Are We All Bayesians? Data versus Belief in Evaluating Studies of Extra Sensory Perception

Jessica Utts
Department of Statistics
University of California, Irvine
http://www.ics.uci.edu/~jutts
jutts@uci.edu

CSU Fullerton, October 6, 2011
Collaborators for Bayesian Part

- Michelle Norris
 - Dept of Math and Stat, California State University, Sacramento

- Eric Suess
 - Dept of Stat and Biostat, California State University, East Bay

- Wesley Johnson
 - Dept of Statistics, UCI
Overview of why to use Bayes

- Statisticians have the job of making conclusions based on data, but for many questions prior beliefs are strong and may take precedence over data when people make decisions.
- Bayesian methods allow prior beliefs and expert knowledge to be incorporated into analysis along with data.
- One domain where beliefs are almost sure to play a role is in the evaluation of scientific data for extrasensory perception.
- Experiments to test ESP often are binomial, and they have a clear null hypothesis (psychic abilities are not real), so they are an excellent way to illustrate hypothesis testing.
Outline of Talk

- Introduction and Background
 - On my involvement with research in extrasensory perception (ESP)
 - On reasons to be a Bayesian in general
- How research in ESP ("Parapsychology") is done
- Frequentist analysis of ESP data
- Simple Bayesian analysis
- More complicated Bayesian analysis
- Conclusions
Why This Topic? Some Background

- My involvement started in 1986 as consultant to classified US government program testing psychic abilities for spying
- Continued to consult with parapsychology researchers through the years
- Noticed that many people (on both sides) ignore data and base conclusions on belief
- Makes this topic a natural for Bayesian statistics
- Also an excellent example for hypothesis testing because there is a clear null hypothesis
Why Be a Bayesian? Reason 1: Philosophical

- Interpretation of probability as degree of belief fits all situations; rel. freq. does not
 - Before conception, $P(\text{birth is boy}) = .512$
 - Pregnant woman doesn’t know sex of baby, but her doctor does. What is $P(\text{boy})$? Is it 0/1, or is it .512? Different for woman and her doctor?
 - What about non-repeatable situations, such as probability of major earthquake in California?
- Bayesian probability is “degree of belief” in outcome, can be assessed for all situations.
Why Be a Bayesian?

Reason 1: Philosophical, continued

- p-values don’t really answer what we want to know. Bayesian results do.
- p-values are highly dependent on sample size; Bayesian results get updated with more data in a logical way.
- Bayesian results assess likely values of parameter before looking at data (prior), and update them after looking at data (posterior).
Why Be a Bayesian?
Reason 2: Practical

- It’s rare that we have *no* prior information. Bayesian methods build that into analysis.
 - Estimate proportion of community infected with HIV. Could it really be anything from 0 to 1?
 - Estimate mean change in blood pressure after program in meditation. Do we really think it could be anything from $-\infty$ to ∞?
- Most statistical analyses are now done as a collaboration between statisticians and experts who have prior knowledge. Why not use that knowledge?
Psi/Psychic/ESP/Anomalous Cognition

Having information that could not have been gained through the known senses.

- **Telepathy**: Info from another person
- **Clairvoyance**: Info from another place
- **Precognition**: Info from the future
- **Correlation**: Simultaneous access to info

Note: For proof, source doesn’t matter. For explanation, it does!
Controlled experiments to Test ESP

Crucial elements:
1. Safeguards to rule out cheating or ordinary communication
2. Knowledge of probabilities of outcomes by chance alone

Examples... are these okay?
1. I am thinking of a number from 1 to 5. Guess it.
2. My assistant on 2nd floor has shuffled a deck of cards (well!) and picked one at random. What suit is it? (Example of forced choice experiment)

Free response ESP experiments meeting crucial elements:
- Remote Viewing, originally done by US Government
- Similar type of experiment called “ganzfeld” (will describe)
Remote Viewing Protocol

Special thanks to Dr. Edwin May for this and other SRI slides

10:00

"Receiver"

"Monitor"

10:05

"Target"

15 Minutes

Assistant
Some Additional Details

- After the session, drawings & descriptions are copied and secured so they can’t be altered.
- Feedback to the remote viewer is given by showing him/her the copy of what (s)he drew, along with the target photo or video.
- Results are judged. In some labs, viewer is judge and feedback is given after judging. In others there is an independent judge.
- Meets condition #1: Safeguards to rule out cheating or ordinary means of communication
Example of an Excellent Match
(Experiment at SAIC/Stanford)

Words: Key Mountain
 Barn or Large Cabin
 Shadow
 Shadows of Mtns.
 Trees
 Road

Path
American Rockies or
Maybe Alps
Early Remote Viewing Example (SRI)
Target: Pete’s Harbor Restaurant
How to Judge?

