Announcements:

- Quiz \#4 available at the end of class today, until 1pm Monday.
- Today's lecture on website will be updated later today, with survey results added (as shown here).
- Midterm statistics:

Mean $=77.17$, standard deviation $=11.77$
5 number summary: 32, 70, 79, 86, 100
Homework is on clickable page on website, in the list of assignments. It is due on Monday.

Probability:
 Psychological Influences and Flawed Intuitive Judgments

(Section 7.7 and more)

Non-credit clicker question on Survey participation

Which class are you in, and did you participate in the survey for today?
A. Math 7, yes, participated.
B. Math 7, no, did not participate
C. Stat 7, yes, participated.
D. Stat 7, no, did not participate.

Participation rates

Math 7: 39 out of $109=35.8 \%$
Stat 7: 57 out of $147=38.8 \%$
Total: 96 out of $256=37.5 \%$

Survey Question 7:

What is wrong with the following statement?
"The probability that you will die from a bee sting is about 15 times higher than the probability that you will die from a shark attack."

Specific People versus Random Individuals

Are you allergic to bees?
Do you swim where there are sharks?
On average, about 60 people in the US die of bee stings per year.
On average, about 4 people die from shark attacks.
But what about you personally?
Two correct ways to express the aggregate statistics:

- In the long run, about 15 times more people die from bee stings than from shark attacks.
- A randomly selected death is about 15 times more likely to have occurred from a bee sting than from a shark attack.

Survey Question 1:

Do you think it is likely that anyone could ever win the multi-million dollar state lottery (in any state) twice in a lifetime?
Choices and results:
$4 / 95=4 \%$ Yes, probability is over one half.
$44 / 95=46 \%$ Possible but not likely, $>1 / 2,<1 /$ million.
$47 / 95=50 \%$ No, less than 1 in a million.

Coincidences

Are Coincidences Improbable?

A coincidence is a surprising concurrence of events, perceived as meaningfully related, with no apparent causal connection. (Source: Diaconis and Mosteller, 1989, p. 853)

Example 7.32: Winning the Lottery Twice

- NYT story of February 14, 1986, about Evelyn Marie Adams, who won the NJ lottery twice in short time period.
- NYT claimed that the odds of one person winning the top prize twice were about 1 in 17 trillion.

Source: Moore (1991, p. 278)

Someone, Somewhere, Someday

What is not improbable is that someone, somewhere, someday will experience those events or something similar.

We often ask the wrong question ...

- The $\mathbf{1}$ in 17 trillion is the probability that a specific individual who plays the NJ state lottery exactly twice will win both times (Diaconis and Mosteller, 1989,p. 859).
- Millions of people play lottery every day, so not surprising that someone, somewhere, someday would win twice.
- Stephen Samuels and George McCabe calculated ... at least a 1 in 30 chance of a double winner in a 4-month period and better than even odds that there would be a double winner in a 7-year period somewhere in the U.S.

Consider these coincidences - can they be explained? What is the probability of.

- Flying from London to Sweden I ran into someone I knew in the gate area. Not only that, but it turned out that we had been assigned seats next to each other.
- I was visiting New York City with a friend, and just happened to mention someone who had gone to college with me, who I hadn't seen for years. Five minutes later, I ran into that person. The person also said she was just thinking about me too!
- Someone dreams of a plane crash, and the next day one happens.

Most Coincidences Only Seem Improbable

- Coincidences seem improbable only if we ask the probability of that specific event occurring at that time to us.
- If we ask the probability of it occurring some time, to someone, the probability can become quite large.
- Multitude of experiences we have each day => not surprising that some may appear improbable.

Medical tests (revisited):
 Read page 261-262 in book.

Study asked doctors about situation with:
$1 / 100$ chance that breast lump is malignant
Mammogram is 80% accurate if lump malignant
Mammogram is 90% accurate if lump is benign
Mammogram shows lump is malignant.
What is the probability that it is malignant?
Most physicians thought is was around 75\%.
Actually, it is only .075 , or 7.5% !
See hypothetical 100,000 table on page 262 for this example.

