
ICS 31 • UC IRVINE • FALL 2017 • DAVID G. KAY

Quiz 7
To get credit for this quiz, use the Quiz tool at eee.uci.edu to enter your answers, within the Sunday-to-
Tuesday quiz period.

Problem 1 (10 points) Topic: List processing (with application to files)

Suppose we wish to process text files that contain some "commented out" lines. That is, the file has a
line that starts "BBEGIN COMMENT" and a line that starts "END COMMENT"; we want to keep all the lines
except the ones between those two lines. Let's say that we have read the file into a list of strings and that
we are guaranteed that the "BEGIN COMMENT" and "END COMMENT" lines will occur in the file.

Complete the definition of def remove_commented_out_lines below, consistent with its header, doc-
string, and assertions. [Note that no actual file-handling commands are required for this solution.]
def remove_commented_out_lines(linelist: 'list of str') -> 'list of str':
 ''' Return input list, excluding lines between "BEGIN COMMENT" and
 "END COMMENT". See examples below.
 '''
 result = []
 in_comment = False
 for line in linelist:
 if line.startswith("BEGIN COMMENT"):
 in_comment = True
 continue
 if line.startswith("END COMMENT"):
 in_comment = False
 continue
 if in_comment:
 continue
 result += [line] # or result.append(line)
 return result

 # Other solutions are possible

test_list = ["Include this line",
 "and this one, too",
 "BEGIN COMMENT: Exclude this",
 "Also exclude this",
 "END COMMENT",
 "But include this last one."]

assert remove_commented_out_lines(test_list) == ['Include this line',
 'and this one, too', 'But include this last one.']

assert remove_commented_out_lines(test_list[2:]) == ["But include this last one."]

assert remove_commented_out_lines(test_list[1:-1]) == ["and this one, too"]

assert remove_commented_out_lines(test_list[2:-1]) == []

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 7 • PAGE  2

Problem 2 (16 points) Topic: Computation with if/elif/else, list processing, file processing

Suppose we have these definitions from a previous quiz:
from collections import namedtuple
Date = namedtuple('Date', 'year month day')

where all three fields are numbers, so that November 12, 2015 would be represented as Date(2015,
11, 12).
DrivingRecord = namedtuple('DrivingRecord', 'name license age tickets')

where name is a string representing a driver's name, license is a string representing his or her driver's
license number, age is the driver's age, and tickets is a (possibly empty) list of Date objects containing
the dates on which the driver has received a traffic ticket (i.e., was cited by a police officer for violating a
driving law).

(a) (7 points) Complete the definition of Date_is_earlier below, consistent with its header, doc-
string, and assertions:
def Date_is_earlier(date1: Date, date2: Date) -> bool:
 ''' Return True if date1 is earlier than date2 (and False otherwise---
 for a boolean function, this goes without saying; it has to return
 either True or False)
 '''

 if date1.year < date2.year:
 return True
 elif date1.year > date2.year:
 return False
 elif date1.month < date2.month:
 return True
 elif date1.month > date2.month:
 return False
 elif date1.day < date2.day:
 return True
 else:
 return False

assert(Date_is_earlier(Date(2012, 1, 1), Date(2013, 1, 1)))
assert(Date_is_earlier(Date(2012, 1, 1), Date(2012, 2, 1)))
assert(Date_is_earlier(Date(2012, 1, 1), Date(2012, 1, 2)))
assert(Date_is_earlier(Date(2013, 1, 14), Date(2013, 2, 1)))
assert(not Date_is_earlier(Date(2013, 1, 14), Date(2013, 1, 1)))
assert(not Date_is_earlier(Date(2013, 5, 1), Date(2013, 1, 1)))
assert(not Date_is_earlier(Date(2013, 5, 14), Date(2013, 1, 1)))
assert(not Date_is_earlier(Date(2013, 5, 1), Date(2013, 1, 14)))
assert(not Date_is_earlier(Date(2012, 1, 1), Date(2012, 1, 1)))
assert(not Date_is_earlier(Date(2013, 1, 2), Date(2013, 1, 1)))
assert(not Date_is_earlier(Date(2012, 2, 1), Date(2012, 1, 1)))
assert(not Date_is_earlier(Date(2013, 1, 1), Date(2012, 1, 1)))
assert(not Date_is_earlier(Date(2013, 1, 1), Date(2012, 2, 1)))

 

One way to approach this problem is to look at the asser-
tions. There's no guarantee that every set of assertions on
an exam will be comprehensive, but this one is: It lays out
the various cases to check:
Are the years different (d1 < d2, or d1 > d2 actually)?
If the years are equal, are the months different (d1 < d2
or d1 > d2)?
If not, are the days different (d1 < d2)?

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 7 • PAGE  3

(b) (9 points) For this problem, assume that you have the following function already defined; you do
not have to define it:
def Date_is_weekend(d: Date) -> bool:
 ''' Return True if d is a Saturday or Sunday '''

Complete the definitions below of the functions total_tickets, total_weekend_tickets, and week-
end_ticket_percentage.

def total_tickets(DRL: 'list of DrivingRecord') -> int:
 ''' Return the total number of tickets issued to all drivers in DRL
 '''

 total = 0
 for dr in DRL:
 total += len(dr.tickets)
 return total
Of course you need to call the previously-defined functions where appropriate; 
it's never full credit to duplicate code.

def total_weekend_tickets(DRL: 'list of DrivingRecord') -> int:
 ''' Return the total number of tickets issued on Saturday or Sunday.
 You may write a second function (a "helper function") to break this task down.
 '''

