TODAY:
- Section 12.1, Lesson 3: What can go wrong with hypothesis testing
- Section 12.3: Hypothesis tests for difference in two proportions

ANNOUNCEMENTS:
- Make sure you check your grades on eee and notify me if any of them are incorrect or missing.
- Friday discussion is for credit this week. Last chance!

HOMEWORK (due Mon, March 11):
Chapter 12:
#62 and 64 (count together as 1, find p-values for #62), 90, 112

An Illustration of What Happens When H_a Is True
A Specific Example of finding power: Suppose the truth for the population proportion p is one standard deviation above the null value p_0. Then the mean for the standardized scores will be 1 instead of 0. How often would we (correctly) reject the null hypothesis in that case? Answer (purple region) is .2595 = “power”

Section 12.1, Lesson 3
What Can Go Wrong in Hypothesis Testing:
The Two Types of Errors and Their Probabilities

Type 1 error (false positive) occurs when:
- Null hypothesis is actually true, but
- Conclusion of test is to reject H_0 and accept H_a

Type 2 error (false negative) occurs when:
- Alternative hypothesis is actually true, but
- Conclusion is that we cannot reject H_0

Example: Case Study 1.6, aspirin and heart attacks. Found statistically significant relationship; p-value was < .00001.
Heart attack and aspirin example:

Null hypothesis: Proportion of men who would have heart attacks if taking aspirin (p_1) = Proportion of men who would have heart attacks if taking placebo (p_2).

In symbols: $H_0: p_1 = p_2$ or $H_0: p_1 - p_2 = 0$

Alternative hypothesis: The heart attack proportion is lower if men were to take aspirin than if they were not to take aspirin.

In symbols: $H_a: p_1 < p_2$ or $H_a: p_1 - p_2 < 0$

Type 1 error (false positive): Occurs if there really is no relationship between taking aspirin and heart attack prevention, but we conclude that there is a relationship.

Consequence: Good for aspirin companies! For consumers, possible side effects from aspirin, with no redeeming value.

Type 2 error (false negative): Occurs if there is a relationship but the study failed to find it.

Consequence: Miss out on recommending something that could save lives!

Which type of error is more serious?

Probably all agree that Type 2 is more serious.

Which could have occurred?

Type 1 error could have occurred.

Type 2 could not have occurred, because we did find a significant relationship.

Aspirin Example: Consequences of the decisions

<table>
<thead>
<tr>
<th>Decision:</th>
<th>Truth:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Don’t reject H_0</td>
</tr>
<tr>
<td>H_0: Aspirin doesn’t work</td>
<td>Don’t conclude aspirin works</td>
</tr>
<tr>
<td></td>
<td>Type 1 error:</td>
</tr>
<tr>
<td></td>
<td>People take aspirin needlessly; may suffer side effects</td>
</tr>
<tr>
<td>H_a: Aspirin works</td>
<td>Type 2 error:</td>
</tr>
<tr>
<td></td>
<td>Aspirin could save lives but we don’t recognize benefits</td>
</tr>
</tbody>
</table>

Note that because H_0 was rejected in this study, we could only have made a Type 1 error, not a Type 2 error.

Some analogies to hypothesis testing:

Analogy 1: Courtroom:

Null hypothesis: Defendant is innocent.

Alternative hypothesis: Defendant is guilty

- The two possible conclusions are “not guilty” and “guilty.”
- The conclusion “not guilty” is equivalent to “don’t reject H_0.”
- We don’t say defendant is “innocent” just like we don’t accept H_0 in hypothesis testing.

Type 1 error is when defendant is innocent but gets convicted

Type 2 error is when defendant is guilty but does not get convicted.

Which one is more serious??
Analogy 2: Medical test

Null hypothesis: You do not have the disease
Alternative hypothesis: You have the disease

Type 1 error: You don't have disease, but test says you do; a "false positive"

Type 2 error: You do have disease, but test says you do not; a "false negative"

Which is more serious??

Notes and Definitions:
Probability related to Type 1 error:
The conditional probability of making a Type 1 error, given that H_0 is true, is the level of significance α. In most cases, this is .05. However, it should be adjusted to be lower (.01 is common) if a Type 1 error is more serious than a Type 2 error.

In probability notation: $P(\text{Reject } H_0 \mid H_0 \text{ is true}) = \alpha$, usually .05.

Probability related to Type 2 error and Power:
- Conditional probability of correct decision, given H_a is true is called the power of the test.
 - Can only calculate numerically for a specific value in H_a.
- Conditional probability of Type 2 error = $1 - \text{power}$
 $P(\text{Reject } H_0 \mid H_a \text{ is true}) = \beta$ = $P(\text{Type 2 error})$.

- How can we increase power and decrease $P(\text{Type 2 error})$?
 Power increases if:
 - Sample size is increased (because having more evidence makes it easier to show that the alternative hypothesis is true, if it really is)
 - The level of significance α is increased (because it’s easier to reject H_0 when the rejection region is larger)
 - The actual difference between the sample estimate and the null value increases (because it’s easier to detect a true difference if it’s large) We have no control over this one!

