ICS 31 « UCIRVINE ¢ FALL2017 ¢ DAVID G. KAy

Quiz 7

To get credit for this quiz, use the Quiz tool at eee.uci.edu to enter your answers, within the Sunday-to-
Tuesday quiz period.

Problem 1 (10 points)

Suppose we wish to process text files that contain some "commented out” lines. That is, the file has a
line that starts "BBEGIN cOMMENT" and a line that starts "END coMMENT"; we want to keep all the lines
except the ones between those two lines. Let's say that we have read the file into a list of strings and that
we are guaranteed that the "BEGIN coMvENT" and "END coMMENT™ lines will occur in the file.

Complete the definition of def remove commented out lines below, consistent with its header, doc-
string, and assertions. [Note that no actual file-handling commands are required for this solution.]

def remove commented out lines(linelist: 'list of str') -> 'list of str':
''"'" Return input list, excluding lines between "BEGIN COMMENT" and
"END COMMENT". See examples below.
Tea
test list = ["Include this line",

"and this one, too",

"BEGIN COMMENT: Exclude this",
"Also exclude this",

"END COMMENT",

"But include this last one."]

assert remove commented out lines(test list) == ['Include this line',
'and this one, too', 'But include this last one.']

assert remove commented out lines(test list[2:]) == ["But include this last one."]
assert remove commented out lines(test list[l:-1]) == ["and this one, too"]

assert remove commented out lines(test list[2:-1]) == []

ICS 31 » FALL 2017 DAVID G. Kay ¢ UC IRVINE QuIZ7 ¢ PAGE2

Problem 2 (16 points)

Suppose we have these definitions from a previous quiz:

from collections import namedtuple

Date = namedtuple ('Date', 'year month day')

where all three fields are numbers, so that November 12, 2015 would be represented as pate (2015,
11, 12).

DrivingRecord = namedtuple ('DrivingRecord’', 'name license age tickets')

where name is a string representing a driver's name, license is a string representing his or her driver's
license number, age is the driver's age, and tickets is a (possibly empty) list of Date objects containing
the dates on which the driver has received a traffic ticket (i.e., was cited by a police officer for violating a
driving law).

(a) (7 points) Complete the definition of pate is earlier below, consistent with its header, doc-
string, and assertions:

def Date is earlier (datel: Date, date2: Date) -> bool:
""" Return True if datel is earlier than date?2 (and False otherwise---
for a boolean function, this goes without saying; it has to return
either True or False)

, Date(2013, 1, 1
, Date (2012, 2, 1
Date (2012, 1, 2

((1,
assert (Date is earlier(Date (2012, 1,
((1

assert (Date is earlier (Date (2012, 1
1
assert (Date is earlier(Date (2012, 1, 1
1

4
assert (Date is earlier(Date (2013, 1,), Date (2013, 2,

)))
)))
)))
1))
1

()

()

()

(4
assert (not Date is earlier(Date (2013, 1, 14), Date(2013, 1, 1)))
assert (not Date is earlier(Date (2013, 5, 1), Date(2013, 1, 1)))
assert (not Date is earlier(Date (2013, 5, 14), Date(2013, 1, 1)))
assert (not Date is earlier(Date(2013, 5, 1), Date(2013, 1, 14)))
assert (not Date is earlier(Date (2012, 1, 1), Date(2012, 1, 1)))
assert (not Date is earlier(Date (2013, 1, 2), Date(2013, 1, 1)))
assert (not Date is earlier(Date (2012, 2, 1), Date(2012, 1, 1)))
assert (not Date is earlier(Date (2013, 1, 1), Date(2012, 1, 1)))
assert (not Date is earlier (Date (2013, 1, 1), Date(2012, 2, 1)))

ICS 31 » FALL 2017 * DAVID G. KAy » UC IRVINE QuIZ7 * PAGE 3

(b) (9 points) For this problem, assume that you have the following function already defined; you do
not have to define it:

def Date is weekend(d: Date) -> bool:

'''" Return True if d is a Saturday or Sunday '''

Complete the definitions below of the functions total tickets, total weekend tickets, and week-

end ticket percentage.

def total tickets(DRL: 'list of DrivingRecord') -> int:

''!" Return the total number of tickets issued to all drivers in DRL
L B |

def total weekend tickets(DRL: 'list of DrivingRecord') -> int:
T

Return the total number of tickets issued on Saturday or Sunday.

