> #Read in the data.
> #sep="\t" shows that the columns are separated with a tab.
> #header=F says there is no beginning line with variable names.
> Highway<-read.table("HighwaySign.txt", header=F, sep="\t",
col.names=c("Age","Distance"))

> #Make sure it worked by printing out the first 6 lines:
> head(Highway)

Age Distance
1 18 510
2 20 590
3 22 560
4 23 510
5 23 460
6 25 490

> #Create the regression model. Call it "HWModel"
> HWModel<-lm(Distance~Age,data=Highway)

> #See a summary of the model, including coefficients, etc.
> summary(HWModel)

Call:
 lm(formula = Distance ~ Age, data = Highway)

Residuals:
 Min 1Q Median 3Q Max
-78.231 -41.710 7.646 33.552 108.831

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 576.6819 23.4709 24.570 < 2e-16 ***
Age -3.0068 0.4243 -7.086 1.04e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 49.76 on 28 degrees of freedom
Multiple R-squared: 0.642, Adjusted R-squared: 0.6292
F-statistic: 50.21 on 1 and 28 DF, p-value: 1.041e-07

> #Get 95% confidence intervals for the intercept and slope.
> confint(HWModel)

2.5 % 97.5 %
(Intercept) 528.604017 624.759857
Age -3.876051 -2.137620

> #Get 95% confidence interval for the mean of Y's at X = 30.
> #se.fit=T includes value of the standard error in the output
> predict(HWModel, list(Age=30),se.fit=T,interval="confidence")

$fit

 fit lwr upr
1 486.4769 460.4091 512.5447

$se.fit

[1] 12.72588
> #Get 95% prediction interval for an individual Y when X = 30.
> predict(HWModel, list(Age=30), se.fit=T, interval="p")
> fit
> fit lwr upr
> 1 486.4769 381.2644 591.6893
>
> #Get confidence interval and prediction interval for Age = 50
> predict(HWModel, list(Age=50), se.fit=T, interval="confidence")
> fit
> fit lwr upr
> 1 426.3402 407.7097 444.9706
>
> #Quit R
> q()