

STATISTICS 201

Outline for today:

- Go over syllabus
- Provide requested information on survey (handed out in class)
- Brief introduction and hands-on activity

Survey: Provide this Info

- Name
- Major/Program
- Year in school or in graduate program
- Something interesting about yourself
- Why you are taking this class

How familiar are you with these?

(Not at all, somewhat, very, could teach it)

- 1. Summation notation
- 2. Hypothesis testing in general
- 3. P-values
- 4. Confidence intervals
- 5. Two-sample *t*-test
- 6. Sampling distributions
- 7. F-Distribution
- 8. Scatter plots
- 9. Simple linear regression
- 10. Matrices

Survey, continued

Provide the following data:

- a. Your height, in *inches* (to nearest half inch) or *centimters* (note 1 cm = 0.3937 inches)
- b. Your "handspan" in *centimeters*, defined as the distance covered on the ruler by your stretched hand from the tip of the thumb to the tip of the small finger.
- c. Predicted handspan = -3 + 0.35 (ht in inches) or -3 + 0.1378 (ht in centimeters)
- d. Your "residual" (to be explained!)

Regression and ANOVA

- Used to describe the relationship between a continuous "response" variable and one or more "predictor" variables (continuous = regression; categorical = ANOVA).
- Regression used to predict a future response using known, current values of the predictors, or estimate relationship.
- ANOVA used to figure out why means differ for different groups, treatments, etc.
- First need to discuss how data collection method affects potential conclusions – very important!
- Switch to power point slides modified from Brooks/Cole to accompany "Mind On Statistics" by Utts/Heckard

IMPORTANT NOTE

The remaining slides are modified from Power point presentations to accompany *Mind on Statistics,* by Utts and Heckard and are copyright Brooks/Cole. They are not to be copied or used for purposes other than this class.

Gathering Useful Data

See Section 1.4 of our 201 textbook

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Principle Idea:

The knowledge of how the data were generated is one of the key ingredients for translating data intelligently.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, In

Description or Decision? Using Data Wisely

• **Inferential Statistics:** using sample information to make conclusions about a *broader range* of individuals than just those observed.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Two Important Issues Based on Data Collection Method

 Cause and effect conclusion: Can only be made if data are from a randomized experiment, not from an observational study.

10

Definitions of Types of Studies

Observational Study:

Researchers *observe* or *question* participants about opinions, behaviors, or outcomes. Participants not asked to do anything differently.

Two special cases:

sample surveys and case-control studies.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Experiment:

Randomized experiments: participants are *randomly assigned* to participate in one condition (called *treatment*) or another.

Sometimes cannot conduct experiment due to practical/ethical issues.

NOT the same thing as random sampling.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

Types of Variables (Measured or Not)

Explanatory variable (or independent variable) is one that may explain or may cause differences in a **response variable** (or outcome or dependent variable).

A **confounding variable** is a variable that *affects the response variable* and also is *related to the explanatory variable*. A potential confounding variable not measured in the study is called a **lurking variable**.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

CRUCIAL POINT

This study is an observational study. We cannot conclude that lead exposure causes tooth decay.

It would be unethical to do a randomized experiment, so we need other (non-statistical) ways to establish cause and effect.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Randomized Experiment:

Quitting Smoking with Nicotine Patches

"After the eight-week period of patch use, almost half (46%) of the nicotine group had quit smoking, while only one-fifth (20%) of the placebo group had." *Newsweek, March 9, 1993, p. 62*

Double-blind, Placebo-controlled Randomized Experiment

240 smokers recruited (volunteers)

Randomized to 22-mg nicotine patch or placebo (**controlled**) patch for 8 weeks.

Double-blind: neither the participants nor the nurses taking the measurements knew who had received the active nicotine patches.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

CRUCIAL POINT

This study is a randomized experiment. We *can* conclude that nicotine patches *cause* people to quit smoking.

Potential confounding variables should be similar in the placebo and nicotine patch groups because of random assignment.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Relationships Between Quantitative Variables

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Three Tools we will use ...

- Scatterplot, a two-dimensional graph of data values
- Correlation, a statistic that measures the strength and direction of a linear relationship
- Regression equation, an equation that describes the average relationship between a response and explanatory variable

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Looking for Patterns with Scatterplots

Questions to Ask about a Scatterplot

- What is the average pattern? Does it look like a straight line or is it curved?
- What is the direction of the pattern?
- How much do individual points vary from the average pattern?
- Are there any unusual data points?

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

Positive/Negative Association

- Two variables have a **positive** association when the values of one variable tend to increase as the values of the other variable increase.
- Two variables have a **negative association** when the values of one variable tend to decrease as the values of the other variable increase.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Example: Height and Handspan

Data:	
Height (in.)	Span (cm)
71	23.5
69	22.0
66	18.5
64	20.5
71	21.0
72	24.0
67	19.5
65	20.5
76	24.5
67	20.0
70	23.0
62	17.0
and so on.	