 # Alternative (without a helper function, using a nested loop):
 # total = 0
 # for dr in DRL:
 # for d in dr.tickets:
 # if Date_is_weekend(d):
 # total += 1
 # return total
 total = 0
 for dr in DRL:
 total += total_weekend_tickets_on_ticketlist(dr.tickets)
 return total

def total_weekend_tickets_on_ticketlist(ticketlist: 'list of Date') -> int:
 ''' Take a list of Dates (when tickets were issued) and count the
 number of tickets that were issued on Saturday or Sunday '''
 total = 0
 for d in ticketlist:
 if Date_is_weekend(d):
 total += 1
 return total
def weekend_ticket_percentage(DRL: 'list of DrivingRecord') -> float:
 ''' Return the percentage of all tickets issued that were issued
 on a Saturday or Sunday (value from 0 to 100)
 '''  
 return total_weekend_tickets(DRL) / total_tickets(DRL) * 100
 # It would be better coding practice to check that total_tickets returns at least 1 since you can't divide by zero.
 # Also, note that to get a percentage you need to multiply by 100. 
One aspect of this question is being able to USE a function whose header and docstring are supplied, even if you
don't have the body of the function. This is a common programmer's experience---any time you use help() or look
up the functions and methods in a library, you do this. 

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 7 • PAGE  4

Problem 3 (9 points) Topic: Reading from and writing to files
(a) (5 points) Suppose we have a file of driving records as shown below:
John Jones 111222333 24 12/24/11,1/31/12,6/30/12
Jane Johnson 222333444 25
Joe Jenkins 333444555 18 4/5/12
Jill Jefferies 444555666 55 2/24/01,10/18/05

The four fields are separated by tabs; the list of ticket dates is separated by commas; each date is in mm/
dd/yy format. The following code creates a list of DrivingRecords from a file like the one above.
def mmddyy_to_Date(mmddyy: str) -> Date:
 ''' Return Date from mm/dd/yy '''
 parts = mmddyy.split('/')
 return Date(2000+int(parts[2]), int(parts[0]), int(parts[1]))

ALTERNATIVE 1
infile = open('records.txt', 'r')
inputlist = infile._______________()
DRL = []
for dr in inputlist:
 fields = dr.split('\t')
 if len(fields) == 3:
 ticketlist = []
 else:
 ticketlist = fields[3].strip().split(',')
 Datelist = []
 for d in ticketlist:
 Datelist.append(mmddyy_to_Date(d))
 record = DrivingRecord(fields[0], fields[1], int(fields[2]), Datelist)
 DRL.append(record)
print(DRL)
infile.close()

ALTERNATIVE 2
infile = open('records.txt', 'r')
DRL = []
for _______________ in _______________:
 fields = line.split('\t')
 if len(fields) == 3:
 ticketlist = []
 else:
 ticketlist = fields[3].strip().split(',')
 Datelist = []
 for d in ticketlist:
 Datelist.append(mmddyy_to_Date(d))
 record = DrivingRecord(fields[0], fields[1], int(fields[2]), Datelist)
 DRL.append(record)
print(DRL)
infile.close()

ALTERNATIVE 3
infile = open('records.txt', 'r')
inputstring = infile._______________
inputlist = inputstring.split('\n')
DRL = []
for dr in inputlist:
 fields = dr.split('\t')
 if len(fields) == 3:
 ticketlist = []
 else:
 ticketlist = fields[3].strip().split(',')
 Datelist = []
 for d in ticketlist:
 Datelist.append(mmddyy_to_Date(d))
 record = DrivingRecord(fields[0], fields[1], int(fields[2]), Datelist)
 DRL.append(record)
print(DRL)
infile.close()  

ICS 31 • FALL 2017 • DAVID G. KAY • UC IRVINE QUIZ 7 • PAGE  5

There are five different ways to read text files in Python:

1. read()  
2. read(n)  
3. readline()  
4. readlines()  
5. for line in file

Match each of the ways listed above with one of the following statements:  

A. Could be used in Alternative 1.  

B. Could be used in Alternative 2.  

C. Could be used in Alternative 3.  

D. Could be used with a while loop to check whether the last line we (tried to) read is empty.  

E. Would be more effective if the input file were organized into fixed-width columns.

read(): C. Could be used in Alternative 3.
read(n): E. Would be more effective if the input file were organized into fixed-width columns.
readline(): D. Could be used with a while loop to check whether the last line we (tried to) read is empty.
readlines(): A. Could be used in Alternative 1.
for line in file: B. Could be used in Alternative 2.

(b) (4 points) Below is come code to write a list of DrivingRecords to a file in the format described
above in part (a). Fill in each blank with one Python identifier, operator, or constant:
def Date_to_mmddyy(D: Date) -> str:
 ''' Return a string in the form mm/dd/yy from the Date
 '''
 return str(D.month) + "/" + str(D.day) + "/" + str(D.year)[2:4]

def DRList_to_file(DRL: 'list of DrivingRecord', file_name: str) -> None:
 ''' Write a list of DrivingRecords to the named file (tab-delimited, with dates
 in the form mm/dd/yy
 '''

 outfile = open(_______________, ‘w') file_name
 for dr in DRL:
 output_line = dr.name + "\t" + str(dr.license) + "\t" + str(dr.age) + "\t"

 for d in dr._______________: tickets

 output_line += _______________(d) + “," Date_to_mmddyy
 output_line = output_line[:-1] + "\n" # Remove trailing comma, add \n

 _______________.write(output_line) outfile
 outfile.close()

