today's topics:
Troubleshooting with R
Model selection
Homework help

Troubleshooting with R
If you reach an error message because you forgot how to use a certain function/command,
Type: a question-mark, followed by the name of the function/command
This will open the help manual file for that function/command

?plot
?lm
?leaps
?update

It is helpful to scroll to the end to see examples how to use such commands

Model selection
Goal: Choose the most parsimonious (best) model from candidate sub-models based on a chosen Criterion
Choose Maximum R-Square from candidate sub-models
Choose Maximum Adjusted-R-Square from candidate sub-models
Choose Minimum Mallows' Cp from candidate sub-models
Choose Minimum AICp from candidate sub-models
Choose Minimum BICp from candidate sub-models
Choose Minimum PRESSp from candidate sub-models

Example: Grocery Retailer: Problem 6.9
Data = read.table("CH06PR09.txt")
names(Data) = c("Hours","Cases","Costs","Holiday")

To obtain the AICp criterion for any sub-model,
1. Obtain a linear fit involving just the predictors for that sub-model, call it Fit
2. Use extractAIC() function:
Fit = lm(Hours ~ Cases + Costs + Holiday, data=Data)
extractAIC(Fit)

To obtain the SBCp criterion (also called BICp):
extractAIC(Fit, k = log(n))

To obtain the PRESSp criterion for each sub-model:
sum((Fit$residuals / (1-hatvalues(Fit)))^2)
Be careful with the parentheses

Stepwise regression

Possible choices: forward selection, backward elimination, or combination of both (called “forward stepwise regression” in text)
Method 1: function step() - uses AICp criterion at each step, automatic procedure
Method 2: function summary() - read P-values, manually update
Method 3: functions addterm(), dropterm() - read F-statistics/P-values, manually update

Method 1:
Forward selection
1. Fit initial/base model (with one predictor)
2. Fit full model (with all the predictors you wish to consider)
3. Use step() function
Base = lm(Hours ~ Holiday, data=Data)
Full = lm(Hours ~ Cases + Costs + Holiday, data=Data)
step(Base, scope = list(upper=Full, lower=~1), direction = "forward", trace=FALSE)

Input:
the first parameter is the initial model in stepwise search, (I called it Base)
score: defines the range of models examined in the stepwise search
upper: defines the full model
lower: defines the most simple model, (in this case: just the intercept term)
direction: mode of stepwise search, can be one of "forward", "backward", or "both"
trace: FALSE gives only the final model, TRUE gives intermediate results at each step

Output:
step() identifies and fits the model which produced the lowest value of AIC
Backward elimination
1. Fit initial/base model, which is the full model (with all the predictors you wish to consider)
2. Use step() function
step(Full, direction = "backward", trace=FALSE)

Both Forward and Backward stepwise regression ("Forward stepwise regression" in text)
step(Base, scope = list(upper=Full, lower=~1), direction = "both", trace=FALSE)

Method 2:
Backward elimination using P-values to delete predictors one-at-a-time
0. Choose significance level Alpha before you begin
1. START with fitting full model,
a. look at model summary()
b. identify the predictor (if any) with the largest P-value above your Alpha-level
2. DROP. Fit a new linear model with that predictor deleted
a. use the update() function to make this easier
a. look at model summary()
b. identify the predictor (if any) with the largest P-value above your Alpha-level
3. Repeat Step #2 if predictor was identified, or
STOP stepwise regression if all remaining P-values are below your Alpha-level

Full = lm(Hours ~ Cases + Costs + Holiday, data=Data)
summary(Full)
NewMod = update(Full, .~. - Costs)
summary(NewMod)

Method 3:
Backward elimination using R function dropterm() in the MASS package
library(MASS)
addterm(), dropterm() functions use an F-test criterion or a P-value criterion
0. Choose F limit or level Alpha before you begin
1. START with fitting full model,
a. use dropterm() function
a. identify (to delete) the predictor (if any) with the smallest F-value below your F limit, or
the largest P-value above your Alpha-level
b. use dropterm() function
b. identify (to delete) the predictor (if any) with the smallest F-value below your F limit, or
the largest P-value above your Alpha-level
2. DROP. Fit a new linear model with that predictor deleted
a. use dropterm() function to make this easier
a. use dropterm() function
b. identify (to delete) the predictor (if any) with the smallest F-value below your F limit, or
the largest P-value above your Alpha-level
3. Repeat Step #2 if predictor was identified, or
STOP stepwise regression if all remaining P-values are below your Alpha-level

Full = lm(Hours ~ Cases + Costs + Holiday, data=Data)
dropterm(Full, test = "F")
NewMod = update(Full, .~. - Costs)
dropterm(NewMod, test = "F")

Forward selection using R function addterm() in the MASS package
library(MASS)
addterm(), dropterm() functions use an F-test criterion or a P-value criterion
0. Choose F limit or level Alpha before you begin
1. START with fitting null model, say, no predictors but only intercept
a. use addterm() function
b. identify (to admit) the predictor (if any) with the largest value above your F limit, or
the smallest P-value below your Alpha-level.
2. ADD. Fit a new linear model with that predictor deleted
a. use addterm() function to make this easier
a. use addterm() function
b. identify (to admit) the predictor (if any) with the largest value above your F limit, or
the smallest P-value below your Alpha-level.
3. Repeat Step #2 if predictor was identified, or
STOP stepwise regression if all F-values are larger than your F limit, or
all P-values are below your Alpha-level

Null = lm(Hours ~ 1, data=Data)
addterm(Null, scope = Full, test="F")
NewMod = update(Null, .~. + Holiday)
addterm(NewMod, scope = Full, test="F")
NewMod = update(NewMod, .~. + Cases)
addterm(NewMod, scope = Full, test="F")

#Homework help:
#Example: Grocery Retailer: Problem 6.9
Data = read.table("CH06PR09.txt")
names(Data) = c("Hours","Cases","Costs","Holiday")

DataX=Data[,2:4]
DataY=Data[,1]
names(Data)

library(leaps)
leaps(x=DataX, y=DataY, names=c("Cases","Costs","Holiday"), method="Cp")

#To automatically print models in the increasing order of Cp criterion:
ModelSel = leaps(x=DataX, y=DataY, names=c("Cases","Costs","Holiday"), method="Cp")
ModelSel$which[order(ModelSel$Cp),]

#To print Cp criterion in increasing order
sort(ModelSel$Cp)