Psychologists call this "Confusion of the Inverse" - Confusing $\mathbf{P}(\mathbf{A} \mid \mathrm{B})$ with $\mathbf{P}(\mathbf{B} \mid \mathbf{A})$

The Probability of False Positives

If base rate for disease is low and test for disease is less than perfect, there will be a relatively high probability that a positive test result is a false positive.

To determine probability of a positive test result being accurate, you need:

1. Base rate - the probability that someone like you is likely to have the disease, without any knowledge of your test results.
2. Sensitivity of the test - the proportion of people who correctly test positive when they actually have the disease
3. Specificity of the test - the proportion of people who correctly test negative when they don't have the disease

Use tree diagram, hypothetical 100,000 or Bayes’ Rule (p. 252).

Another "inverse" example: How dangerous are cell phones when driving?

- 2001 report found the probability that a driver who had an accident had been talking on a cell phone was only .015 (1.5%), whereas the probability that they were distracted by another occupant in the car was . 109 (10.9\%). Led cell phone proponents to say they weren't a problem.
- $\mathrm{P}($ Cell phone \mid Accident $)=.015$
- What we really want is P(Accident | Cell phone), much harder to find, because we don’t know P(Cell phone) = proportion on cell phone while driving!

Survey Question 2:

If you were to flip a fair coin six times, which sequence do you think would be most likely:

HHHHHH or HHTHTH or HHHTTT?
11211
But 72/96 = 75\% of you got this right:
They are equally likely. Each has probability of $(1 / 2)(1 / 2)(1 / 2)(1 / 2)(1 / 2)(1 / 2)$.

The Gambler's Fallacy

People think the long-run frequency of an event should apply even in the short run.

```
Tversky and Kahneman (1982) call it belief in the law of small numbers, "according to which [people believe that] even small samples are highly representative of the populations from which they are drawn." ... "in considering tosses of a coin for heads and tails ... people regard the sequence HTHTTH to be more likely than the sequence HHHTTT, which does not appear to be random, and also more likely than HHHHTH, which does not represent the fairness of the coin"
```


The Gambler's Fallacy

Independent Chance Events Have No Memory
 - they are not "self-correcting!"

Example:

People tend to believe that a string of good luck will follow a string of bad luck in a casino.
However, making ten bad gambles in a row doesn't change the probability that the next gamble will also be bad.

The Gambler's Fallacy When It May Not Apply

The Gambler's fallacy applies to independent events. It may not apply to situations where knowledge of one outcome affects probabilities of the next.

> Example:
> In card games using a single deck, knowledge of what cards have already been played provides information about what cards are likely to be played next.

Survey Question 3:

Which one would you choose in each set?
(Choose either A or B and either C or D.)
$\mathbf{7 8 \%} \quad$ A. A gift of $\$ 240$, guaranteed
$\mathbf{2 2 \%}$ B. A 25% chance to win $\$ 1000$ and a 75% chance of getting nothing.
$\mathbf{2 5 \%} \quad$ C. A sure loss of $\$ 740$
75\% D. A 75\% chance to lose $\$ 1000$ and a 25% chance to lose nothing

Using "Expected Values" To Make Wise Decisions

If you were faced with the following alternatives, which would you choose? Note that you can choose either A or B and either C or D.
A. A gift of $\$ 240$, guaranteed
B. A 25% chance to win $\$ 1000$ and a 75% chance of getting nothing
C. A sure loss of $\$ 740$
D. A 75% chance to lose $\$ 1000$ and a 25% chance to lose nothing

- A versus B: majority chose sure gain A. Expected value under choice B is $\$ 250$, higher than sure gain of $\$ 240$ in A, yet people prefer A.
- C versus D: majority chose gamble rather than sure loss. Expected value under D is $\$ 750$, a larger expected loss than $\$ 740$ in C.
- People value sure gain, but willing to take risk to prevent loss.
- But, depends on \$\$values!

