Today:

Section 12.2, Lesson 3: What can go wrong with hypothesis testing Section 12.4: Hypothesis tests for difference in two proportions

ANNOUNCEMENTS:

- No discussion today.
- Check your grades on eee and notify me if any of them are incorrect.
- Quiz #7 begins Wed after class and ends Friday.
- Quiz #8 begins Wed before Thanksgiving and ends on *Monday after* Thanksgiving. That is the last quiz.
- Jason Kramer will give the lecture this Friday.

HOMEWORK (due Fri, Nov 19): Chapter 12: #62, 83, 101

AN ILLUSTRATION OF WHAT HAPPENS WHEN Ha IS TRUE A Specific Example

Suppose the *truth* for the population proportion p is one standard deviation above the null value p_0 . Then the mean for the standardized scores will be 1 instead of 0. How often would we (correctly) reject the null hypothesis in that case? Answer (purple region) is .2595.

REVIEW OF HYPOTHESIS TEST FOR ONE PROPORTION ONE-SIDED TEST, WITH PICTURE

 H_0 : $p = p_0$ versus Ha: $p > p_0$

Reject H₀ if *p*-value < .05. For what values of z does that happen? Notation: level of significance = α (alpha, usually .05) *p*-value < .05 corresponds with z > 1.645

Section 12.2, Lesson 3

What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities

Example: Case Study 1.6, aspirin and heart attacks. Found statistically significant relationship; *p-value* was < .00001.

Possible errors:

Type 1 error (false positive) occurs when:

- *Null hypothesis* is actually *true*, but
- Conclusion of test is to Reject H₀ and accept H_a

Type 2 error (false negative) occurs when:

- *Alternative hypothesis* is actually *true*, but
- Conclusion is that we *cannot reject* H_0

Heart attack and aspirin example:

<u>Null hypothesis</u>: The proportion of men who would have heart attacks if taking aspirin = the proportion of men who would have heart attacks if taking placebo.

<u>Alternative hypothesis</u>: The heart attack proportion is lower if men were to take aspirin than if they were not to take aspirin.

<u>Type 1 error (false positive)</u>: Occurs if there really is *no relationship* between taking aspirin and heart attack prevention, but we conclude that there *is* a relationship.

<u>Consequence</u>: Good for aspirin companies! Possible bad side effects from aspirin, with no redeeming value.

Aspirin Example: Consequences of the decisions

Decision:

Decision:					
Truth:	Don't conclude aspirin works	Reject H ₀ , Conclude aspirin works	Which error can occur:		
H ₀ : Aspirin doesn't work	OK	Type 1 error: People take aspirin needlessly; may suffer side effects	Type 1 error can only occur if aspirin doesn't work.		
Ha: Aspirin works	Type 2 error: Aspirin could save lives but we don't recognize benefits	OK	Type 2 error can <i>only</i> occur if aspirin <i>does</i> work.		
Which error can occur?	Type 2 can only occur if H ₀ is not rejected.	Type 1 can only occur if H ₀ is rejected.			

Note that because H_0 was rejected in this study, we could only have made a Type 1 error, not a Type 2 error.

Type 2 error (false negative):

Occurs if there really is a relationship but study failed to find it.

Consequence:

Miss out on recommending something that could save lives!

Which type of error is more serious?

Probably all agree that Type 2 is more serious.

Which could have occurred?

Type 1 error could have occurred. Type 2 could not have occurred, because we *did* find a significant relationship.

Some analogies to hypothesis testing:

Analogy 1: Courtroom:

Null hypothesis: Defendant is innocent. *Alternative hypothesis*: Defendant is guilty

Note that the two possible conclusions are "not guilty" and "guilty." The conclusion "not guilty" is equivalent to "don't reject H_0 ." We don't say defendant is "innocent" just like we don't accept H_0 in hypothesis testing.

<u>Type 1 error</u> is when defendant is *innocent* but *gets convicted* <u>Type 2 error</u> is when defendant is *guilty* but *does not get convicted*.

Which one is more serious??

Analogy 2: Medical test

Null hypothesis: You do not have the disease *Alternative hypothesis*: You have the disease

<u>Type 1 error:</u> You *don't* have disease, but test says *you do*; a "false positive"

 $\underline{\text{Type 2 error:}} \ \text{You} \ \textit{do} \ \text{have disease, but test says you do not; a} \\ \text{"false negative"}$

Which is more serious??

Notes and Definitions:

Probability related to Type 1 error:

The *conditional probability* of making a Type 1 error, given that H_0 is true, is the *level of significance* α . In most cases, this is .05. However, it should be adjusted to be lower (.01 is common) if a Type 1 error is *more serious* than a Type 2 error.

