
Second Midterm
You have 75 minutes (until the end of the class period) to
complete this exam. There are 60 points possible, so allow
approximately one minute per point and you’ll have plenty
of time left over.

Please read all the problems carefully. If you have a question
on what a problem means or what it calls for, ask us. Unless
a problem specifically asks about errors, you should assume
that each problem is correct and solvable; ask us if you
believe otherwise.

In answering these questions, you may use any Python 3
features we have covered in class, in the text, in the lab
assignments, or earlier on the exam, unless a problem says
otherwise. Use more advanced features at your own risk;
you must use them correctly. If a question asks for a single
item (e.g., one word, identifier, or constant), supplying more
than one will probably not receive credit.

Remember, stay cool! If you run into trouble on a problem,
go on to the next one. Later on, you can go back if you have
time. Don’t let yourself get stuck on any one problem.

You may not share any information or materials with
classmates during the exam and you may not use any
electronic devices.

Please write your answers clearly and neatly—we can’t give
you credit if we can’t decipher what you’ve written.

We’ll give partial credit for partially correct answers, so
writing something is better than writing nothing. But be sure
to answer just what the question asks.

Good luck!

ICS 31 • UC IRVINE YOUR NAME _______________________________

FALL 2015 • DAVID G. KAY YOUR STUDENT ID (8 DIGITS) __________________

******************** YOUR UCINET ID ___________________________
****** K E Y ****** ********************

YOUR LAB SECTION (CIRCLE ONE):

1. 8:00a Prateek B. Swamy

2. 10:00 Prateek B. Swamy

3. 12:00 Rohit Malhotra

4. 2:00 Rohit Malhotra

5. 4:00 Roeland Singer-Heinze

6. 6:00 Roeland Singer-Heinze

7. 8:00p Akshat Amrish Patel

8. 8:00a Shibani Konchady

9. 10:00 Shibani Konchady

10. 12:00 Vignesh Raghunathan

11. 2:00 Vignesh Raghunathan

12. 4:00 Akshat Amrish Patel

13. 8:00a Kartic Saxena

14. 10:00 Kartic Saxena

15. 12:00 Archit Dey

16. 2:00 Archit Dey

Problem 1
(9 points)

Problem 2
(10 points)

Problem 3
(5 points)

Problem 4
(7 points)

Problem 5
(5 points)

Problem 6
(5 points)

Problem 7
(19 points)

Total
(60 points)

Problem 1 (9 points) Topic: processing lists of namedtuples

The Registrar has asked you to build a student enrollment system. You start by representing a Student
object as

Student = namedtuple('Student', 'ID name level major')

where all four fields are strings: the student's ID number, name, class level (FR, SO, JR, SR, GR), and
major. You create for testing these sample Students:

pp1 = Student('11112222', 'Programmer, Paula', 'FR', 'CS')
pp2 = Student('22223333', 'Programmer, Peter', 'SR', 'FILM')
aa1 = Student('33334444', 'Anteater, Andrea', 'SR', 'CS')
aa2 = Student('55556666', 'Aardvark, Aaron', 'SR', 'BIO')

SL = [pp1, pp2, aa1, aa2]

(a) (5 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling each blank with exactly one identifier, operator, or constant.

def collect_by_level (L: 'list of Student', lev: str) -> 'list of Student':
 ''' Return a list of all Students in L with the specified class level
 (FR, SO, JR, SR, or GRAD)
 '''
 result = []

 for s ____________ ____________: # in L

 if s.____________ == ____________: # level lev

 result.append(____________) # s

 return ____________ # result

assert collect_by_level(SL, 'SR') == [pp2, aa1, aa2]
assert collect_by_level(SL, 'JR') == []
assert collect_by_level(SL, 'FR') == [pp1]

(b) (4 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling each blank with exactly one identifier, operator, or constant.

def collect_majors (L: 'list of Student', ML: 'list of str') -> 'list of Student':
 ''' Return a list of all Students in L with a major on the list ML
 '''

 ### The body of this function is the same as the body of collect_by_level above,
 ### except for the following line; fill in the blanks.

