Announcements

- Quiz 1 available at 1pm. If you *do not* receive an email telling you it is available, you need to contact me so I can add you to the list.
- Office hours on web were wrong. They were corrected on Mon evening.
- If you plan to use R Commander in the ICS labs, you need to get an account. See course webpage for information. In the meantime, you can use a temporary account:

Username: ics-temp , Password: Anteat3r

Homework (due Friday, Oct 1):

Chapter 2: #81, 84, 99

Today:

- Finish material from last time (some of which I rushed through at end)
- Do Section 2.7
- Go over how to install and use R Commander. (See handouts on course webpage.)

Describing Spread (Variability):

- Range = high value low value
- Interquartile Range (IQR) = upper quartile lower quartile = $Q_3 Q_1$ (to be defined)
- Standard Deviation

Example 2.13 Fastest Speeds Ever Driven

Five-Number Summary for 87 males

	Males (87 Students)		
Median	1	10	
Quartiles	95	120	
Extremes	55	150	

- Two *extremes* describe spread over 100% of data Range = 150 55 = 95 mph
- Two *quartiles* describe spread over middle 50% of data *Interquartile Range* = 120 - 95 = 25 mph

Split the ordered values into the half that is (at or) below the median and the half that is (at or) above the median.

- Q_1 = lower quartile
 - = median of data values that are (at or) *below* the median
- Q_3 = upper quartile
 - = median of data values that are (at or) *above* the median

Example 2.13 Fastest Speeds (cont)

Ordered Data (in rows of 10 values) for the 87 males:

55	60	80	80	80	80	85	85	85	85
90	90	90	90	90	92	94	95	95	95
95	<i>95</i>	95	100	100	100	100	100	100	100
100	100	101	102	105	105	105	105	105	105
105	105	109	110	110	110	110	110	110	110
110	110	110	110	110	112	115	115	115	115
115	115	120	120	120	<i>120</i>	120	120	120	120
120	120	124	125	125	125	125	125	125	130
130	140	140	140	140	145	150			

- *Median* = (87+1)/2 = 44th value in the list = 110 mph
- Q_1 = median of the 43 values below the median = $(43+1)/2 = 22^{nd}$ value from the start of the list = 95 mph
- Q_3 = median of the 43 values above the median = $(43+1)/2 22^{nd}$ value from the end of the list 120 mph

Percentiles

The k^{th} percentile is a number that has k% of the data values at or below it and (100 - k)% of the data values at or above it.

• Lower quartile: 25th percentile

• Median: 50th percentile

• Upper quartile: 75th percentile

Describing Spread with Standard Deviation

Standard deviation measures variability by summarizing how far individual data values are from the mean.

Think of the standard deviation as roughly the average distance values fall from the mean.

Describing Spread with Standard Deviation: A very simple example

Numbers	Mean	Standard Deviation
100, 100, 100, 100, 100	100	0
90, 90, 100, 110, 110	100	10

Both sets have same mean of 100,

Set 1: all values are equal to the mean so there is no variability at all.

Set 2: one value equals the mean and other four values are 10 points away from the mean, so the *average* distance away from the mean is about 10.

Calculating the Standard Deviation

Formula for the (*sample*) **standard deviation**:

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

The value of s^2 is called the (*sample*) variance. An equivalent formula, easier to compute, is:

$$s = \sqrt{\frac{\sum x_i^2 - n\overline{x}^2}{n-1}}$$

Calculating the Standard Deviation

Example: 90, 90, 100, 110, 110

Step 1: Calculate \overline{x} , the sample mean. $Ex: \overline{x} = 100$

Step 2: For each observation, calculate the difference between the data value and the mean.

Ex: -10, -10, 0, 10, 10

Step 3: Square each difference in step 2.

Ex: 100, 100, 0, 100, 100

Step 4: Sum the squared differences in step 3, and then divide this sum by n-1. Result – $variance s^2$

Ex: 400/(5-1) = 400/4 = 100

Step 5: Take the square root of the value in step 4.

Ex: $s = standard\ deviation = \sqrt{100} = 10$

Population Standard Deviation

Data sets usually represent a sample from a larger population. If the data set includes measurements for an *entire population*, the notations for the mean and standard deviation are different, and the formula for the standard deviation is also slightly different.

A **population mean** is represented by the Greek μ ("mu"), and the **population standard deviation** is represented by the Greek "sigma" (lower case)

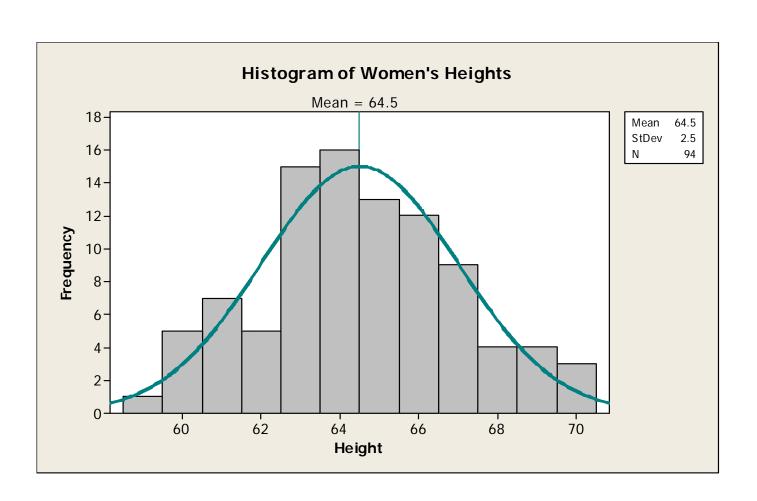
$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

- Measurements that have a bell-shape are so common in nature that they are said to have a *normal distribution*.
- Knowing the mean and standard deviation *completely determines* where all of the values fall for a normal distribution, assuming an infinite population!
- In practice we don't have an infinite population (or sample) but if we have a large sample, we can get good approximations of where values fall.