In probability notation: P(Reject $H_0 \mid H_0$ is true) = α , usually .05.

Probability related to Type 2 error and Power:

The *conditional probability* of making *a correct decision*, given that H_a is true is called the *power* of the test. This can only be calculated if a *specific value* in Ha is specified. Conditional probability of making a Type 2 error = 1 - power.

 $P(Reject H_0 | Ha is true) = power.$

P(Do not reject H₀ | Ha is true) = $1 - power = \beta = P(Type 2 error)$.

How can we increase power and decrease P(Type 2 error)? Power increases if:

- Sample size is increased (because having more evidence makes it easier to show that the alternative hypothesis is true, if it really is)
- The level of significance α is increased (because it's easier to reject H₀ when the cutoff point for the *p*-value is larger)
- The actual difference between the sample estimate and the null value increases (because it's easier to detect a true difference if it's large) We have no control over this one!

Trade-off must be taken into account when choosing α . If α is *small* it's *harder* to reject H_0 . If α is *large* it's *easier* to reject H_0 :

- If Type 1 error is *more* serious, use *smaller* α .
- If Type 2 error is *more* serious, use *larger* α .

Ways to picture the errors:

Truth, decisions, consequences, conditional (row) probabilities:

Decision:

Truth:	Don't reject H ₀	Reject H ₀	Error can occur:
п	Correct	Type 1 error	Type 1 error can only
$\mathbf{H_0}$	$1-\alpha$	α	occur if H ₀ true
п	Type 2 error	Correct	Type 2 error can only
H_a	$\beta = 1 - power$	power	occur if Ha is true.
Error can occur:	H ₀ not rejected	H ₀ rejected	

Comparing two proportions from independent samples

Reminder on how we get independent samples (Lecture 19):

- **Random samples** taken separately from two populations and same response variable is recorded.
- <u>Example</u>: Compare proportions who think global warming is a problem, in two different years.
- One random sample taken and a variable recorded, but units are categorized to form two populations.
- Example: Compare 21 and over with under 21 for proportion who drink alcohol.
- Participants **randomly assigned** to one of two treatment conditions, and same response variable is recorded.
- Example: Compare aspirin and placebo groups for proportions who had heart attacks.

SECTION 12.4: Test for difference in 2 proportions Reminder from when we started Chapter 9

Five situations we will cover for the rest of this quarter:

Parameter name and description	Population parameter	Sample statistic
For Categorical Variables:		
One population proportion (or probability)	p	\hat{p}
Difference in two population proportions	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$
For Quantitative Variables:		
One population mean	μ	\overline{X}
Population mean of paired differences (dependent samples, paired)	μ_{d}	\bar{d}
Difference in two population means (independent samples)	$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$

For each situation will we:

- $\sqrt{\text{Learn about the } \text{sampling } \text{distribution } \text{for the sample statistic}}$
- $\sqrt{\text{Learn how to find a confidence interval for the true value of the parameter}}$
- Test hypotheses about the true value of the parameter

Hypothesis Test for Difference in Two Proportions

Example: (Source: http://www.pollingreport.com/enviro.htm) Poll taken in June 2006, just after the May release of *An Inconvenient Truth*

Asked 1500 people "In your view, is global warming a very serious problem, somewhat serious, not too serious, or not a problem?"

Results: 615/1500 = .41 or **41%** answered "Very serious"

Poll taken again with different 1500 people in October, 2009.

Results: 525/1500 = .35 or **35%** answered "Very serious."

Question: Did the *population* proportion that thinks it's very serious go down from 2006 to 2009, or is it chance fluctuation?

Notation and numbers for the Example:

Population parameter of interest is $p_1 - p_2$ where:

 p_1 = proportion of all US adults in May 2006 who thought global warming was a serious problem.

 p_2 = proportion of all US adults in Oct 2009 who thought global warming was a serious problem.

 \hat{P}_1 = sample estimate from May 2006 = X_1/n_1 = 615/1500 = .41 \hat{P}_2 = sample estimate from Oct 2009 = X_2/n_2 = 525/1500 = .35

Sample statistic is $\hat{p}_1 - \hat{p}_2 = .41 - .35 = .06$

STEP 2:

Verify data conditions. If met, summarize data into test statistic.

For Difference in Two Proportions:

Data conditions: $n\hat{p}$ and $n(1-\hat{p})$ are both at least 10 for both samples.

