Problem 9.25

Data=read.table("~/Documents/School/Sta108utts/APPENC01.txt")
names(Data)=c("ID","Stay","Age","Risk","Cultur","Xray","Beds",
"MedSchool","Region","Census","Nurse","Facility")

(b)
Dataset used above (from file "APPENC01.txt") needs to be edited.
1. Consider observations numbered: 57-113 in your dataset
dim(Data)
Data=Data[57:113,]

2. Remove two predictors not needed for the analysis:
these are categorical variables: "MedSchool","Region" (Columns 8,9)
3. Remove ID column not needed for the analysis (Column 1)
Data=Data[,~c(1,8,9)]

4. Transform the response Y to: log10(Y)
Data$Stay=log10(Data$Stay)

Now, your dataset is clean to be used in the problem
Data

DataY=Data[,1] # separate response Y
DataX=Data[,-1] # separate predictors, X variables

pairs(DataX)
cor(DataX)

(c) (NOTE THAT Y IS NOW THE LOG10 TRANSFORMED VERSION OF THE ORIGINAL Y, FROM #4 ABOVE)
library(leaps)
leaps(x=DataX, y=DataY,
 names=c("Age","Risk","Cultur","Xray","Beds","Census","Nurse","Facility"),
 method="Cp")

Three best models are chosen by 3 lowest Cp criterions

To automatically print models in the increasing order of Cp criterion:
ModelSel = leaps(x=DataX, y=DataY,
 names=c("Age","Risk","Cultur","Xray","Beds","Census","Nurse","Facility"),
 method="Cp")
ModelSel$which[order(ModelSel$Cp),]

To print Cp criterion in increasing order
sort(ModelSel$Cp)

To plot Cp against p, and add reference line: Cp=p
plot(ModelSel$size, ModelSel$Cp, pch=19)
abline(0,1)

Fit the best chosen model
Fit = lm(Stay ~ Age + Xray + Census, data=Data)
Fit

Residual plot
plot(Fit$fitted.values, Fit$residuals, main="Residuals vs. Fitted Values", xlab="Fitted Values", ylab="Residuals", pch=19)
abline(h=0)