Examples of bell-shaped data

- Women's heights
 - mean = 64.5 inches, s = 2.5 inches
- Men's heights
 - mean = 70 inches, s = 3 inches
- IQ scores
 - mean = 100, s = 15
- High school GPA for intro stat students
 - mean = 3.1, s = 0.5
- Verbal SAT scores for UCI incoming students
 - mean = 569, s = 75

Women's heights from UCDavis data, n = 94Note approximate bell-shape of histogram "Normal curve" with mean = 64.5, s = 2.5superimposed over histogram



Interpreting the Standard Deviation for Bell-Shaped Curves: The Empirical Rule

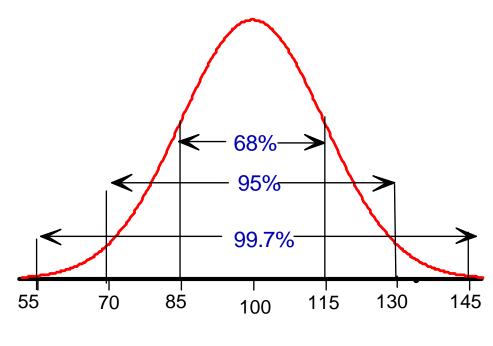
For any bell-shaped curve, approximately

- 68% of the values fall within 1 standard deviation of the mean in either direction
- 95% of the values fall within 2 standard deviations of the mean in either direction
- 99.7% (almost all) of the values fall within 3 standard deviations of the mean in either direction

Ex: Hypothetical population of IQ scores

- 68% of IQ scores are between 85 and 115
- 95% of IQ scores are between 70 and 130
- 99.7% of IQ scores are between 55 and 145

Mean =
$$100$$
, s = 15



IQ Score

Try Empirical Rule for these:

- Women's heights
 - mean = 64.5 inches, s = 2.5 inches
- Men's heights
 - mean = 70 inches, s = 3 inches
- High school GPA for intro stat students
 - mean = 3.1, s = 0.5
- Verbal SAT scores for UCI students
 - mean = 569, s = 75

Example: Women's Heights

Mean height for the 94 UC Davis women was 64.5, and the standard deviation was 2.5 inches. Let's compare actual with ranges from Empirical Rule:

Range of Values:	Empirical Rule	Actual number	Actual percent
Mean ± 1 s.d.	68% in	70	70/94
	62 to 67	70	= 74.5%
Mean ± 2 s.d.	95% in	89	89/94
	59.5 to 69.5	09	= 94.7%
Mean \pm 3 s.d.	99.7% in	94	94/94
	57 to 72	74	= 100%

The Empirical Rule, the Standard Deviation, and the Range

- Empirical Rule tells us that the range from the minimum to the maximum data values equals about 4 to 6 standard deviations for data sets with an approximate bell shape.
- For a large data set, you can get a rough idea of the value of the standard deviation by dividing the range by 6.

$$s \approx \frac{Range}{6}$$

Standardized z-Scores Standardized score or z-score:

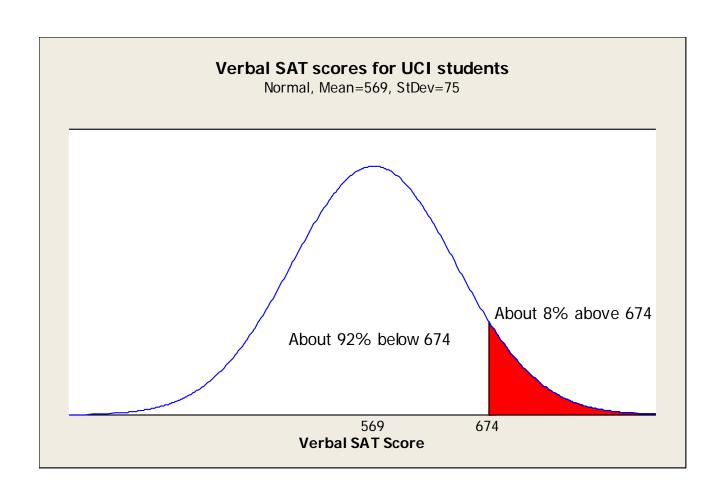
$$z = \frac{\text{Observed value} - \text{Mean}}{\text{Standard deviation}}$$

Example: UCI Verbal SAT scores had mean = 569 and s = 75. Suppose someone had SAT = 674:

$$z = \frac{674 - 569}{75} = 0.40$$

Verbal SAT of 674 for UCI student is 1.40 standard deviations *above* the mean for UCI students.

Verbal SAT of 674 is 1.40 standard deviations above mean. To find proportion above or below, use Excel or R Commander For Excel, see page 55. For R Commander, see webpage.



The Empirical Rule Restated for Standardize Scores (z-scores):

For bell-shaped data,

- About **68%** of the values have *z*-scores between −1 and +1.
- About **95%** of the values have *z*-scores between −2 and +2.
- About **99.7%** of the values have z-scores between –3 and +3.

Installing and Using R Commander

- "R" is a sophisticated and free statistical programming language.
- *R Commander* is an add-on, also free, that is menu-driven. It doesn't do everything R does.
- You can use R Commander in the ICS Computer labs, or install it on your computer.
- See handouts on course web page for installing R and R Commander, and for using R Commander for Chapters 2 and 5.
- Switch to laptop for R Commander demo.