
Second Midterm
You have 75 minutes (until the end of the class period) to complete
this exam. ere are 55 points possible, so allow approximately one
minute per point and you’ll have plenty of time left over.

Please read all the problems carefully. If you have a question on what
a problem means or what it calls for, ask us. Unless a problem speci"-
cally asks about errors, you should assume that each problem is cor-
rect and solvable; ask us if you believe otherwise.

In answering these questions, you may use any Python 3 features we
have covered in class, in the text, in the lab assignments, or earlier on
the exam, unless a problem says otherwise. Use more advanced fea-
tures at your own risk; you must use them correctly.

Remember, stay cool! If you run into trouble on a problem, go on to
the next one. Later on, you can go back if you have time. Don’t let
yourself get stuck on any one problem.

You may not share any information or materials with classmates dur-
ing the exam and you may not use any electronic devices.

Please write your answers clearly and neatly—we can’t give you credit
if we can’t decipher what you’ve written.

We’ll give partial credit for partially correct answers, so writing some-
thing is better than writing nothing. But be sure to answer just what
the question asks.

Good luck!

ICS 31 • UC IRVINE YOUR NAME _______________________________ YOUR LAB:
FALL 2012 • DAVID G. KAY YOUR STUDENT ID (8 DIGITS) __________________ SECTION (1-10) _______________
 YOUR UCINET ID ___________________________ TIME MWF AT: 8 10 12 2 4 6
 TA’S NAME ___________________

 aJm34w

Problem 1
(7 points)

Problem 2
(10 points)

Problem 3
(3 points)

Problem 4
(9 points)

Problem 5 p6
(6 points)

Problem 5 p7
(10 points)

Problem 5 p8
(10 points)

Total
(55 points)

Problem 1 (7 points) Topic: Python expressions and data types

Below are seven segments of code, each with a part underlined. Indicate the data type of each under-
lined part by checking the appropriate box.

(a) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

if temp < 32: # bool
 print("Freezing")

(b) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

L = ['Huey', 'Dewey', 'Louie'] # str
print(L[1])

(c) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

M = [] # list of int
for i in range(3):
 M.append(i)
 print(M)

(d) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

L = ['Huey', 'Dewey', 'Louie'] # int
n = len(L)
if 'Donald' in L[1:n]:
 print(L)

(e) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

def is_even(n: int) -> bool: # bool
 return n % 2 == 0

(f) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

L = inputline.split() # list of str
while L != []:
 print(L)
 L = L[1:]

(g) ❏ int ❏ float ❏ bool ❏ str ❏ function ❏ list of int ❏ list of str

L = ['Huey', 'Dewey', 'Louie'] # str
print(L[0] + L[1])

SCORING: 1 point each

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 2

Problem 2 (10 points) Topic: Loop behavior

For this problem, use these de"nitions:
L = ['BIM', 'CGS', 'CS', 'CSE', 'Infx']
M = [1992, 1996, 2008, 2012]
N = [2, 3, 5]

Match each of the following code segments ((a) through (e)) with the results (A through H) they pro-
duce when run in Python. You may use some results (A through H) more than once.

(a) Circle one: A B C D E F G H ---> B

for v in range(len(M)):
 print(v, M[v], len(M))
print('Done', len(M))

(b) Circle one: A B C D E F G H ---> H

for v in range(5):
 print(v, L[v], len(L))
print('Done', len(L))

(c) Circle one: A B C D E F G H ---> C

for v in L:
 print(v, L[v], len(L))
print('Done', len(L))

(d) Circle one: A B C D E F G H ---> E
for v in N:
 print(v, 2 * v, len(N))
print('Done', len(N))

(e) Circle one: A B C D E F G H ---> B
v = 0
while v < len(M):
 print(v, M[v], len(M))
 v = v + 1
print('Done', len(M))

SCORING: 2 points each

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 3

A.
0 1992 4 Done 4
1 1996 4 Done 4
2 2008 4 Done 4
3 2012 4 Done 4

B.
0 1992 4
1 1996 4
2 2008 4
3 2012 4
Done 4

C.
TypeError: list indices
must be integers, not str

D.
1 BIM 0
2 CGS 1
3 CS 2
4 CSE 3
5 Infx 4
Done 5

E.
2 4 3
3 6 3
5 10 3
Done 3

F.
1 4 3
2 6 3
3 10 3
Done 3

G.
0 1992 0
1 1996 1
2 2008 2
3 2012 3
Done 4

H.
0 BIM 5
1 CGS 5
2 CS 5
3 CSE 5
4 Infx 5
Done 5

Problem 3 (3 points) Topic: String formatting

e California Secretary of State posts the results of ballot measures on her web site in a form much like
this:
Yes 30 Temporary Taxes to Fund Education 5457850 54.2% 4620176 45.8%
No 31 State Budget, State and Local Government 3692410 39.3% 5702549 60.7%