 Trade-off must be taken into account when choosing α. If α is small it’s harder to reject H_0. If α is large it’s easier to reject H_0:
 - If Type 1 error is more serious, use smaller α.
 - If Type 2 error is more serious, use larger α.

Ways to picture the errors (see page 463):

Truth, decisions, consequences, conditional (row) probabilities:

<table>
<thead>
<tr>
<th>Decision</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don't reject null hypothesis</td>
<td>Correct</td>
</tr>
<tr>
<td>Reject null hypothesis</td>
<td>Type 1 error</td>
</tr>
<tr>
<td>Don't reject null hypothesis</td>
<td>Type 2 error</td>
</tr>
<tr>
<td>Reject null hypothesis</td>
<td>Correct</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Truth:</th>
<th>Don't reject H_0</th>
<th>Reject H_0</th>
<th>Error can occur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>Correct</td>
<td>Type 1 error</td>
<td>Type 1 error can only occur if H_0 true</td>
</tr>
<tr>
<td></td>
<td>$1 - \alpha$</td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>H_a</td>
<td>Type 2 error</td>
<td>Correct</td>
<td>Type 2 error can only occur if H_a is true</td>
</tr>
<tr>
<td></td>
<td>$\beta = 1 - \text{power}$</td>
<td>power</td>
<td></td>
</tr>
</tbody>
</table>

Error can occur: Type 2, when H_0 not rejected Type 1, when H_0 rejected

SECTION 12.3: Test for difference in 2 proportions

Reminder from when we started Chapter 9

Five situations we will cover for the rest of this quarter:

<table>
<thead>
<tr>
<th>Parameter name and description</th>
<th>Population parameter</th>
<th>Sample statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Categorical Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One population proportion (or probability)</td>
<td>p</td>
<td>\hat{p}</td>
</tr>
<tr>
<td>Difference in two population proportions</td>
<td>$p_1 - p_2$</td>
<td>$\hat{p}_1 - \hat{p}_2$</td>
</tr>
<tr>
<td>For Quantitative Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One population mean</td>
<td>μ</td>
<td>\bar{x}</td>
</tr>
<tr>
<td>Population mean of paired differences (dependent samples, paired)</td>
<td>μ_d</td>
<td>\bar{d}</td>
</tr>
<tr>
<td>Difference in two population means (independent samples)</td>
<td>$\mu_1 - \mu_2$</td>
<td>$\bar{x}_1 - \bar{x}_2$</td>
</tr>
</tbody>
</table>

For each situation will we:

- Learn about the sampling distribution for the sample statistic
- Learn how to find a confidence interval for the true value of the parameter
- Test hypotheses about the true value of the parameter

Comparing two proportions from independent samples

Reminder on how we get independent samples (Lecture 19):

- **Random samples** taken separately from two populations and same response variable is recorded.

 Example: Compare proportions who think global warming is a problem, in two different years.

- **One random sample** taken and a variable recorded, but units are categorized to form two populations.

 Example: Compare 21 and over with under 21 for proportion who drink alcohol.

- Participants randomly assigned to one of two treatment conditions, and same response variable is recorded.

 Example: Compare aspirin and placebo groups for proportions who had heart attacks.
Hypothesis Test for Difference in Two Proportions

Example: (Source: http://www.pollingreport.com/enviro.htm)
Pew Research Center Poll taken in June 2006, just after the May release of *An Inconvenient Truth* (Al Gore’s movie about global warming)

Asked 1500 people “In your view, is global warming a very serious problem, somewhat serious, not too serious, or not a problem?”

Results: 615/1500 = .41 or **41%** answered “Very serious”

Poll taken again with different 2001 people in November, 2011.

Results: 760/2001 = .38 or **38%** answered “Very serious.”

Question: Did the *population* proportion that thinks it’s very serious go down from 2006 to 2011, or is it chance fluctuation?

Notation and numbers for the Example:

Population parameter of interest is \(p_1 - p_2 \) where:

\[p_1 = \text{proportion of all US adults in May 2006 who thought global warming was a very serious problem.} \]

\[p_2 = \text{proportion of all US adults in Nov 2011 who thought global warming was a very serious problem.} \]

\[\hat{p}_1 = \text{sample estimate from May 2006 } = X_1/n_1 = 615/1500 = .41 \]

\[\hat{p}_2 = \text{sample estimate from Nov 2011 } = X_2/n_2 = 760/2001 = .38 \]

Sample statistic is \(\hat{p}_1 - \hat{p}_2 = .41 - .38 = .03 \)

SIDE NOTE ABOUT THIS EXAMPLE:

They have not asked this question again since the 2011 poll, but in November 2012 a different poll asked this:

"If nothing is done to reduce global warming in the future, how serious of a problem do you think it will be for THE UNITED STATES: very serious, somewhat serious, not so serious, or not serious at all?"

This was a month after Hurricane Sandy.

Results: 49% said *very serious* and an additional 31% said somewhat serious. So clearly public opinion depends on when the poll is taken!

