TODAY:
• Section 12.1, Lesson 3: What can go wrong with hypothesis testing
• Section 12.3: Hypothesis tests for difference in two proportions

ANNOUNCEMENTS:
• Make sure you check your grades on eee and notify me if any of them are incorrect or missing.
• Friday discussion is for credit this week. Last chance!

HOMEWORK (due Mon, March 11):
Chapter 12:
#62 and 64 (count together as 1, find p-values for #62), 90, 112
REVIEW OF HYPOTHESIS TEST FOR ONE PROPORTION
ONE-SIDED TEST, WITH PICTURE

\(H_0: p = p_0 \) versus \(Ha: p > p_0 \)

Reject \(H_0 \) if \(p\)-value < .05. For what values of \(z \) does that happen?

Notation: \textit{level of significance} = \(\alpha \) (alpha, usually .05)

\(p\)-value < .05 corresponds with \(z > 1.645 \) (rejection region)

![Diagram showing normal distribution with rejection region for a one-sided test.](image)
AN ILLUSTRATION OF WHAT HAPPENS WHEN Ha IS TRUE
A Specific Example of finding power: Suppose the truth for the population proportion p is one standard deviation above the null value \(p_0 \). Then the mean for the standardized scores will be 1 instead of 0. How often would we (correctly) reject the null hypothesis in that case? Answer (purple region) is \(0.2595 \) = “power”
What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities

Type 1 error (false positive) occurs when:
- *Null hypothesis* is actually *true*, but
- Conclusion of test is to reject H_0 and *accept H_a*

Type 2 error (false negative) occurs when:
- *Alternative hypothesis* is actually *true*, but
- Conclusion is that we *cannot reject H_0*

Example: Case Study 1.6, aspirin and heart attacks. Found statistically significant relationship; *p-value* was < .00001.
Heart attack and aspirin example:

Null hypothesis: Proportion of men who would have heart attacks if taking aspirin (p_1) = Proportion of men who would have heart attacks if taking placebo (p_2).

In symbols: $H_0: p_1 = p_2$ or $H_0: p_1 - p_2 = 0$

Alternative hypothesis: The heart attack proportion is lower if men were to take aspirin than if they were not to take aspirin.

In symbols: $H_a: p_1 < p_2$ or $H_0: p_1 - p_2 < 0$

Type 1 error (false positive): Occurs if there really is no relationship between taking aspirin and heart attack prevention, but we conclude that there is a relationship.

Consequence: Good for aspirin companies! For consumers, possible side effects from aspirin, with no redeeming value.
Type 2 error (*false negative*): Occurs if there *is* a relationship but the study *failed to find it*.

Consequence:
Miss out on recommending something that could save lives!

Which type of error is more serious?
Probably all agree that Type 2 is more serious.

Which could have occurred?
Type 1 error could have occurred.
Type 2 could not have occurred, because we *did* find a significant relationship.
Aspirin Example: Consequences of the decisions

<table>
<thead>
<tr>
<th>Decision:</th>
<th>Don’t reject H_0, Don’t conclude aspirin works</th>
<th>Reject H_0, Conclude aspirin works</th>
<th>Which error could occur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0: Aspirin doesn’t work</td>
<td>OK</td>
<td>Type 1 error: People take aspirin needlessly; may suffer side effects</td>
<td>Type 1</td>
</tr>
<tr>
<td>Ha: Aspirin works</td>
<td>Type 2 error: Aspirin could save lives but we don’t recognize benefits</td>
<td>OK</td>
<td>Type 2</td>
</tr>
<tr>
<td>Which error could occur?</td>
<td>Type 2</td>
<td>Type 1</td>
<td></td>
</tr>
</tbody>
</table>

Note that because H_0 was rejected in this study, we could only have made a Type 1 error, not a Type 2 error.
Some analogies to hypothesis testing:

Analogy 1: **Courtroom:**
Null hypothesis: Defendant is innocent.
Alternative hypothesis: Defendant is guilty

- The two possible conclusions are “not guilty” and “guilty.”
- The conclusion “not guilty” is equivalent to “don’t reject H_0.”
- We don’t say defendant is “innocent” just like we don’t accept H_0 in hypothesis testing.

