
ICS 31 • UC IRVINE • FALL 2017 • DAVID G. KAY

Quiz 6
To get credit for this quiz, use the Quiz tool at eee.uci.edu to enter your answers, within the Sunday-to-
Tuesday quiz period.

Problem 1 (4 points) Topic: String formatting

(a) (4 points) A quiz has scores in the range 0 to 10. We can represent the distribution of scores on this
quiz as a list of numbers, each number being the count of students who received a particular score. So
in the list below, 1 person scored 0, 3 people scored 5, and 45 people scored 10:

 counts = [1, 0, 0, 2, 2, 3, 8, 22, 33, 40, 45]

Suppose we want to print these statistics in a table in the following format:
 0. 1 (0.64%)
 1. 0 (0.00%)
 2. 0 (0.00%)
 3. 2 (1.28%)
 4. 2 (1.28%)
 5. 3 (1.92%)
 6. 8 (5.13%)
 7. 22 (14.10%)
 8. 33 (21.15%)
 9. 40 (25.64%)
10. 45 (28.85%)

 
In the following code, fill in each blank with one character so that the output is formatted as shown
above. 
TOPSCORE = 10

for s in range(TOPSCORE + 1):
 print("{:_____d}. {:3d} ({:_____ . _____ _____}%)".format(s,
 counts[s], counts[s]/sum(counts)*100))

 print("{:2d}. {:3d} ({:5.2f}%)".format(s, counts[s], counts[s]/sum(counts)*100))
In the following code, fill in each blank with one character so that the output is formatted as shown
above. 
TOPSCORE = 10

for s in range(TOPSCORE + 1):
 print(f"{s:_____d}. {count[s]:3d} ({count[s]/sum(counts)*100:_____ . _____ _____}%)")

 print(f"{s:2d}. {counts[s]:3d} ({counts[s]/sum(counts)*100:5. 2f}%)")

(b) (4 points) Suppose we want to print a simple bar graph with the table of statistics:
 0. 1 (0.64%) *
 1. 0 (0.00%)
 2. 0 (0.00%)
 3. 2 (1.28%) **
 4. 2 (1.28%) **
 5. 3 (1.92%) ***
 6. 8 (5.13%) ********
 7. 22 (14.10%) **********************
 8. 33 (21.15%) *********************************
 9. 40 (25.64%) **
10. 45 (28.85%) *** 

Rewrite the code above to produce the bar graph as shown. SEE ANSWER BELOW AFTER PROBLEM 2.

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 6 • PAGE  2

Problem 2 (10 points) Topic: List processing

Suppose we wish to process text files that contain some "front matter"—lines at the start of the file that
we wish to ignore, similarly to a part of this week's lab. Let's say that we have read the file into a list of
strings, that the end of the front matter is indicated by a line in the file that says "END OF FRONT MAT-
TER", and that we are guaranteed that this line will occur in the file.

Complete the definition of remove_front_matter below, consistent with its header, docstring, and as-
sertions. [Recall that the annotation [str] means the same things as 'list of str'. Note that no
actual file-handling commands are required for this solution.]
def remove_front_matter(linelist: [str]) -> [str]:
 ''' Return input list with starting lines (through "END OF FRONT MATTER") removed
 '''
 result = [] ## Alternative approach:
 found_dividing_line = False dividing_line = 0
 for line in linelist: for line in linelist:
 if found_dividing_line: if line == "END OF FRONT MATTER":
 result.append(line) break
 if line == "END OF FRONT MATTER": dividing_line += 1
 found_dividing_line = True return linelist[dividing_line+1:]
 return result

Another alternative approach
 for line_number in range(len(linelist)):
 if linelist[line_number] == 'END OF FRONT MATTER':
 break
 result = []
 for line_number_in_rest in range(line_number +1, len(linelist)):
 result.append(linelist[line_number_in_rest])
 return result

test_list = ["To be skipped",
 "Also to be skipped",
 "END OF FRONT MATTER",
 "To be included",
 "Also to be included"]
assert(remove_front_matter(test_list) == ["To be included",
 "Also to be included"])
assert(remove_front_matter(test_list[2:]) == ["To be included",
 "Also to be included"])
assert(remove_front_matter(test_list[:3]) == [])

ANSWER TO PROBLEM 1(b):
print("{:2d}. {:3d} ({:5.2f}%) {}”.format(s, counts[s], counts[s]/sum(counts)*100, ‘*’ * counts[s])) OR
print(f"{s:2d}. {counts[s]:3d} ({counts[s]/sum(counts)*100:5.2f}%) { ‘*’ * counts[s]}”)
Additions are the format code {} (could be {:} or {:s} or {:1s} or {:99s}) and the stars themselves, ‘*’ * counts[s]
This could also be done with a nested for-loop: for c in range(counts[s]): print(“*”,end=“”), plus a print()

