STATISTICS 8 – REVIEW FOR FINAL EXAM (MATERIAL AFTER MIDTERM 2)

Know how to find, construct or calculate (example, page number(s) of example):

- 1. Describe a sampling distribution for one sample mean. (9.12, 360)
- 2. Describe a sampling distribution for the sample mean of paired differences (9.13, 364)
- 3. Describe a sampling distribution for the difference in two sample means (9.14, 367-368)

For 1 to 3, see the summary table on pages 382-383 (at the end of Chapter 9)

- 4. Calculate a standardized statistic for a given value of a sample mean or mean difference (9.16, 371-372)
- 5. Find a confidence interval for a population mean (11.6, 455-456)
- 6. Find a confidence interval for a population mean of differences for paired data (11.9, 463-464)
- 7. Find a confidence interval for difference in two population means, independent samples (11.12, 471-472) Note: In this situation you would be provided with either the standard error or computer output.

For 5 to 7, see the summary table on page 483 (at the end of Chapter 11)

- 8. Carry out a hypothesis test for one population proportion (12.13, 520-521)
- 9. Carry out a hypothesis test for one population mean (13.1, 553 and 556-557)
- 10. Carry out a hypothesis test for a population mean of differences for paired data (13.2, 562-564)

For 8 to 10, see the summary table on pages 586-587 (at the end of Chapter 13)

- 11. Carry out a chi-square goodness-of-fit test (15.13, 654-655)
- 12. Given an ANOVA table, specify and test hypotheses (16.9, 683)
- 13. Given part of an ANOVA table, fill in the rest (exercise 16.17, p. 697, see homework solution)

Know how to identify:

- 1. Which of the 5 parameters is relevant in a given situation.
- 2. Whether it is more appropriate to use paired data or independent samples in a given situation.
- 3. Whether it is more appropriate to use a confidence interval, hypothesis test, or both in a given situation.
- 4. The null and alternative hypotheses in a given situation, including whether to use one or two-sided H_a
- 5. What constitutes a type 1 error and type 2 error in a given situation, the consequences of each, and which is more serious in that situation.
- 6. When to use a chi-square goodness-of-fit test and when to use an ANOVA F-test.

Understand:

- 1. What a sampling distribution is.
- 2. The purpose of statistical inference, including the relationship between a parameter and statistic; a population and a sample, and when statistical inference is not needed
- 3. Why and when a t-distribution is used in place of a z-distribution
- 4. How to interpret a confidence interval for a mean (and possible misinterpretation see page 457)
- 5. The logic of hypothesis testing (page 499)
- 6. How to interpret a p-value
- 7. How to use a p-value to make a conclusion
- 8. The possible conclusions that can be made for a hypothesis test, and why (i.e. why we don't accept H_0)
- 9. How a type 1 error or type 2 error is made and when each one could be made
- 10. The concept of the power of a test
- 11. The relationship between sample size, p-value, power and the outcome of a hypothesis test
- 12. Statistical significance versus practical importance
- 13. The relationship between confidence intervals and hypothesis tests
- 14. The problem of multiple testing
- 15. When results can be extended to a population
- 16. When a cause-effect conclusion can be made
- 17. Non-statistical factors that contribute to assessing cause and effect
- 18. The many ways statistics is used in life.