- Single story
- Dark brown
- Next to edge of water
- Boats
- Large parking area
How NOT to Judge the Response

Can’t use subjective probability of match – too much room for personal bias.
You Judge this Typical Novice Response

intersection, notch, groove

gap

wave, sea wall
Rank-Order Judging

1. Windmills in the Netherlands
2. Beach with palm trees
3. Waterfall
4. Cityscape
Analysis Methods

- Before the *experiment*, targets put into packs of 4 dissimilar choices.

- Before *session* begins a pack is randomly selected, then target within it (e.g. windmills). The *session* takes place, producing a response.

- After the *session*, a judge is given the response and the 4 choices and must assign ranks. Judge is blind to correct answer.

- For *session*, result = the *rank* assigned to correct target, or “direct hit” if it gets 1st place rank. In some labs judge picks best match only.
Summary statistic: Sum or ranks (some labs), or number of direct hits (others), for entire experiment (many sessions).

Meets **Condition #2**: Knowledge of probabilities of various outcomes by chance alone.

Note that randomness is in the selection of the target, not response. No matter what the response is, the randomly selected target is the best match by chance alone with probability $\frac{1}{4}$.

Automated Ganzfeld Experiments
Similar to Remote Viewing

- **Sender, receiver, experimenter.** Target selected in same way as remote viewing (random, packs of 4)
- **Sender** in sound-shielded room, looking at target, which is a photograph or short video segment.
- **Receiver** in sound isolation room with red light in eyes, white noise in ears, comfy chair. Listens to relaxation tape. Then talks into microphone, attempting to describe the unknown target.
- **Experimenter and sender** listen. Then **receiver** judges response with 4 choices – actual target and 3 decoys. Direct hit analysis usually used.
Simplest Model for RV and Ganzfeld

- \(X = \) number of direct hits in experiment (proportion of successes in \(n \) sessions)
- Assume \(X \sim \) Binomial \((n, p) \)
 - \(n = \) number of sessions
 - \(p = \) probability that the judge can identify the correct target, given the response.
- By chance alone, \(p = 1/4 \)
- If psychic functioning occurs, expect response is a better match than chance, and \(p > 1/4 \).
Ganzfeld Studies in This Analysis

- From meta-analyses of ganzfeld studies
- Included all ganzfeld studies from those meta-analyses that met criteria for safeguards and standard procedures
- Used 56 studies
 - Combined $n = 2124$ sessions
 - Combined $X = 709$ hits
 - $X/n = 0.334$, when 0.25 expected by chance
Binomial Analysis

- Define $p =$ probability of a success in a session. Simple assumption (for now) is that p is fixed across sessions and studies.

- Hypothesis test:
 - Null: $p = .25$
 - Alternative: $p > .25$
 - P-value (exact binomial) = 2.26×10^{-18}

- Note that for individual studies, n ranged from 7 to 128, but mostly very small. Hard to get statistical significance for one study; power is too low. (For median n of 32, power is only .308 if true p is $1/3$.)
Power curves, one-sided t-test for one mean (from *Mind On Statistics, 4th ed.*, Utts and Heckard)

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>True Effect Size</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 20$</td>
<td></td>
<td>.11</td>
<td>.22</td>
<td>.695</td>
<td>.964</td>
</tr>
<tr>
<td>$n = 50$</td>
<td></td>
<td>.17</td>
<td>.40</td>
<td>.967</td>
<td>nearly 1</td>
</tr>
<tr>
<td>$n = 100$</td>
<td></td>
<td>.26</td>
<td>.63</td>
<td>.9996</td>
<td>nearly 1</td>
</tr>
</tbody>
</table>

Typical psi effect size
Individual Confidence Intervals
Combined 95% CI is .314 to .354
Are You Convinced?

