R Code for discussion 3 #Sta108, Fall2007, Utts

#Continue ExampleData from class

#read the data into R
Data = read.table("~/Documents/School/Sta108utts/wtheightm.txt", header=TRUE)
Data

#fit the regression model and see summary of the fit
Htwt = lm(Weight ~ Height, data=Data)
summary(Htwt)
 #gives: coefficients estimates, standard errors, t statistics, p-values
 #also gives: sqrt(MSE), df, R-squared

#get 95% CIs for Beta0 and Beta1:
confint(Htwt, level=0.95)
 #level=0.95 is by default, can be removed from above

#get 95% CI for mean response at Height=72
Xh = data.frame(Height=72)
predict(Htwt, Xh, interval="confidence", se.fit=TRUE, level=0.95)
 #se.fit is the standard error estimate, optional, can be removed from above
 #level=0.95 is by default, can be removed from above

#get 95% prediction interval for mean response at Height=72
Xh = data.frame(Height=72)
predict(Htwt, Xh, interval="prediction", se.fit=TRUE, level=0.95)
 #se.fit is the standard error estimate to be printed, optional, can be removed from above
 #level=0.95 is by default, can be removed from above

#consider a CI: \([\text{point estimate}] \pm t(1-\alpha/2, n-2)\times\text{se(point estimate)}\)
#get the multiplier used in the 95% CI, i.e. t-value, i.e. the critical value under t-
distribution
 #at n-2 degrees of freedom with left-tail probability (1-0.05/2)
qt(1-0.05/2, 43-2)

#print ANOVA table
anova(Htwt)
 #gives: df, SSR,SSE, MSR,MSE, F statistic, p-value

#get R-squared
summary(Htwt)$r.squared

#get correlation coefficient, r

cor(Data)
 #In the case of this example, the 1st column of Data is a column of text: "Male"
 #for this reason, the above code results in an error
 #to modify, we need to exclude the first column, and use only columns 2 and 3
 #the Square brackets after Data will access the elements of the table Data
 #try
Data[1,2] #to access the element in Row=1, Column=2
Data[1,] #to access the ALL elements of Row=1, Column=ALL
Data[,2] #to access the ALL elements of Column=2, Row=ALL
Data[,c(1,3)] #to access the ALL elements of Column=(1 and 3), Row=ALL
Data[,c(2,3)] #to access the ALL elements of Column=(2 and 3), Row=ALL
Data[,2:3] #identical to above, to access the ALL elements of Column=(2 and 3), Row=ALL
 #here, notation ":" is used to sequence integers from 2 to 3
 #try typing a command like 1:10
cor(Data[,2:3])
r is the off-diagonal value
also, r=sqrt(R-squared)

Diagnostics
Refer to pages 102-114 of your textbook (Section 3.2, 3.3) for departures and diagnostics

Departures:
1. Regression function is not linear
2. Error terms do not have constant variance
3. Error terms are not independent
4. Model fits all but one or few outlying observations
5. Error terms are not normally distributed
6. One or more important predictor variables have been omitted from the model

You will use:
Htwt$residuals
Htwt$fitted.values

Stem-and-leaf plot of residuals => Departure #5
stem(Htwt$residuals, scale=2)
scale is optional, tells how to group the leaves

Boxplot of residuals => Departure #5
boxplot(Htwt$residuals, ylab="residuals", pch=19)
ylab is to label y-axis
pch=19 is to plot the outlying observations as filled circles

Histogram of residuals => Departure #5
hist(Htwt$residuals, xlab="residuals", main="Histogram of residuals")
xlab is to label x-axis
main is to create a proper title of the plot

Plot residuals against predictor X=Height => Departure #1,2,4, somewhat 3,6
plot(Data$Height, Htwt$residuals, main="Residuals vs. Predictor", xlab="Height", ylab="Residuals", pch=19)
abline(h=0) # adds the reference line, horizontal line at y=0

Plot residuals against fitted values Y-hat-h => Departure #1,2,4, somewhat 3,6
plot(Htwt$fitted.values, Htwt$residuals, main="Residuals vs. Predictor", xlab="Fitted values", ylab="Residuals", pch=19)
abline(h=0) # adds the horizontal line at y=0

Normal probability plot, or QQ-plot => Departure #5
qqnorm(Htwt$residuals, main="Normal Probability Plot", pch=19)
qqline(Htwt$residuals) # adds the reference line through first and third quartiles

Departure #3 (and somewhat #6) are studied by a Sequence plot of residuals
where residuals are plotted against the time order
Sequence plot is NOT appropriate for this data, where observations are not taken over time, or in a sequence
#Transformations

#Reference Sections 3.8, 3.9 in your textbook

#Transformation to Y, response variable, are useful to treat Departures #2, 5
#Transformation to X, predictor variable, are useful to treat Departures #1

#create square response variable: Y^2, add it to the Data, title/name it "Wt.squared"
Data = cbind(Data, Wt.squared = Data$Weight^2)
#The names are completely user defined, consider: "Yprime", "Y.prime", "Weight.Sq", and so on

#take a square-root of response variable: sqrt(Y)
Data = cbind(Data, sqrt.Wt = sqrt(Data$Weight))

#take a natural logarithm of response variable: log_{e}(Y), aka: ln(Y)
Data = cbind(Data, log.Wt = log(Data$Weight))

#take a common logarithm of response variable: log_{10}(Y)
Data = cbind(Data, log10.Wt = log10(Data$Weight))

#take a reciprocal of response variable: 1/Y
Data = cbind(Data, recip.Wt = 1/Data$Weight)

#take a reciprocal square-root of response variable: 1/sqrt(Y)
Data = cbind(Data, recip.sqrt.Wt = 1/sqrt(Data$Weight))

#Boxcox procedure: consider to transform: Y' = Y^{\lambda}
library(MASS) #to load the package into R which has a proper boxcox function
boxcox(Htwt) #shows the ideal value of lambda (by dashed line)
boxcox(Htwt, lambda = seq(0, 1, 0.1)) #redefines the location around lambda
#Choose lambda = 0.75
Data = cbind(Data, Wt.prime = Data$Weight^0.75)
NewModel = lm(Wt.prime ~ Height, data=Data)
#Now, go through the diagnostics again

#Consider transforming the predictor variable: X=Height
#transformations to X are done the similar way as to Y:
#create square predictor variable: X^2, add it to the Data, name it "Ht.squared"
Data = cbind(Data, Ht.squared = Data$Height^2)
#Remember that the names are user defined