Source: Plous (1993, p. 132)

Clicker Questions not for credit:

Question 1: If you were faced with the following alternatives, which would you choose?
Alternative A: A 1 in 1000 chance of winning \$5000
Alternative B: A sure gain of \$5

Question 2: If you were faced with the following alternatives, which would you choose?
Alternative C: A 1 in 1000 chance of losing \$5000
Alternative D: A sure loss of \$5

Using Expected Values: Depends on how much is at stake!

```
If you were faced with the following alternatives, which would you
choose? Note that you can choose either A or B and either C or D.
Alternative A: A 1 in 1000 chance of winning $5000
Alternative B: A sure gain of $5
Alternative C: A 1 in 1000 chance of losing $5000
Alternative D: A sure loss of $5
```

- A versus B: 75\% chose A (gamble). Similar to decision to buy a lottery tickets, where sure gain is keeping $\$ 5$ rather than buy 5 tickets.
- C versus D: 80\% chose sure loss D rather than gamble. Similar to buying insurance. Dollar amounts are important: sure loss of $\$ 5$ easy to absorb, while risk of losing $\$ 5000$ may risk bankruptcy.

Source: Plous (1993, p. 132)

Clicker question for credit

Which of the following would be true if people made decisions based on maximizing their "expected monetary return?"
A. People wouldn't buy insurance or lottery tickets.
B. People would buy lots of insurance.
C. People would buy lots of lottery tickets.
D. People would always buy an extended warranty if it was offered.

Psychological Issues on Reducing Risk

Certainty Effect: people more willing to pay to reduce risk from fixed amount down to 0 than to reduce risk by same amount when not reduced to 0 .

Example: Probabilistic Insurance

- Students asked if want to buy "probabilistic insurance"
... costs half as much as regular insurance but only covers losses with 50% probability.
- Majority (80\%) not interested.
- Expected value for return is same as regular policy.
- Lack of assurance of payoff makes it unattractive.

Source: Kahneman and Tversky

Pseudocertainty Effect: people more willing to accept a complete reduction of risk on certain problems and no reduction on others than to accept a reduced risk on a variety (all) problems.

Example: Vaccination Questionnaires

- Form 1: probabilistic protection = vaccine available for disease (e.g. flu) that afflicts 20\% of population but would protect with 50% probability. $\mathbf{4 0 \%}$ would take vaccine.
- Form 2: pseudocertainty = two strains, each afflicting 10\% of population; vaccine completely effective against one but no protection from other. 57% would take vaccine.
- In both, vaccine reduces risk from 20% to 10% but complete elimination of risk perceived more favorably.

Source: Slovic, Fischhoff, and Lichtenstein, 1982, p. 480.

Assessing Personal Probability in repeatable and non-repeatable situations

- Personal probabilities: values assigned by individuals based on how likely they think events are to occur
- Some situations are not repeatable, or you may not have the data.
- Still should follow the rules of probability.
- But our intuition doesn't seem to know or understand those rules!

Non-credit clicker question:

Consider a typical book in the English language, such as a novel. Think of the letter K. Ignoring words shorter than 3 letters, which of the following do you think occurs more often?
A. Words with k as the first letter. B. Words with k as the third letter.

Consider a typical book in the English language, such as a novel. Think of the letter K. Ignoring words shorter than 3 letters, which of the following do you think occurs more often?
A. Words with k as the first letter. B. Words with k as the third letter.

Actually words with k as third letter are about twice as common.

Survey Question 4:

Which do you think caused more deaths in the United States in 2005, homicide or diabetes? What do you think the ratio was?
You did well on this one, perhaps because there has been much recent publicity about diabetes: 77% correctly said diabetes.

Psychologists have defined "heuristics" about probability

The Availability Heuristic (Tversky and Kahneman, 1982): "there are situations in which people assess the probability of an event by the ease with which instances or occurrences can be brought to mind. This judgmental heuristic is called availability."