Data shown are the first 12 observations of a data set that includes the heights (in inches) and fully stretched handspans (in centimeters) of 167 college students.

for n = 167 observations

Copyright @2004 Brooks/Cole, a division of Thomson Learning, Inc.

Example, cont. Height and Handspan

When two variables tend to increase together, we say that they have a **positive association**.

The handspan and height measurements may have a linear relationship.

Example: Driver Age and Maximum Legibility Distance of Highway Signs

- A research firm determined the maximum distance at which each of 30 drivers could read a newly designed sign.
- The 30 participants in the study ranged in age from 18 to 82 years old.
- We want to examine the **relationship** between age and the sign legibility distance.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

Example Driver Age and Maximum Legibility Distance of Highway Signs 500 250 400 300 15 25 35 45 55 65 75 85 Age • We see a negative association with a linear pattern. • We will use a straight-line equation to model this relationship. Copyright 62004 Brooks-Cole, a division of Thomson Learning, Inc.

Example: The Development of Musical Preferences

- The 108 participants in the study ranged in age from 16 to 86 years old.
- We want to examine the relationship between song-specific age (age in the year the song was popular) and musical preference (positive score => above average, negative score => below average).
- Note that a *negative* "song-specific age" means the person wasn't born yet when the song was popular.

Copyright @2004 Brooks/Cole, a division of Thomson Learning, Inc.

Describing Linear Patterns with a Regression Line

When the best equation for describing the relationship between *x* and *y* is a *straight line*, the equation is called the **regression line**.

Two purposes of the regression line:

- to **estimate the average** value of *y* at any specified value of *x*
- to **predict the value** of y for an **individual**, given that individual's x value

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

Example: Height and Handspan (cont) Regression equation: Handspan = -3 + 0.35 Height Estimate the average handspan for people 60 inches tall: Average handspan = -3 + 0.35(60) = 18 cm. Predict the handspan for someone who is 60 inches tall: Predicted handspan = -3 + 0.35(60) = 18 cm.

Example: Height and Handspan (cont) Regression equation: Handspan = -3 + 0.35 Height Slope = 0.35 => Handspan increases by 0.35 cm, on average, for each increase of 1 inch in height. In a statistical relationship, there is variation from the average pattern. Copyright ©2004 Brooks:Coke, a division of Thomson Learning. Inc.

The Equation for the Regression Line (for a sample, not a population)

$$\hat{y} = b_0 + b_1 x$$

- \hat{y} is spoken as "y-hat," and it is also referred to either as predicted y or estimated y.
- b_0 is the **intercept** of the straight line. The intercept is the value of y when x = 0.
- b_1 is the **slope** of the straight line. The slope tells us how much of an increase (or decrease) there is for the y variable when the x variable increases by one unit. The sign of the slope tells us whether y increases or decreases when x increases.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

Prediction Errors and Residuals

• **Residual** =
$$(y - \hat{y})$$

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, In

Let's predict your handspan Record these on your survey

Regression equation: $\hat{y} = b_0 + b_1 x$

Handspan (cm) = -3 + 0.35 Height (inches)

Or -3 + 0.1378 Height (cm)

Calculate your predicted handspan:

Examples: -3 + (0.35)(70 inches) = 21.5 cm

-3 + (0.35)(65 inches) = 19.75 cm

-3 + (0.1378) (165 cm) = 19.73 cm

Find your residual:

(actual handspan - predicted handspan)

33

Measuring Strength and Direction with Correlation

Correlation *r indicates the strength and the direction of a straight-line relationship*.

- The *strength* of the relationship is determined by the *closeness of the points to a straight line*.
- The *direction* is determined by whether one variable generally increases or generally decreases when the other variable increases.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc

Regression equation: Handspan = -3 + 0.35 Height **Correlation** r = +0.74 => a somewhat **strong positive linear** relationship.

Example: Height and Handspan (cont)

Example: Driver Age and Maximum Legibility Distance of Highway Signs (cont) Regression equation: Distance = 577 - 3 Age Correlation r = -0.8 = >a somewhat strong negative linear association.

Copyright ©2004 Brooks/Cole, a division of Thomson Learning, Inc.

Summary

Regression is used to do two things:

- Predict future values using information available now. (Predict response from explanatory variable.)
- Estimate the average relationship between a response and one or more explanatory variables.
- Regression only works for *linear* relationships.

41

Homework

Problems 1.12, 1.13, 1.29 and 1.30 Due next Wed (October 9) by 6pm