 if _______________ . _______________ _______________ _______________:
 # s major in ML
 ### The rest of the body is the same as above.
 The key here is using the "in" operator to look something up in a list

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 2

Problem 2 (10 points) Topic: Expressions with lists and namedtuples

Continuing your development of the student enrollment system, you represent each course with

Course = namedtuple('Course', 'dept num title units instr cap roster waitlist')

where the department, number, and title are strings, the number of units is an int, the instructor is a
string, the maximum capacity of the course is an int, and both the roster and the waiting list are lists of
Students.

ics31 = Course('ICS', '31', 'Intro Programming', 4, 'Kay, David', 350, [pp1, aa2], [])
infx269 = Course('Infx', '269', 'Computer Law', 4, 'Kay, David', 3, [pp1, pp2, aa2], [aa1])
ics32 = Course('ICS', '32', 'Software Libraries', 4, 'Thornton, Alex', 500, [pp2, aa1], [])
econ20a = Course('Economics', '20A', 'Intro Econ', 4, 'Chalfant, Jim', 8,
 [pp1, pp2, aa1, aa2], [])

Classes = [ics31, infx269, ics32, econ20a]

Use the above definitions in this problem. [Note that this is not the same organization as we used in
class and the lab.]

(a) (5 points) Below are 10 Python expressions. Indicate the data type of each expression by checking
the appropriate box.

(a.1) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
ics31 == Course

(a.2) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
infx269.waitlist == list # of Student

(a.3) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
len(ics31.waitlist) == 0 == bool

(a.4) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
Classes[0].cap == int

(a.5) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
infx269.num == str

(a.6) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
Classes[1] == Course

(a.7) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
Classes[1].roster == list # of Student

(a.8) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
Classes[1].roster[2].major == str

(a.9) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
len(pp1.name) == int

(a.10) ❏int ❏float ❏bool ❏str ❏function ❏Student ❏Course ❏list of Student ❏list of Course
Classes[0].roster[1] == Student

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 3

(b) (5 points) Give the value of each of these expressions, based on the definitions above. Remember
zero-based indexing.

ics31.instr == 'David Kay' == False

len(Classes[3].dept) == 9

Classes[0].roster[1].name == 'Aardvark, Aaron' # (credit with or without quotes)

Classes[2].waitlist == [] # or "Empty list""

Classes[1].roster[2].ID[-1] == '6'

Problem 3 (5 points) Topic: Sorting lists

We have two functions that produce enrollment statistics for a course:
def percent_of_capacity(c: Course) -> float:
 ''' Return a measure of how full the class is, as a percentage of capacity
 '''
 return len(c.roster)/c.cap * 100
assert percent_of_capacity(infx269) == 100
assert percent_of_capacity(econ20a) == 50
assert percent_of_capacity(Course('d','n','t',4,'i', 10, [], [])) == 0

def relative_waitlist_size (c: Course) -> float:
 ''' Return the size of the Course's waitlist as a percentage of the capacity of
 the course. (E.g., a course with capacity 10 and a 10-person waitlist size
 has a relative waitlist size of 100%)
 '''
 return len(c.waitlist)/c.cap * 100
assert relative_waitlist_size(Course('d','n','t',4,'i', 10,
 [aa1,aa1,aa1,aa1,aa1,aa1,aa1,aa1,aa1,aa1],
 [aa1,aa1,aa1,aa1,aa1,aa1,aa1,aa1])) == 80
assert relative_waitlist_size(econ20a) == 0
assert relative_waitlist_size(infx269) == 1/3 * 100

Which of the following code segments will priint the Courses in the list Classes, in order by percent of
capacity, highest values first? Circle one or more of A, B, C, D, or E; one or more may be correct.
Consider each code segment in isolation, not in the context of having executed any of the other
segments previously.

