
ICS 31 • UC IRVINE • FALL 2017 • DAVID G. KAY

Quiz 4
To get credit for this quiz, use the Quiz tool at eee.uci.edu to enter your answers, within the Sunday-to-
Tuesday quiz period.

Problem 1 (5 points) Topic: Flow of control with loops

Match each code segment ((a) through (e)) with the output it produces (1 through 5). Use each alter-
native exactly once. Assume L has the value [10, 20, 30, 40].

___ (a) #4

 for i in L:
 print(i)

___ (b) #3

 for i in range(len(L)):
 print(i)

___ (c) #1

 for i in range(len(L)):
 if L[i] > 20:
 print(L[i])

___ (d) #5

 for i in range(len(L)):
 if L[i] > 20:
 print(i)

___ (e) #2

 for i in L:
 if i < 20:
 print(i)

1.

30
40

2.

10

3.

0
1
2
3

4.

10
20
30
40

5.

2  
3

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 4 • PAGE  2

Problem 2 (4 points) Topic: Recognizing from Python syntax what data type an expression must be

(a) For each sequence of Xs in the code below, indicate the type of expression (not the specific code) that
belongs in that space. Choose from int, float, str, bool, Restaurant, or list.
def nonvowels(s: str) -> str:
 ''' Return a string containing the nonvowels in s
 '''
 result = ''

 for XXXXXXXXXX in s: In nonvowels: str, bool, str.
 if XXXXXXXXXX:
 XXXXXXXXXX += c
 return result

assert XXXXXXXXXX In nonvowels assertions: bool, str
assert nonvowels(XXXXXXXXXX) == ""
 
(b) For each sequence of Xs in the code below, indicate the type of expression (not the
specific code) that belongs in that space. Choose from int, float, str, bool, Restau-
rant, or list.
def cheapest(L: list) -> Restaurant:
 ''' Return the Restaurant with the lowest price, from the parameter
 '''
 if L == []:
 return None

 XXXXXXXXXX.sort(key=Restaurant_price) In cheapest: list, Restaurant
 return XXXXXXXXXX

assert cheapest(XXXXXXXXXX) == XXXXXXXXXX In cheapest assertions: list, Restaurant, Restaurant
assert cheapest([XXXXXXXXXX, R25, R26]) == R24

Problem 3 (11 points) Topic: Flow of control with if/elif/else; computing with functions

The cost of framing a picture depends on the material used for the frame and the size of the picture.

(a) (3 points) In the function below, fill in the blanks (with one string, number, operator, or identifier
[variable/function/method name] per blank) according to the description given.
def price_per_inch(material: str) -> float:
 ''' If parameter is 'maple', return 2.95; if it's 'lacquer', return 3.50; if it's
 'aluminum', return 1.25; otherwise return 0
 '''

 if ___________ == ___________: material ‘maple’
 return 2.95

 elif ___________ == ___________: material ‘lacquer’
 return 3.50

 elif ___________ == ___________: material ‘aluminum’
 return 1.25
 else:

 return ___________ 0

assert price_per_inch('bamboo') == 0
assert price_per_inch('lacquer') == 3.50

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 4 • PAGE  3

(b) (3 points) Below is a function header and docstring describing a task. First, write two assert
statements that give examples of calling this function and the correct results for those examples. Then,
complete the definition according to the docstring and parameter types given.
def material_needed(height: float, width: float) -> float:
 ''' Given the height and width of a picture (in inches), return
 the number of inches of framing material required (for all
 four sides of the picture, of course).
 '''

 return (height * 2) + (width * 2)

assert material_needed(10, 5) == 30
assert material_needed(25, 30) == 110
(c) (5 points) For the function described below, first write two assert statements as examples/tests of
its operation, then complete the function definition according to the description. Where appropriate,
call the functions you defined above.

