution of possible distances \(Y \) at which sign can be read. The mean is estimated to be \(\hat{y} = 577 - 3x \)

The standard deviation is estimated to be about 50 feet. For instance, for everyone who is 30 years old, the distribution of sign-reading distances has approximately: Mean = 577 – 90 = 487 feet and st. dev. = 50 feet.

See picture on white board.

For Ex 3 (grades), \(s = 5 \). Interpretation?