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 6 • PAGE  3

Problem 3 (6 points) Topic: Formatting and string manipulation
Complete the definition of seconds_to_mmss below, consistent with its header, docstring, and asser-
tions. [Note: The integer division operator (a//b) gives the integer quotient of a/b. The mod operator
(%) gives the remainder of a/b.] You do not have to worry about leading zeroes (like "11:05").

def seconds_to_mmss(seconds: int) -> str:

 ''' Convert a number of seconds to minutes and seconds in "mm:ss" format
 '''
 return str(seconds//60) + ":" + str(seconds % 60) # Alt: return "{:d}:{:2d}".format(seconds//60, seconds % 60)
 ## Alternative that fixes leading zeroes without zfill(): return "{:d}:{:02d}".format(seconds//60, seconds % 60)

assert(seconds_to_mmss(15) == "0:15") # Alternative that fixes the leading zero (e.g., in "12:01",
assert(seconds_to_mmss(75) == "1:15") # using zfill() (which we haven't covered):
assert(seconds_to_mmss(3620) == “60:20”) # return "{:d}:{:s}".format(seconds//60, str(seconds %
 # 60).zfill(2))
Problem 4 (10 points) Topic: String processing
Parts of this excerpt from help(str) may be useful in this problem:
find(...)
 S.find(sub) -> int
 Return the lowest index in S where the string sub is found.
 Return -1 on failure.

split(...)
 S.split(sep) -> list of strings
 Return a list of the words in S, using sep as the delimiter string.

strip(...)
 S.strip() -> str
 Return a copy of the string S with leading and trailing whitespace removed.

 
Complete the function definition below, consistent with its header, docstring, and assertions.

MONTHS = ['January', 'February', 'March', 'April', 'May', 'June',
 'July', 'August', 'September', 'October', 'November', 'December']

def mmddyy_to_MonthDayYear(mmddyy: str) -> str:
 ''' From an argument in the form '10/31/152' (month, day, year),
 return a string in the form 'October 31, 2015'. Assume all
 values are valid numbers and all years are in this century
 (that means your function doesn't have to check).
 '''

 fields = mmddyy.split('/')
 month_number = int(fields[0]) - 1 # Subtract 1 for indexing into the MONTHS list starting at 0 for January
 month_name = MONTHS[month_number]
 day = fields[1] # for clarity; could just use fields[1] in the return statement
 year = '20' + fields[2] # no need in this problem to convert to a number,
 # Also, leaving it a string helps with leading zeroes in, e.g., '12/1/07'
 return month_name + " " + day + ", " + year
assert(mmddyy_to_MonthDayYear('10/31/15') == 'October 31, 2015')
assert(mmddyy_to_MonthDayYear('12/1/07') == 'December 1, 2007')
assert(mmddyy_to_MonthDayYear('1/3/99') == 'January 3, 2099') 

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 6 • PAGE  4

Problem 5 (11 points) Topic: List processing

Suppose we have a list of scores on a quiz, one score for each student, in the range 0 to 20. For example:

 quiz_scores = [18, 20, 18, 20, 0, 10, 10, 20, 10, 20]
We would like to produce a list of counts, one count for each possible score

 quiz_counts = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4]
(a) (4 points) Write the function zero_counts that takes a number (such as the number of points on a
quiz) and returns a list of zeros, one zero for each possible score).

def zero_counts (top_value: int) -> 'list of int': 
 ''' Return a list of zeroes, with one zero for each possible score from zero to
 top_value  
 '''  
 result = [] 
 for i in range(top_value+1): # +1 because we have perfect scores and zero scores 
 result += [0] # Could also be result.append(0) or result.extend([0])  
 return result # Even better would be just: return [0] * (top_value+1)
 

 
assert zero_counts(10) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert zero_counts(0) == [0]

(b) (3 points) In one sentence, why does zero_counts(10) return a list of eleven zeroes?

Because we need a count of eleven scores: 1 through 10, plus 0. In other words, we need both 0 and 10.

(c) (4 points) Now, write the function count_scores that takes a list of scores and a number that rep-
resents the highest possible score; it returns a list of counts, indicating how many times each score oc-
curred:
def count_scores(scores: 'list of int', top_score: int) -> 'list of int':
 ''' Return a list that tallies the number of times each value (from 0
 to top_score) occurs in the list of scores
 '''

 counts = zero_counts(top_score)
 for s in scores:
 counts[s] += 1
 return counts

assert count_scores([], 5) == [0, 0, 0, 0, 0, 0]
assert count_scores(quiz_scores, 20) == quiz_counts

Most of the time we’ve used lists, we’ve used them to hold a collection of objects (Books, Restaurants, numbers);
the index just indicates a specific object’s position in the list and we’ve used it mostly to change a specific object
in the list. The usage in this problem is a little bit different: The index isn’t just a position; it also corresponds to a
score (say in the range 0 to 20); the values stored in the list are counts of each score and we use the index to speci-
fy which score, 0 through 20, should have its count increased.