Which do you think caused more deaths in the United States in 2005, homicide or diabetes?

Most answer homicide. The actual 2005 numbers were 18,124 homicides and 75,119 deaths from diabetes. (Ratio >4.)

Distorted view that homicide is more probable results from the fact that homicide receives more attention in the media.

Detailed Imagination - An example of using Availability

Lawyers use this trick with juries...

Risk perceptions distorted by having people vividly imagine an event - how the crime could have occurred.

Another Example:

Salespeople convince you that $\$ 500$ is a reasonable price to pay for an extended warranty on your new car by having you imagine that if your air conditioner fails it will cost you more than the price of the policy to get it fixed. They don't mention that it is extremely unlikely that your air conditioner will fail during the period of the extended warranty.

Another heuristic: Anchoring

Risk perception distorted by providing a reference point, or anchor, from which people adjust up or down. Most tend to stay close to the anchor provided.

Anchoring Example: (Exercise 13.75) Two groups of students asked to estimate the population of Canada:

- High-anchor version: "The population of the U.S. is about 270 million. To the nearest million, what do you think is the population of Canada?" mean $=\mathbf{8 8 . 4}$
- Low-anchor version: "The population of Australia is about 18 million. To the nearest million, what do you think is the population of Canada?" mean = 22.5
(It was actually slightly over 30 million at that time.)

Survey Question 8

Estimate the population of Canada (which is just under 34 million):

- High-anchor version: "The population of the United States is about 308 million. To the nearest million, what do you think is the population of Canada?" Your mean: $\mathbf{1 7 1 . 4}$ million Median: $\mathbf{1 6 6 . 5}$ million
- Low-anchor version: "The population of Australia is about 22 million. To the nearest million, what do you think is the population of Canada?"

Your mean: $\mathbf{3 9 . 4}$ million Median: $\mathbf{3 0}$ million

Survey Question 5:

Plous (1993) presented readers with the following test:
Place a check mark beside the alternative that seems most likely to occur within the next 10 years:

- An all-out nuclear war between the United States and Russia
- An all-out nuclear war between the United States and Russia in which neither country intends to use nuclear weapons, but both sides are drawn into the conflict by the actions of a country such as Iraq, Libya, Israel, or Pakistan.

Using your intuition, pick the more likely event at that time.
33\% chose first option - CORRECT!
77\% chose second option

The Representativeness Heuristic and the Conjunction Fallacy

Representativeness heuristic: People assign higher probabilities than warranted to scenarios that are representative of how we imagine things would happen.

This leads to the conjunction fallacy ... when detailed scenarios involving the conjunction of events are given, people assign higher probability assessments to the combined event than to statements of one of the simple events alone.

Remember that $P(A$ and $B)=P(A) P(B)$ cannot exceed $P(A)$.

An Active Bank Teller

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations.

Respondents asked which of two statements is more probable:

1. Linda is a bank teller.
2. Linda is a bank teller who is active in the feminist movement.

Results: "in a large sample of statistically naïve undergraduates, 86% judged the second statement to be more probable".

Problem: If Linda falls into the second group, she must also fall into the first group (bank tellers). Therefore, the first statement must have a higher probability of being true.

Source: Kahneman and Tversky (1982, p. 496)
Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc., updated

Survey Question 6:

A fraternity consists of 30% freshmen and sophomores and 70% juniors and seniors.
Bill is a member of the fraternity, he studies hard, he is wellliked by his fellow fraternity members, and he will probably be quite successful when he graduates.
Is there any way to tell if Bill is more likely to be a lower classman (freshman or sophomore) or an upper classman (junior or senior)?

49\% Said no way to tell, 6\% said lower
45\% Correctly said Yes, more likely to be an upper classman.

Forgotten Base Rates

The representativeness heuristic can lead people to ignore information about the likelihood of various outcomes.

Example:

People were told a population has 30 engineers and 70 lawyers.
Asked: What is the likelihood that a randomly selected individual would be an engineer? Average close to 30\%. Subjects given description below and again asked likelihood.