We could represent this data as follows:
Results = namedtuple('Results', 'num title yes no')
Num is an integer, the measure number; title is a string;
yes is the number of yes votes; no is the number of no votes
firstprop = Results(30, 'Temporary Taxes to Fund Education', 5457850, 4620176)
secondprop= Results(31, 'State Budget, State and Local Government', 3692410, 5702549)

e function below should print the results as shown above when the correct format string is inserted:
def print_results_row(R: Results) -> None:
 ''' Print one line of election results for a ballot measure (see format above).
 '''
 format_string = — Choose one from the !ve format string (A–E) shown below —
 if R.yes > R.no:
 outcome = 'Yes'
 else:
 outcome = 'No'
 total_votes = R.yes + R.no
 print(format_string.format(outcome, R.num, R.title, R.yes, R.yes/total_votes*100,
 R.no, R.no/total_votes*100))
 return

print_results_row(firstprop)
print_results_row(secondprop)

Choose the one format string below (A through E) that most correctly produces the output shown
above.

A. "{:3} {:2d} {:45}{:8d} {:5.4f}% {:8d} {:5.4f}%"

B. "{} {:2d} {}{:8d} {:5.1f}% {:8d} {:5.1f}%"

C. "{:3} {:2d} {:45}{:8d} {:5.1f}% {:8d} {:5.1f}%" <— THIS ONE

D. "{:3} {:2d} {:>45}{:8d} {:5.2f}% {:8d} {:5.2f}%"

E. "{:3} {:2d} {:45}{:8d} {:8.1f}% {:8d} {:8.1f}%"

SCORING: Three points for the right answer

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 4

Problem 4 (9 points) Topic: if/elif/else behavior

e fee to insure an Express Mail shipment to Denmark is calculated based on the value of the ship-
ment, according to this table:

 $100 and below, no fee
 over $100 but $200 and below, $0.85
 over $200 but $500 and below, $2.35
 over $500 but $650 and below, $3.85
 over $650, no fee because the package is not insurable

Here is the framework for a function to calculate the insurance fee based on the shipment’s value; the
body of the function is missing.
def insurance_fee(value: float) -> float:
 ''' Return insurance fee based on package value as described above.
 Print message if value is too high to insure.
 '''
 — Insert body of function here —
assert(insurance_fee(100) == 0)
assert(insurance_fee(101) == 0.85)
assert(insurance_fee(200) == 0.85)
assert(insurance_fee(201) == 2.35)
assert(insurance_fee(500) == 2.35)
assert(insurance_fee(501) == 3.85)
assert(insurance_fee(650) == 3.85)
assert(insurance_fee(651) == 0) # and a message is printed in this case

Below are six alternatives for the body of this function. One or more of them may correctly satisfy the
speci"cations. Indicate which of the six alternatives is correct by circling one or more of the following:

 A B C D E F SCORING: Start with 9 pts. –1.5 for each wrong mark (yes for no, no for yes)

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 5

A. Correct
if value <= 100:
 fee = 0
elif value <= 200:
 fee = 0.85
elif value <= 500:
 fee = 2.35
elif value <= 650:
 fee = 3.85
else:
 fee = 0
 print('Not insurable')
return fee

B. Wrong
if value <= 100:
 return 0
elif value <= 200:
 return 0.85
elif value <= 500:
 return 2.35
elif value <= 650:
 return 3.85
else:
 return 0
 print('Not insurable')

C. Correct
if value <= 100:
 return 0
elif value <= 200:
 return 0.85
elif value <= 500:
 return 2.35
elif value <= 650:
 return 3.85
else:
 print('Not insurable')
 return 0

D. Correct
if value<=100:
 fee = 0
if value>100 and value<=200:
 fee = 0.85
if value>200 and value<=500:
 fee = 2.35
if value>500 and value<=650:
 fee = 3.85
if value > 650:
 fee = 0
 print('Not insurable')
return fee

E. Wrong
if value <= 100:
 fee = 0
if value <= 200:
 fee = 0.85
if value <= 500:
 fee = 2.35
if value <= 650:
 fee = 3.85
if value > 650:
 fee = 0
 print('Not insurable')
return fee

F. Correct
fee = 0
if value>100 and value<=200:
 fee = 0.85
elif value>200 and value<=500:
 fee = 2.35
elif value>500 and value<=650:
 fee = 3.85
elif value>650:
 print('Not insurable')
return fee

Problem 5 (26 points) Topic: Processing lists and namedtuples

For this problem, use these de"nitions:
from collections import namedtuple
Restaurant = namedtuple('Restaurant', 'name cuisine phone menu')
Dish = namedtuple('Dish', 'name price calories')

e menu "eld of a Restaurant is a list of Dish structures.

You may also "nd this excerpt from help(str) useful:
count(...)
 S.count(sub) -> int
 Return the number of non-overlapping occurrences of substring sub in
 string S.

endswith(...)
 S.endswith(suffix) -> bool
 Return True if S ends with the specified suffix, False otherwise.

find(...)
 S.find(sub) -> int
 Return the lowest index in S where substring sub is found.
 Return -1 on failure.

startswith(...)
 S.startswith(prefix) -> bool
 Return True if S starts with the specified prefix, False otherwise.