- Overall p-value is 2.26×10^{-18}
- Overall confidence interval is .314 to .354, when chance is .25.
- Yet, I have found that disbelievers don’t change their minds when they see data.
- Why not? Perhaps we are all Bayesians!
- Note: Skeptics have tried unsuccessfully to find flaws with the experiments.
- In general, beliefs probably do play a role in how we interpret data!
Simple Bayesian Analysis

- Assume $X =$ number of hits is binomial with fixed $p =$ probability of a hit
 - $X \mid p \sim \text{Binomial}(2124, p)$
- Use Beta distribution to model prior belief about p (“conjugate prior”)
 - $p \sim \text{Beta} (a, b)$
 - More about how to do this on next slide
- Posterior distribution for p is also Beta distribution
 - $\text{Beta}(X + a, n – X + b)$
How to Determine Beta Prior

- Use free software called “BetaBuster”
 www.epi.ucdavis.edu/diagnostictests/betabuster.html

- Ask these questions to elicit the prior:
 - In your opinion, what is the most likely value for p? (This becomes the mode.)
 - Fill in the blank: I am 95% certain that p cannot exceed the value _____.

- The answers to these 2 questions determine the parameters for the Beta prior.
Consider 3 Prior Sets of Belief

- **Skeptic:**
 - Most likely value for p is .25 (chance)
 - 95% certain p is below .255

- **Believer:**
 - Most likely value for p is .33
 - 95% certain p is below .36

- **Open-minded observer**
 - Most likely value for p is .25 (chance)
 - 95% certain p is below .30
Data reduced the range of the believer’s likely values for p.

Posterior median = .2578

Data shifted the skeptic’s belief very slightly.

Posterior median = .2578
Open-minded: One study and all data

One study, n = 50, 36% hits shifted the open-minded belief slightly.

Open-minded, all data, allows data to play major role

Open-minded, n = 2124, X = 709

Prior, mode = .25, 95% below .30

Posterior, median = .3257
Summary of Simple Analysis

- Skeptic’s opinion was not changed much by the data, even with 2124 trials and 33% success rate.

- Open-minded prior allowed data to have a larger influence.

- Helps explain why skeptics still are not convinced by the evidence, even with a p-value of 2.26×10^{-18}

- Allows skeptics and believers to see why they disagree!
More Complex: Bayesian Hierarchical Model

- Binomial model relies on the assumption that p is constant from study to study and from session to session. (May be true only for null hypothesis!)
- To test this assumption, we need a more complicated model. We assume constant hit rate within a study, but different hit rates across studies.
- Let p_i, $i=1,2,...,56$ be the true hit rate for study i.
- n_i = number of trials in study i
Hierarchical model:

- X_i = number of hits in study i,
- $X_i \sim \text{Binomial}(n_i, p_i)$

p_i are “study-specific” hit rates and are assumed to come from a probability distribution. Want to estimate the median and variation of the distribution of p_i’s across all possible studies that could be done.
Some Technical Stuff…

- We transform to speed convergence to normality and stabilize variance:

\[\theta_i = \sin^{-1} \sqrt{p_i}, \quad y_i = \sin^{-1} \sqrt{\hat{p}_i} = \sin^{-1} \sqrt{\frac{x_i}{n_i}}, \quad i = 1, \ldots, 56. \]

- For large samples:

\[\hat{p}_i \sim N(p_i, \frac{p_i(1-p_i)}{n_i}) \quad \text{and} \quad y_i \sim N(\theta_i, \frac{1}{4n_i}) \]

(delta method)
More Technical Stuff…

- We need to specify a distribution for the p_i’s. This is done by placing a distribution on

$$\theta_i = \sin^{-1} \sqrt{p_i}$$

- We assume

$$\theta_i \sim N(\mu, \sigma^2)$$

- μ and σ^2 are parameters we wish to estimate

- μ is the median of the distribution of θ_i’s, and since the transformation is one-to-one and increasing

$$\text{median}(p_i) = \sin^2 \mu$$

- A small σ^2 means the θ_i’s are similar so that the p_i’s are similar, whereas a large σ^2 means the p_i’s vary a lot – so there are important differences in the study-to-study hit rates.
Prior Distributions

- Bayesian Analyses were run corresponding to 4 choices of priors:
 - **Non-informative prior**: The non-informative prior for μ puts equal probability on all real numbers (improper).
 - **Weakly informative prior** (similar to open-minded in simple case): Uses median(p) = 0.25 and 90% sure median(p) is between 0.12 and 0.41*
 - **Believer’s prior**: Uses median(p) = 0.33 and 90% sure median(p) is between 0.30 and 0.36
 - **Skeptic’s prior**: Uses median(p) = 0.25 and 90% sure median(p) is between 0.245 and 0.255