You may write a second function (a "helper function") to break this task down.
Tr

def weekend ticket percentage(DRL: 'list of DrivingRecord') -> float:
''"'" Return the percentage of all tickets issued that were issued
on a Saturday or Sunday (value from 0 to 100)

ICS 31 » FALL 2017 DAVID G. Kay ¢ UC IRVINE QUIZ 7 * PAGE 4

Problem 3 (9 points)

(@) (5 points) Suppose we have a file of driving records as shown below:

John Jones 111222333 24 12/24/11,1/31/12,6/30/12
Jane Johnson 222333444 25

Joe Jenkins 333444555 18 4/5/12

Jill Jefferies 444555666 55 2/24/01,10/18/05

The four fields are separated by tabs; the list of ticket dates is separated by commas; each date is in mm/
dd/yy format. The following code creates a list of DrivingRecords from a file like the one above.

def mmddyy to Date (mmddyy: str) -> Date:
''"'" Return Date from mm/dd/yy '''
parts = mmddyy.split('/")
return Date (2000+int (parts[2]), int(parts[0]), int(parts([l]))

ALTERNATIVE 1

infile = open('records.txt', 'r')
inputlist = infile. ()
DRL = []

for dr in inputlist:
fields = dr.split('\t")
if len(fields) ==
ticketlist
else:
ticketlist
Datelist = []
for d in ticketlist:
Datelist.append (mmddyy to Date(d))
record = DrivingRecord(fields[0], fields[1l], int(fields[2]), Datelist)
DRL.append (record)
print (DRL)
infile.close ()

]

fields[3].strip() .split (', ")

ALTERNATIVE 2

infile = open('records.txt', 'r')
DRL = []
for in

fields = line.split('\t")
if len(fields) ==
ticketlist
else:
ticketlist
Datelist = []
for d in ticketlist:
Datelist.append (mmddyy to Date(d))
record = DrivingRecord(fields[0], fields[1l], int(fields[2]), Datelist)
DRL.append (record)
print (DRL)
infile.close ()

]

fields[3].strip() .split (', ")

ALTERNATIVE 3

infile = open('records.txt', 'r')
inputstring = infile.

inputlist = inputstring.split('\n")
DRL = []

for dr in inputlist:
fields = dr.split('\t")

if len(fields) == 3:
ticketlist = []
else:
ticketlist = fields[3].strip() .split(',")

Datelist = []
for d in ticketlist:
Datelist.append (mmddyy to Date (d))
record = DrivingRecord(fields[0], fields[1l], int(fields[2]), Datelist)
DRL. append (record)
print (DRL)
infile.close()

ICS 31 » FALL 2017 * DAVID G. KAy » UC IRVINE QUIZ7 ¢ PAGE 5

There are five different ways to read text files in Python:

read ()
read (n)
readline ()
readlines ()

for line in file

NN A

Match each of the ways listed above with one of the following statements:

A. Could be used in Alternative 1.
B. Could be used in Alternative 2.
C. Could be used in Alternative 3.
D. Could be used with a while loop to check whether the last line we (tried to) read is empty.

E. Would be more effective if the input file were organized into fixed-width columns.

(b) (4 points) Below is come code to write a list of DrivingRecords to a file in the format described
above in part (a). Fill in each blank with one Python identifier, operator, or constant:

def Date to mmddyy(D: Date) -> str:
''"' Return a string in the form mm/dd/yy from the Date

return str(D.month) + "/" + str(D.day) + "/" + str(D.year) [2:4]

def DRList to file(DRL: 'list of DrivingRecord', file name: str) -> None:
'''" Write a list of DrivingRecords to the named file (tab-delimited, with dates
in the form mm/dd/yy

outfile = open/(, ‘w')
for dr in DRL:
output line = dr.name + "\t" + str(dr.license) + "\t" + str(dr.age) + "\t"

for d in dr.

output line += (dy + ™, "
output line = output line[:-1] + "\n" # Remove trailing comma, add \n

.write (output line)

outfile.close()