Test statistic:

$$z = \frac{\text{sample statistic} - \text{null value}}{(\text{null}) \text{ standard error}}$$

Sample statistic = $\hat{p}_1 - \hat{p}_2$

 $Null\ value = 0$

Null standard error:

- Computed assuming null hypothesis is true.
- If null hypothesis is true, then $p_1 = p_2$
- We get an estimate for the common value of *p* using *both samples*, then use that in the standard error formula. Details on next page.

Five steps to hypothesis testing for difference in 2 proportions: See Summary Box on pages 531-532

STEP 1: Determine the null and alternative hypotheses.

Null hypothesis is H_0 : $p_1 - p_2 = 0$ (or $p_1 = p_2$); <u>null value = 0</u>

Alternative hypothesis is *one* of these, based on context:

$$H_a$$
: $p_1 - p_2 \neq 0$ (or $p_1 \neq p_2$)

$$H_a: p_1 - p_2 > 0 \quad (\text{or } p_1 > p_2)$$

$$H_a: p_1 - p_2 < 0 \quad (\text{or } p_1 < p_2)$$

EXAMPLE:

Did the population proportion who think global warming is "very serious" drop from 2006 to 2009? This is the alternative hypothesis. (Note that it's a <u>one-sided test.</u>)

$$H_0$$
: $p_1 - p_2 = 0$ (no actual change in population proportions)

$$H_a$$
: $p_1 - p_2 > 0$ (or $p_1 > p_2$; 2006 proportion > 2009 proportion)

$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{\text{combined successes}}{\text{combined sample sizes}}$$

Null standard error = estimate of $\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$ using combined estimate \hat{P} in place of both p_1 and p_2 .

So the test statistic is:

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

Step 2 for the Example:

Data conditions are met, since both sample sizes are 1500.

$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{\text{combined successes}}{\text{combined sample sizes}} = \frac{615 + 525}{1500 + 1500} = \frac{1140}{3000} = .38$$

Null standard error =
$$\sqrt{(.38)(1-.38)(\frac{1}{1500} + \frac{1}{1500})} = .0177$$

Test statistic:

$$z = \frac{\text{sample statistic} - \text{null value}}{\text{(null) standard error}} = \frac{.06 - 0}{.0177} = 3.39$$

STEP 3:

Assuming the null hypothesis is true, find the p-value.

General: p-value = the probability of a test statistic as extreme as the one observed or more so, in the direction of H_a , if the null hypothesis is true.

Difference in two proportions, same idea as one proportion. Depends on the alternative hypothesis. See pictures on p. 517

Alternative hypothesis:	p-value is:
H_a : $p_1 - p_2 > 0$ (a <u>one-sided</u> hypothesis)	Area <u>above</u> the test statistic z
H_a : $p_1 - p_2 \le 0$ (a <u>one-sided</u> hypothesis)	Area below the test statistic z
H_a : $p_1 - p_2 \neq 0$ (a <u>two-sided</u> hypothesis)	$2 \times$ the area above $ z =$ area in

tails beyond -z and z

Pictures:

On left: Sampling distribution of $\hat{P}_1 - \hat{P}_2$ when population proportions are equal and sample sizes are both 1500, showing where the observed value of .06 falls.

On right: The same picture, converted to z-scores.

Note that area above $\hat{p}_1 - \hat{p}_2 = 0.06$ is so small you can't see it!

Example:

Alternative hypothesis is one-sided

 $H_a: p_1 - p_2 > 0$

p-value = Area above the test statistic z = 3.39

From Table A.1, *p*-value = area above 3.39 = 1 - .9997 = .0003.

STEP 4:

Decide whether or not the result is statistically significant based on the p-value.

Example: Use α of .05, as usual p-value = .0003 < .05, so:

- Reject the null hypothesis.
- Accept the alternative hypothesis
- The result is statistically significant

Step 5: Report the conclusion in the context of the situation.

Example:

<u>Conclusion</u>: From May 2006 to October 2009 there was a statistically significant decrease in the proportion of US adults who think global warming is "very serious."

<u>Interpretation of the *p*-value (for this one-sided test)</u>:

It's a *conditional probability*. Conditional on the null hypothesis being true (equal population proportions), what is the probability that we would observe a *sample difference* as large as the one observed or larger just by chance?

Specific to this example: *If* there really were no change in the proportion of the population who think global warming is "very serious" what is the probability of observing a sample proportion in 2009 that is .06 (6%) or more lower than the sample proportion in 2006? <u>Answer</u>: The probability is .0003. Therefore, we *reject the idea* (*the hypothesis*) that there was no change in the population proportion.