*Comes from prior on θ’s being $N(\sin^{-1}(0.25), 0.01)$
Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bayesian noninformative prior</th>
<th>Frequentist</th>
<th>Bayesian weakly informative prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.50%</td>
<td>50%</td>
<td>97.5%</td>
</tr>
<tr>
<td>Median(p₁)</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>95th percentile of p</td>
<td>0.42</td>
<td>0.49</td>
<td>0.57</td>
</tr>
<tr>
<td>5th percentile of p</td>
<td>0.13</td>
<td>0.19</td>
<td>0.24</td>
</tr>
<tr>
<td>μ</td>
<td>0.57</td>
<td>0.61</td>
<td>0.65</td>
</tr>
<tr>
<td>σ²</td>
<td>0.0042</td>
<td>0.0100</td>
<td>0.0197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bayesian: Skeptic’s Prior</th>
<th>Believer’s Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.50%</td>
<td>50%</td>
</tr>
<tr>
<td>Median(p₁)</td>
<td>0.251</td>
<td>0.257</td>
</tr>
<tr>
<td>95th percentile of p</td>
<td>0.253</td>
<td>0.260</td>
</tr>
<tr>
<td>5th percentile of p</td>
<td>0.248</td>
<td>0.254</td>
</tr>
<tr>
<td>μ</td>
<td>0.525</td>
<td>0.531</td>
</tr>
<tr>
<td>σ²</td>
<td>2.6E-8</td>
<td>4.4E-6</td>
</tr>
</tbody>
</table>
Percentiles of Posterior Distribution of Median(\(\rho\))

<table>
<thead>
<tr>
<th>Category</th>
<th>2.5% of Median ((\rho))</th>
<th>50% of Median ((\rho))</th>
<th>97.5% of Median ((\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-inform</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>Open-mind</td>
<td>0.29</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>Frequentist</td>
<td>0.31</td>
<td>MLE = 0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>Believer</td>
<td>0.308</td>
<td>0.326</td>
<td>0.345</td>
</tr>
<tr>
<td>Skeptic</td>
<td>0.251</td>
<td>0.257</td>
<td>0.262</td>
</tr>
</tbody>
</table>
95% Range for Individual ρ

- Non-informative: .19 to .49
- Open-minded: .17 to .51
- Frequentist (MLE) .18 to .50

All of the above are similar.

But these are narrower, especially skeptic:
- Believer: .281 to .374
- Skeptic: .254 to .260
Finding about Study-to-Study Variation

- Under the frequentist analysis, we obtain that 90% of the study-specific hit rates (p_i's) are in the interval (0.18, 0.50), weakly informative (open-minded) prior gives (0.17,0.51)

- The data DO indicate study-to-study differences in the hit rate. Thus, a binomial model may not be appropriate.
Comparing Bayesian and Frequentist Results

- Results under frequentist, Bayesian non-informative and weakly informative (open-minded) priors are very similar
 - 95% probability interval for median \((p_i) \) is \((0.30, 0.36)\)

- Bayesian analysis under informative priors is sensitive to priors
 - Skeptics prior gives 95% probability interval for median \((p_i) \) as \((0.251, 0.262)\)
 - Believer’s prior gives 95% probability interval for median \((p_i) \) as \((0.308, 0.345)\)
Some conclusions from the analyses

- “Average” hit rate (for population) seems to be slightly above 30%, whatever method is used (except skeptic’s prior).
- Binomial model with fixed p is too simple; hit rates may change based on a number of factors.
- Statistical models need to incorporate additional information about participants, conditions of experiment, etc. Bayesian approach is most reasonable.
Summary

- ESP experiments are a good way to illustrate:
 - Testing a clear null hypothesis
 - Why “replication” should not be based on p-values (low power)
 - Simple Bayesian analysis
 - Why prior beliefs matter
Recent Controversy

- Response in same issue by Wagenmakers et al, Bayesian analysis that seemed to negate results.

Recent controversy, continued

- Wagenmakers et al used a Bayesian prior that was unrealistic – assumed if psi exists, the effect is huge. So the data supported the null (no psi), rather than that unrealistic alternative.

- We used a more reasonable prior – assumed if psi exists the effect is relatively small. Data overwhelming supported the psi hypothesis.
If you want to try it....

- On-line tests: www.gotpsi.org
- IPhone (iPod) application: www.espereasearch.com/iphone
QUESTIONS?

Contact info:

jutts@uci.edu

http://www.ics.uci.edu/~jutts