STATISTICS 110

Outline for today:
- Go over syllabus and dates for the quarter
- Overview of basic terminology
- Cover most of Chapter 0
- Overview of coverage in this course and in Stat 111/202

Some Fundamental Definitions

- **Population:** All of the individual *units* about which we want information
 - Examples on white board
- **Sample:** Units for which we obtain data
 - Examples on white board
- **A variable:** Something we measure (for sample) or could measure (for population) on each unit
 - Examples on white board

Types of Data (Variables)

- **Categorical:** Data consist of category names
 - Male/Female (two categories = binary)
 - Level of education (ordered categories = ordinal)
 - Smoker/nonsmoker
 - Opinion on an issue (favor, oppose, no preference)
 - Admit status (for med school example)
- **Quantitative:** Data consist of numbers where ordinary arithmetic makes sense
 - Height, weight, GPA, number of siblings

More Fundamental Definitions

(Population) Parameter:
A number associated with a population
- Example: Proportion admitted to med school for the population of applicants with GPA of at least 3.5.

(Sample) Statistic:
A number associated with a sample
- Example: Proportion admitted to med school for the observed sample of applicants with GPA of at least 3.5.

Examples on White Board

1. Ex 0.4: Do students with higher GPA have a better chance of getting into med school?
 MedGPA includes Accept/Deny and GPA
2. Ex 0.6: Do financial incentives help people lose weight? Randomly assigned to get incentive or not (control group)
 WeightLossIncentive4 and page 8.

Description or Decision? How Data Are Used

- **Descriptive Statistics:** using numerical and graphical summaries to characterize a data set (and *only* that data set).
- **Inferential Statistics:** using sample information to make conclusions about a population.
- **Models:** Used to approximate the population relationship between two (or more) variables. This course is all about finding good models!
Definitions of Types of Studies

Observational Study:
- Researchers observe or question participants about opinions, behaviors, or outcomes.
- Participants not asked to do anything different.
- Example: We cannot randomly assign students to have GPA above/below 3.5!

Two special cases:
- Sample surveys
- Case-control studies.

Experiment:
- Researchers manipulate something and measure the effect of the manipulation on some outcome of interest.
- Randomized experiments: participants are randomly assigned to participate in one condition (called treatment) or another.
- Sometimes cannot conduct experiment due to practical/ethical issues.
- NOT the same thing as random sampling.

Two Important Issues Based on Data Collection Method

- Extending results to a population: This can be done if the data are representative of a larger population for the question of interest. Safest to use a random sample.
- Cause and effect conclusion: Can only be made if data are from a randomized experiment, not from an observational study.
- Examples on white board

Types of Variables (Measured or Not)

- Explanatory variable (or independent variable) is one that may explain or may cause differences in a response variable (or outcome or dependent variable).
- A confounding variable is a variable that:
 - affects the response variable
 - is related to the explanatory variable.
- Example: Admit (yes/no) is response variable and GPA is explanatory variable. Possible confounding variable is general ambition.

Example of an Observational Study:

Lead Exposure and Bad Teeth

Children exposed to lead are more likely to suffer tooth decay… - USA Today

Observational study involving 24,901 children.

- **Explanatory variable** = level of lead exposure.
- **Response variable** = extent child has missing/decayed teeth.
- **Possible confounding variables** = income level, diet, time since last dental visit.

CRUCIAL POINT

This study is an observational study. We cannot conclude that lead exposure causes tooth decay.

It would be unethical to do a randomized experiment, so we need other (non-statistical) ways to establish cause and effect.
Randomized Experiment: Quitting Smoking with Nicotine Patches

Double-blind, Placebo-controlled Randomized Experiment
240 smokers recruited (volunteers)
Randomized to 22-mg nicotine patch or placebo (controlled) patch for 8 weeks.
Double-blind: neither the participants nor the nurses taking the measurements knew who had received the active nicotine patches.

CRUCIAL POINT
This study is a randomized experiment. We can conclude that nicotine patches cause people to quit smoking.

Potential confounding variables should be similar in the placebo and nicotine patch groups because of random assignment.

Summary of Types of Studies
Observational study – Data are recorded without “manipulating” any of the variables.
Statistical experiment – One or more of the explanatory variables is/are assigned/controlled for all experimental units.

Should use an experiment if we want to confirm a “cause/effect” relationship.
Cannot conclude cause/effect from an observational study!

Building a Statistical Model: Four-step Process Used by Textbook
1. CHOOSE – Pick a form for the model.
2. FIT – Estimate any parameters.
3. ASSESS – Is the model adequate? Could it be simpler? Are conditions met?
4. USE – Answer the question of interest.

General form of a model (for each individual):
\[Y = f(X) + \varepsilon \]

“Expected” \(Y \) for some combination of predictors

Data = Model + Error

Simplest Example: Constant Model; predict weight loss for certain diet, based on sample of people

CHOOSE this model: \[Y = c + \varepsilon \]
where \(c \) is an unknown constant.

Terminology:
The constant \(c \) is a parameter of this model.
We use data to provide a sample estimate of \(c \).
How should we estimate \(c \) from data?
FIT the model: Predicted Value for Y

Get an estimate for Y using the predictors and the model with estimated parameter(s). For the “constant” model, only 1 parameter.

Note: The predicted Y is denoted \(\hat{Y} \).

Examples: \(\hat{Y} = \bar{Y} \) (c = Sample mean)
\(\hat{Y} = m \) (c = Sample median)

Assessment Questions

(1) Which estimator (mean or median) is better?
(That is, how can we compare models?)

(2) Is either model any good?
(That is, how can we assess fit?)

Assessing Fit: Residuals

Using the predicted value for each sample point the residual is:

\[\text{Residual} = Y - \hat{Y} \]

Assess fit by creating a summary of size of the residuals – want it to be small!

Criteria to Minimize Residuals

- Sum of residuals: \(\sum (Y - \hat{Y}) \)
- Sum of absolute deviations: \(\sum |Y - \hat{Y}| \)
- Sum of squared errors: \(\sum (Y - \hat{Y})^2 \)

Use the Model

After choosing a model, fitting it, and assessing that it fits well, you can use it to:

- Predict the response variable for an individual in the future, when you only know the value(s) of the explanatory variable(s)
- Estimate the mean response for a specific value of the explanatory variable(s)
- Extend results to a population, if appropriate
- Determine causal relationships, if appropriate

Overview of Types of Models

<table>
<thead>
<tr>
<th>Response</th>
<th>Explanatory</th>
<th>Procedure</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative</td>
<td>One quantitative</td>
<td>Simple linear regression</td>
<td>Chs 1 & 2</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Multiple</td>
<td>Multiple regr.</td>
<td>Chs 3, 4</td>
</tr>
<tr>
<td>Quantitative</td>
<td>One categorical</td>
<td>One-way ANOVA</td>
<td>Ch 5</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Binary</td>
<td>Two-sample t</td>
<td>Stat 7</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Multiple cat.</td>
<td>ANOVA</td>
<td>Chs 6, 7</td>
</tr>
<tr>
<td>Categorical</td>
<td>Categorical</td>
<td>Chi-square</td>
<td>Stat 7</td>
</tr>
<tr>
<td>Categorical</td>
<td>Quantitative</td>
<td>Logistic regr.</td>
<td>Stat 111</td>
</tr>
<tr>
<td>Categorical</td>
<td>Multiple</td>
<td>Logistic regr.</td>
<td>Stat 111</td>
</tr>
</tbody>
</table>