Type 1 error is when defendant is *innocent* but *gets convicted*.

Type 2 error is when defendant is *guilty* but *does not get convicted*.

Which one is more serious??
Analogy 2: Medical test

Null hypothesis: You do not have the disease

Alternative hypothesis: You have the disease

Type 1 error: You don't have disease, but test says *you do*; a "false positive"

Type 2 error: You *do* have disease, but test says you do not; a "false negative"

Which is more serious??
Notes and Definitions:

Probability related to Type 1 error:

The *conditional probability* of making a Type 1 error, given that H_0 is true, is the *level of significance α*. In most cases, this is .05. However, it should be adjusted to be lower (.01 is common) if a Type 1 error is *more serious* than a Type 2 error.

In probability notation: $P(\text{Reject } H_0 \mid H_0 \text{ is true}) = \alpha$, usually .05.
Probability related to Type 2 error and Power:

- **Conditional probability** of correct decision, given H_a is true is called the **power** of the test.
 - Can only calculate numerically for a specific value in H_a.
- **Conditional probability** of Type 2 error $= 1 - power$

 $P(\text{Reject } H_0 \mid H_a \text{ is true}) = \text{power}$.

 $P(\text{Do not reject } H_0 \mid H_a \text{ is true}) = 1 - \text{power} = \beta = P(\text{Type 2 error})$.

![Diagram showing probability of type 2 error and power.](image)
How can we increase power and decrease P(Type 2 error)?
Power increases if:

- Sample size is increased (because having more evidence makes it easier to show that the alternative hypothesis is true, if it really is)
- The level of significance α is increased (because it’s easier to reject H_0 when the rejection region is larger)
- The actual difference between the sample estimate and the null value increases (because it’s easier to detect a true difference if it’s large) *We have no control over this one!*

Trade-off must be taken into account when choosing α. If α is *small* it’s *harder* to reject H_0. If α is *large* it’s *easier* to reject H_0:

- If Type 1 error is *more* serious, use *smaller* α.
- If Type 2 error is *more* serious, use *larger* α.
Ways to picture the errors (see page 463):

- **Truth**
 - Unknown; either 0 or 1

- **Null**
 - \(1 - \alpha \)
 - \(\alpha \)

- **Alternative**
 - \(\beta = 1 - \text{Power} \)
 - \(\text{Power} \)

- **Decision**
 - Don't reject null hypothesis
 - Reject null hypothesis

- **Consequence**
 - Correct
 - Type 1 error
 - Type 2 error
Truth, decisions, consequences, *conditional* (row) probabilities:

Decision:

<table>
<thead>
<tr>
<th>Truth:</th>
<th>Don’t reject H_0</th>
<th>Reject H_0</th>
<th>Error can occur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>Correct $1 - \alpha$</td>
<td>Type 1 error α</td>
<td>Type 1 error can only occur if H_0 true</td>
</tr>
<tr>
<td>H_a</td>
<td>Type 2 error $\beta = 1 - power$</td>
<td>Correct power</td>
<td>Type 2 error can only occur if H_a is true.</td>
</tr>
<tr>
<td>Error can occur:</td>
<td>Type 2, when H_0 not rejected</td>
<td>Type 1, when H_0 rejected</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 12.3: Test for difference in 2 proportions

Reminder from when we started Chapter 9
Five situations we will cover for the rest of this quarter:

<table>
<thead>
<tr>
<th>Parameter name and description</th>
<th>Population parameter</th>
<th>Sample statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Categorical Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One population proportion (or probability)</td>
<td>p</td>
<td>\hat{p}</td>
</tr>
<tr>
<td>Difference in two population proportions</td>
<td>$p_1 - p_2$</td>
<td>$\hat{p}_1 - \hat{p}_2$</td>
</tr>
<tr>
<td>For Quantitative Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One population mean</td>
<td>μ</td>
<td>\bar{x}</td>
</tr>
<tr>
<td>Population mean of paired differences</td>
<td>μ_d</td>
<td>\bar{d}</td>
</tr>
<tr>
<td>Difference in two population means</td>
<td>$\mu_1 - \mu_2$</td>
<td>$\bar{x}_1 - \bar{x}_2$</td>
</tr>
</tbody>
</table>

For each situation will we:

√ Learn about the *sampling distribution* for the sample statistic
√ Learn how to find a *confidence interval* for the true value of the parameter

• *Test hypotheses* about the true value of the parameter
Comparing two proportions from independent samples

Reminder on how we get independent samples (Lecture 19):

- **Random samples** taken separately from two populations and same response variable is recorded.

 Example: Compare proportions who think global warming is a problem, in two different years.

- **One random sample** taken and a variable recorded, but units are categorized to form two populations.

 Example: Compare 21 and over with under 21 for proportion who drink alcohol.

- Participants **randomly assigned** to one of two treatment conditions, and same response variable is recorded.

 Example: Compare aspirin and placebo groups for proportions who had heart attacks.
Hypothesis Test for Difference in Two Proportions

Asked 1500 people “In your view, is global warming a very serious problem, somewhat serious, not too serious, or not a problem?”

Results: 615/1500 = .41 or 41% answered “Very serious”

Poll taken again with different 2001 people in November, 2011.

Results: 760/2001 = .38 or 38% answered “Very serious.”

Question: Did the *population* proportion that thinks it’s very serious go down from 2006 to 2011, or is it chance fluctuation?
SIDE NOTE ABOUT THIS EXAMPLE:

They have not asked this question again since the 2011 poll, but in November 2012 a different poll asked this:

"If nothing is done to reduce global warming in the future, how serious of a problem do you think it will be for THE UNITED STATES: very serious, somewhat serious, not so serious, or not serious at all?"

This was a month after Hurricane Sandy.

Results: 49% said very serious and an additional 31% said somewhat serious. So clearly public opinion depends on when the poll is taken!
Notation and numbers for the Example:

Population parameter of interest is $p_1 - p_2$ where:

$p_1 =$ proportion of all US adults in May 2006 who thought global warming was a very serious problem.

$p_2 =$ proportion of all US adults in Nov 2011 who thought global warming was a very serious problem.

$\hat{p}_1 =$ sample estimate from May 2006 $= X_1/n_1 = 615/1500 = .41$

$\hat{p}_2 =$ sample estimate from Nov 2011 $= X_2/n_2 = 760/2001 = .38$

Sample statistic is $\hat{p}_1 - \hat{p}_2 = .41 - .38 = .03$
Five steps to hypothesis testing for difference in 2 proportions:
See Summary Box on page 479

STEP 1: Determine the null and alternative hypotheses.

Null hypothesis is $H_0: p_1 - p_2 = 0$ (or $p_1 = p_2$); null value = 0

Alternative hypothesis is one of these, based on context:
$H_a: p_1 - p_2 \neq 0$ (or $p_1 \neq p_2$)
$H_a: p_1 - p_2 > 0$ (or $p_1 > p_2$)
$H_a: p_1 - p_2 < 0$ (or $p_1 < p_2$)

EXAMPLE:
Did the population proportion who think global warming is “very serious” drop from 2006 to 2011? This is the alternative hypothesis. (Note that it’s a one-sided test.)
$H_0: p_1 - p_2 = 0$ (no actual change in population proportions)
$H_a: p_1 - p_2 > 0$ (or $p_1 > p_2$; 2006 proportion > 2011 proportion)
STEP 2:
Verify data conditions. If met, summarize data into test statistic.

For Difference in Two Proportions:

Data conditions: $n\hat{p}$ and $n(1-\hat{p})$ are both at least 10 for both samples.