> Dick is a 30-year-old man. He is married with no children. A man of high ability and high motivation, he promises to be quite successful in his field. He is well liked by his colleagues.

Subjects ignored base rate of 30%, median response was 50%.
Because he was randomly selected, probability of engineer $=.3$
Source: Kahneman and Tversky (1973, p. 243)
Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc., updated

Optimism, Reluctance to Change, and Overconfidence

Optimism

Slovic and colleagues (1982, pp. 469-470) note that "the great majority of individuals believe themselves to be better than average drivers, more likely to live past 80, less likely than average to be harmed by the products they use, and so on."

Example: Optimistic College Students

On the average, students rated themselves as 15 percent more likely than others to experience positive events and 20 percent less likely to experience negative events.

Sources: Weinstein (1980) and Plous (1993, p. 135)

Reluctance to Change

The reluctance to change one's personal-probability assessment or belief based on new evidence.

Plous (1993) notes, "Conservatism is the tendency to change previous probability estimates more slowly than warranted by new data" (p. 138).

Overconfidence

The tendency for people to place too much confidence in their own assessments. When people venture a guess about something for which they are uncertain, they tend to overestimate the probability that they are correct.

Example: How Accurate Are You?

Study Details:

Asked people hundreds of questions on general knowledge. e.g. Does Time or Playboy have a larger circulation?

Also asked to rate odds they were correct, from 1:1
(50\% probability) to 1,000,000:1 (virtually certain).
Results: the more confident the respondents were, the more the true proportion of correct answers deviated from the odds given by the respondents.

Solution: Plous (1993, p. 228) notes, "The most effective way to improve calibration seems to be very simple:
Stop to consider reasons why your judgment might be wrong".
Source: Fischhoff, Slovic, and Lichtenstein (1977)

Calibrating Personal Probabilities of Experts

Professionals who help others make decisions (doctors, meteorologists) often use personal probabilities themselves.

Using Relative Frequency to Check Personal Probabilities

For a perfectly calibrated weather forecaster, of the many times they gave a 30% chance of rain, it would rain 30% of the time. Of the many times they gave a 90% chance of rain, it would rain 90% of the time, etc.

We can assess whether probabilities are well-calibrated only if we have enough repetitions of the event to apply the relative-frequency definition.

Calibrating Weather Forecasters and Physicians (from Seeing Through Statistics)

Open circles: actual relative frequencies of rain vs. forecast probabilities.
Dark circles relative frequency patient actually had pneumonia vs. physician's personal probability they had it.

Weather forecasters were quite accurate, well calibrated. Physicians tend to overestimate the probability of disease, especially when the baseline risk is low.
When your physician quotes a probability, ask "is it a personal probability or based on data?"

Source: Plous, 1993, p. 223

Tips for Improving Personal Probabilities and Judgments

1. Think of the big picture, including risks and rewards that are not presented to you. For example, when comparing insurance policies, be sure to compare coverage as well as cost.
2. When considering how a decision changes your risk, try to find out what the baseline risk is to begin with. Try to determine risks on an equal scale, such as the drop in number of deaths per 100,000 people rather than the percent drop in death rate.

Tips for Improving Personal Probabilities and Judgments

3. Don't be fooled by highly detailed scenarios. Remember that excess detail actually decreases the probability that something is true, yet the representativeness heuristic leads people to increase their personal probability that it is true.
4. Remember to list reasons why your judgment might be wrong, to provide a more realistic confidence assessment.

Tips for Improving Personal Probabilities and Judgments

5. Do not fall into the trap of thinking that bad things only happen to other people. Try to be realistic in assessing your own individual risks, and make decisions accordingly. Don't overestimate risks either.
6. Be aware that the techniques discussed here are often used in marketing. For example, watch out for the anchoring effect when someone tries to anchor your personal assessment to an unrealistically high or low value.
7. If possible, break events into pieces and try to assess probabilities using the information in Chapter 7 and in publicly available information.