(a) (2 points) Complete the de"nition of the function below, consistent with its header, docstring
comment, and assertions.
def Dish_name_is(a_dish: Dish, n: str) -> bool:
 ''' Return True if a_dish's name equals n (and False otherwise) '''

 return a_dish.name == n

assert(Dish_name_is(Dish("Doro Wat", 12.50, 550), "Doro Wat"))
assert(not Dish_name_is(Dish("Doro Wat", 12.50, 550), "Doro"))

(b) (4 points) Complete the de"nition of the function below, consistent with its header, docstring
comment, and assertions.
def Dish_name_contains(a_dish: Dish, a_phrase: str) -> bool:
 ''' Return True if a_dish's name includes the second parameter '''

 return a_phrase in a_dish.name —OR— return a_dish.name.find(a_phrase) != –1
 —OR— return a_dish.name.count(a_phrase) > 0

assert(Dish_name_contains(Dish("Yesiga Tibs", 12.50, 550), "Yesiga Tibs"))
assert(Dish_name_contains(Dish("Yesiga Tibs", 12.50, 550), "Tibs"))
assert(not Dish_name_contains(Dish("Yesiga Tibs", 12.50, 550), "Doro Wat"))
assert(not Dish_name_contains(Dish("Yesiga Tibs", 12.50, 550), "YT"))

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 6

(c) (2 points) At the beginning of this problem, four string methods are described: find, count,
startswith, and endswith. Regardless of how you answered part (b), two of these four methods could
be used in a short de"nition of Dish_name_contains; the other two would require much more code to
solve the problem. Which two of these four string methods could be used in a brief de"nition of
Dish_name_contains? (Just give their names.) The find() and count() methods could be used easily, as

shown above. It would be possible to use startswith() or endswith(), but it would be much clumsier and less effi-
cient (you'd have to do multiple searches to examine the whole string). SCORING: +1 for each correct answer
(find/count); -1 for each incorrect answer (startswith, endswith, other things); minimum zero.

(d) (6 points) Complete the de"nition of the function below, consistent with its header, docstring
comment, and assertions. For full credit, use functions described in earlier problems on this exam
where appropriate (whether or not you solved those problems correctly). Fill each blank with exactly
one identi"er or constant.
def Menu_includes (M: 'list of Dish', a_phrase: str) -> bool:
 ''' Return True if M includes at least one dish whose name includes the second
 parameter.
 '''

 for d in _________________: M. Next line: Dish_name_contains … d … a_phrase

 if _________________(_________________, _________________):

 return _________________ True

 return _________________ False. SCORING: 1 point per correct blank.

DL = [Dish('spaghetti and meatballs', 9.50, 600),
 Dish('cheeseburger', 7.60, 800),
 Dish('macaroni and cheese', 3.50, 600)]
assert(Menu_includes(DL, 'cheese'))
assert(not Menu_includes(DL, 'carrot'))
assert(Menu_includes(DL, 'meat'))
assert(not Menu_includes(DL, 'cheeses'))

(e) (2 points) Here is a version of Menu_includes in which the last line is indented one step to the
right. is version is no longer correct.
def Menu_includes (M: 'list of Dish', a_phrase: str) -> bool:
 ''' Return True if M includes at least one dish whose name includes the second
 parameter.
 '''
 for d in _________________:
 if _________________(_________________, _________________):
 return _________________
 return _________________

assert(Menu_includes(DL, 'cheese')) #1
assert(not Menu_includes(DL, 'carrot')) #2
assert(Menu_includes(DL, 'meat')) #3
assert(not Menu_includes(DL, 'cheeses')) #4

At least one of the four assertions above will fail. Which assertion(s) fail with this mis-indented version?
Just indicate the number(s) 1, 2, 3, and/or 4. ANSWER: ‘cheese’ fails (number varies by version).

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 7

(f) (4 points) Complete the de"nition of the function below, consistent with its header, docstring
comment, and assertions. For full credit, use functions described earlier on this exam where appropriate
(whether or not you solved those problems correctly). Fill each blank with exactly one identi"er or con-
stant.
def Restaurant_serves(R: Restaurant, a_phrase: str) -> bool:
 ''' Return True if R serves a dish whose name includes the second parameter.
 '''
 return _______________(_______________._______________, _______________)

 return Menu_includes(R.menu, a_phrase). SCORING: 1 point per blank

(g) (6 points) Complete the de"nition of the function below, consistent with its header, docstring
comment, and assertions. For full credit, use functions described earlier on this exam where appropriate
(whether or not you solved those problems correctly). Fill each blank with exactly one identi"er or con-
stant.
def Restaurants_serving(RestaurantColl: 'list of Restaurant',
 a_phrase: str) -> 'list of Restaurant':
 ''' Return a list of those restaurants in RL that serve
 a dish whose name includes the second parameter.
 '''
 result = []

 for r in ______________________:

 RestaurantColl
 if ______________________(______________________, a_phrase):

 Restaurant_serves r
 ______________________.append(______________________)

 result r
 return ______________________

 result

Scoring: 1 point per blank

ICS 31 • FALL 2012 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 8