Test statistic:

$$z = \frac{\text{sample statistic} - \text{null value}}{(\text{null}) \text{ standard error}}$$

Sample statistic = $\hat{p}_1 - \hat{p}_2$

Null value = 0

Null standard error:

- Computed *assuming* null hypothesis is true.
- If null hypothesis *is* true, then $p_1 = p_2$
- We get an estimate for the common value of p using *both samples*, then use that in the standard error formula. Details on next page.
\[\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{\text{combined successes}}{\text{combined sample sizes}} \]

Null standard error = estimate of \[\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}} \] using combined estimate \(\hat{p} \) in place of both \(p_1 \) and \(p_2 \).

So the test statistic is:

\[z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}} \]

This “null standard error” is used because it’s the best way to estimate the standard deviation when in fact \(p_1 = p_2 \), i.e. when the null hypothesis is true.
Step 2 for the Example:

Data conditions are met, since both sample sizes are large.

\[
\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{\text{combined successes}}{\text{combined sample sizes}} = \frac{615 + 760}{1500 + 2001} = \frac{1375}{3501} = .39
\]

Null standard error = \[
\sqrt{(.39)(1-.39)(\frac{1}{1500} + \frac{1}{2001})} = .0167
\]

Test statistic:

\[
z = \frac{\text{sample statistic} - \text{null value}}{(\text{null}) \text{ standard error}} = \frac{.03 - 0}{.0167} = 1.80
\]
Pictures:

On left: Sampling distribution of \(\hat{p}_1 - \hat{p}_2 \) when population proportions are equal, showing where the observed value of \(\hat{p}_1 - \hat{p}_2 = .03 \) falls.

On right: Same picture, converted to z-scores, showing \(z = 1.80 \).

Area above \(\hat{p}_1 - \hat{p}_2 = 0.03 \) is .036. Area above \(z = 1.80 \), is 0.036.
STEP 3:
Assuming the null hypothesis is true, find the p-value.

General: p-value $=$ the probability of a test statistic as extreme as the one observed or more so, in the direction of H_a, if the null hypothesis is true.

Difference in two proportions, same idea as one proportion. Depends on the alternative hypothesis. See pictures on p. 465

Alternative hypothesis:
- $H_a: p_1 - p_2 > 0$ (a one-sided hypothesis)
- $H_a: p_1 - p_2 < 0$ (a one-sided hypothesis)
- $H_a: p_1 - p_2 \neq 0$ (a two-sided hypothesis)

p-value is:
- Area above the test statistic z
- Area below the test statistic z
- $2 \times$ the area above $|z|$
 = area in tails beyond $-z$ and z
Example:
Alternative hypothesis is one-sided
H_a: \(p_1 - p_2 > 0 \)

\(p \)-value = Area above the test statistic \(z = 1.80 \)

From Table A.1, \(p \)-value = area above 1.80

\(= 1 - .9641 = .0359 \approx .036. \)

STEP 4:
Decide whether or not the result is statistically significant based on the \(p \)-value.

Example: Use \(\alpha \) of .05, as usual

\(p \)-value = .036 < .05, so:

- Reject the null hypothesis.
- Accept the alternative hypothesis
- The result is statistically significant
Step 5: Report the conclusion in the context of the situation.

Example:

Conclusion: From May 2006 to November 2011 there was a statistically significant decrease in the proportion of US adults who think global warming is “very serious.”

Interpretation of the p-value (for this one-sided test):

It’s a conditional probability. Conditional on the null hypothesis being true (equal population proportions), what is the probability that we would observe a sample difference as large as the one observed or larger just by chance?

Specific to this example: If there really were no change in the proportion of the population who think global warming is “very serious” what is the probability of observing a sample proportion in 2011 that is .03 (3%) or more lower than the sample proportion in 2006? Answer: The probability is .036. Therefore, we reject the idea (the hypothesis) that there was no change in the population proportion.