def frame_cost(height: float, width: float, material: str) -> float:
 ''' Return the cost of framing a picture whose size and framing
 material are specified by the parameters
 '''

 return price_per_inch(material) * material_needed(height, width)
 # Splitting this into a couple of separate assignment statements would be fine.
A solution that doesn't call the other two functions correctly (and instead duplicates the computation that 
those two functions do) would not get full credit.
assert frame_cost(10, 5, 'laquer') == 30 * 3.50 # Not fully doing the arithmetic in your head is also okay on
assert frame_cost(25, 30, 'maple') == 110 * 2.95 # an exam (and in code, too)

Problem 4 (10 points) Topic: Writing code with lists of namedtuples

Suppose we have this definition: 
Date = namedtuple('Date', 'year month day')

where all three fields are numbers, so that February 14, 2014 would be represented as Date(2014, 1,
14). [You might think about how to define a function to convert a mmddyy string to a Date, or to con-
vert a Date to a MonthDayYear string, but neither one is part of this quiz.]

Suppose we also have this definition:  
 DrivingRecord = namedtuple('DrivingRecord', 'name license age tickets') 
where name is a string representing a driver's name, license is a string representing his or her driver's
license number, age is the driver's age, and tickets is a (possibly empty) list of Date objects containing
the dates on which the driver has received a traffic ticket (i.e., was cited by a police officer for violating a
driving law).

Complete the two function definitions below, consistent with their headers, docstrings, and assertions. 
def is_dangerous(d: DrivingRecord, limit: int) -> bool:

 ''' Return True if d has more tickets than the limit (and false otherwise)
 '''

return len(d.tickets) > limit # Be careful to say > and not >= --- it specifies "MORE ... than the limit"
 # And avoid this clumsy, redundant pattern: if len(d.tickets) > limit: return True else: return False

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 4 • PAGE  4

def dangerous_drivers(DRL: 'list of DrivingRecord', limit: int) -> 'list of str':
 ''' Return a list of the names of drivers in DRL who have
 more tickets than the specified limit. '''

 result = []
 for d in DRL:
 if is_dangerous(d, limit):
 result += [d.name] # or result.append(d.name) or result.extend([d.name])
 return result

assert dangerous_drivers(
 [DrivingRecord('a', '1', '16', [Date(1,2,3),Date(2,3,4),Date(3,4,5)]),
 DrivingRecord('b', '1', '66', [Date(1,2,3),Date(2,3,4)]),
 DrivingRecord('c', '1', '66', [Date(1,2,3)]),
 DrivingRecord('d', '1', '116', []),
 DrivingRecord('e', '1', '116', [Date(1,2,3),Date(2,3,4),Date(3,4,5)])], 1)
 == ['a', 'b', 'e']

 
Problem 5 (5 points) Topic: Flow of control with function calls

Below is some code to draw a variety of figures using tkinter, as we did in the lab. However, you don't
need to know any tkinter operations to answer this question. (Some function definitions below are
missing or incomplete. None of the missing details is necessary to answer this question.) 
def draw_them_all():

 ''' Draw a variety of figures. The question asks you to
 count the total number of eyes drawn.
 '''
 draw_eye(200,200)
 draw_Martian_face(0,0)
 draw_Martian_face(100,100)

def draw_Martian_face(x: int, y: int):
 ''' Draw, centered at (x, y), a Martian face with three eyes.
 '''
 draw_head(x, y)
 draw_nose(x, y)
 draw_mouth(x, y-50)
 draw_eye(x-50, y+20)
 draw_eye(x, y+20)
 draw_eye(x+50, y+20)

def draw_eye(x: int; y: int) -> None:
 ''' Draw an eye centered at (x, y)
 '''
 [body omitted]

draw_them_all()
 
(a) (3 points) If we call the function draw_them_all once, how many times in total does an eye get
drawn? 
7 

(b) (2 points) Circle (or indicate some other way) the last call to draw_eye that gets executed in a
complete call to draw_them_all. The last call to draw_eye in draw_Martian_face.