Five steps to hypothesis testing for difference in 2 proportions: See Summary Box on page 479

STEP 1: Determine the null and alternative hypotheses.

Null hypothesis is \(H_0: p_1 - p_2 = 0 \) (or \(p_1 = p_2 \)); null value = 0

Alternative hypothesis is one of these, based on context:

\(H_a: p_1 - p_2 > 0 \) (or \(p_1 > p_2 \))

\(H_a: p_1 - p_2 < 0 \) (or \(p_1 < p_2 \))

EXAMPLE:

Did the population proportion who think global warming is “very serious” drop from 2006 to 2011? This is the alternative hypothesis. (Note that it’s a one-sided test.)

\(H_0: p_1 - p_2 = 0 \) (no actual change in population proportions)

\(H_a: p_1 - p_2 > 0 \) (or \(p_1 > p_2 \); 2006 proportion > 2011 proportion)
STEP 2:
Verify data conditions. If met, summarize data into test statistic.

For Difference in Two Proportions:
Data conditions: \(\hat{p}_1 \) and \(n(1-\hat{p}) \) are both at least 10 for both samples.

Test statistic:
\[
z = \frac{\text{sample statistic} - \text{null value}}{(\text{null) standard error}}
\]

Sample statistic = \(\hat{p}_1 - \hat{p}_2 \)
Null value = 0
Null standard error:
- Computed assuming null hypothesis is true.
- If null hypothesis is true, then \(p_1 = p_2 \)
- We get an estimate for the common value of \(p \) using both samples, then use that in the standard error formula. Details on next page.

\[
\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{\text{combined successes}}{\text{combined sample sizes}}
\]

Null standard error = estimate of \(\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \) using combined estimate \(\hat{p} \) in place of both \(p_1 \) and \(p_2 \).

So the test statistic is:
\[
z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}
\]

This “null standard error” is used because it’s the best way to estimate the standard deviation when in fact \(p_1 = p_2 \), i.e. when the null hypothesis is true.

Step 2 for the Example:
Data conditions are met, since both sample sizes are large.

\[
\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{615 + 760}{1500 + 2001} = \frac{1375}{3501} = .39
\]

Null standard error = \(\sqrt{(.39)(1-.39)(\frac{1}{1500} + \frac{1}{2001})} = .0167 \)

Test statistic:
\[
z = \frac{\text{sample statistic} - \text{null value}}{(\text{null) standard error}} = \frac{.03 - 0}{.0167} = 1.80
\]

Pictures:
On left: Sampling distribution of \(\hat{p}_1 - \hat{p}_2 \) when population proportions are equal, showing where the observed value of \(\hat{p}_1 - \hat{p}_2 = .03 \) falls.
On right: Same picture, converted to z-scores, showing \(z = 1.80 \).

Area above \(\hat{p}_1 - \hat{p}_2 = .03 \) is .036
Area above \(z = 1.80 \), is .036.
STEP 3: Assuming the null hypothesis is true, find the p-value.

General: p-value = the probability of a test statistic as extreme as the one observed or more so, in the direction of H_a, if the null hypothesis is true.

Difference in two proportions, same idea as one proportion. Depends on the alternative hypothesis. See pictures on p. 465

<table>
<thead>
<tr>
<th>Alternative hypothesis:</th>
<th>p-value is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0: p_1 - p_2 > 0$ (a one-sided hypothesis)</td>
<td>Area above the test statistic z</td>
</tr>
<tr>
<td>$H_0: p_1 - p_2 < 0$ (a one-sided hypothesis)</td>
<td>Area below the test statistic z</td>
</tr>
</tbody>
</table>
| $H_0: p_1 - p_2 \neq 0$ (a two-sided hypothesis) | $2 \times$ the area above $|z|$
 = area in tails beyond $-z$ and z |

Example: Alternative hypothesis is one-sided
$H_0: p_1 - p_2 > 0$
p-value = Area above the test statistic $z = 1.80$
From Table A.1, p-value = area above 1.80
$= 1 - .9641 = .0359 \approx .036$.

STEP 4: Decide whether or not the result is statistically significant based on the p-value.

Example: Use α of .05, as usual
p-value = .036 < .05, so:
- Reject the null hypothesis.
- Accept the alternative hypothesis
- The result is statistically significant

Step 5: Report the conclusion in the context of the situation.

Example:
Conclusion: From May 2006 to November 2011 there was a statistically significant decrease in the proportion of US adults who think global warming is “very serious.”

Interpretation of the p-value (for this one-sided test):
It’s a conditional probability. Conditional on the null hypothesis being true (equal population proportions), what is the probability that we would observe a sample difference as large as the one observed or larger just by chance?

Specific to this example: If there really were no change in the proportion of the population who think global warming is “very serious” what is the probability of observing a sample proportion in 2011 that is .03 (3%) or more lower than the sample proportion in 2006? Answer: The probability is .036. Therefore, we reject the idea (the hypothesis) that there was no change in the population proportion.