A. THIS
for c in sorted(Classes, key=percent_of_capacity, reverse=True):
 print(c)

B. [Problem here is that sort() is a freestanding method, not an expression)
for c in Classes.sort(key=percent_of_capacity, reverse=True):
 print(c)

C. THIS
Classes.sort(key=percent_of_capacity, reverse=True)
for c in Classes:
 print(c)
[continued]

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 4

D. THIS
result = []
for c in sorted(Classes, key=percent_of_capacity, reverse=True):
 result += [c]
for c in result:
 print(c)

E. [Problem here is that we print before we sort, so we don't see things in order]
for c in Classes:
 print(c)
Classes.sort(key=percent_of_capacity, reverse=True)

Problem 4 (7 points) Topic: String formatting

From the previous problem, we have a list of Course objects named Classes.

(a) (4 points) Suppose we use this code to produce a table of enrollment figures:

print('Course Cap Enr % Full % Wait')
print('------ --- --- ------ ------')
for c in Classes:
 print("{:4s} {:5s} {:4d} {:4d} {:5.1f}% {:5.1f}%".format(c.dept,
 c.num, c.cap, len(c.roster), percent_of_capacity(c),
 relative_waitlist_size(c)))

Which of the tables below is the actual output of this code? Circle only one of A, B, C, D, or E.

A. # This. 4 pts. for this; that's it. The principle: A field value larger than specified format takes what it needs
Course Cap Enr % Full % Wait
------ --- --- ------ ------
ICS 31 350 2 0.6% 0.0%
Infx 269 3 3 100.0% 33.3%
ICS 32 500 2 0.4% 0.0%
Economics 20A 8 4 50.0% 0.0%

B.
Course Cap Enr % Full % Wait
------ --- --- ------ ------
ICS 31 350 2 1% 0%
Infx 269 3 3 100% 33%
ICS 32 500 2 0% 0%
Econ 20A 8 4 50% 0%

C.
Course Cap Enr % Full % Wait
------ --- --- ------ ------
ICS 31 350 2 0.6% 0.0%
Infx 269 3 3 100.0% 33.3%
ICS 32 500 2 0.4% 0.0%
Econ 20A 8 4 50.0% 0.0%

D.
Course Cap Enr % Full % Wait
------ --- --- ------ ------
ICS 31 350 2 0.6% 0.0%
Infx 269 3 3 100.0% 33.3%
ICS 32 500 2 0.4% 0.0%
Economics 20A 8 4 50.0% 0.0% [question continues on next page]

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 5

E.

Course Cap Enr % Full % Wait
------ --- --- ------ ------
ICS 31 350 2 0.6% 0.0%
Infx 26 3 3 100.0% 33.3%
ICS 3 500 2 0.4% 0.0%
Economics 20A 8 4 50.0% 0.0%

(b) (3 points) Fill in each blank with the letter that corresponds to the code that produced it.

#A.

for c in Classes:

 print("{:4s} {:5s} {:4d} {:4d} {:5.2f}% {:5.2f}%".format(c.dept, c.num, c.cap,

 len(c.roster), percent_of_capacity(c), relative_waitlist_size(c)))

#B.

for c in Classes:

 print("{:4s} {:5s} {:4d} {:4d} {:5.0f}% {:5.0f}%".format(c.dept, c.num, c.cap,

 len(c.roster), percent_of_capacity(c), relative_waitlist_size(c)))

#C.

for c in Classes:

 print("{:4s} {:5s} {:4d} {:4d} {:6.1f}% {:6.1f}%".format(c.dept, c.num, c.cap,

 len(c.roster), percent_of_capacity(c), relative_waitlist_size(c)))

#D.

for c in Classes:

 print("{:4s} {:5s} {:4d} {:4d} {:6.2f}% {:6.2f}%".format(c.dept, c.num, c.cap,

 len(c.roster), percent_of_capacity(c), relative_waitlist_size(c)))

_____ ICS 31 350 2 1% 0% # From B. SCORING: –1 per mistake
 Infx 269 3 3 100% 33%

_____ ICS 31 350 2 0.6% 0.0% # From C [Floor is zero]
 Infx 269 3 3 100.0% 33.3%

_____ ICS 31 350 2 0.57% 0.00% # From A
 Infx 269 3 3 100.00% 33.33%

_____ ICS 31 350 2 0.57% 0.00% # From D
 Infx 269 3 3 100.00% 33.33%

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 6

Problem 5 (5 points) Topic: Control structure behavior

The code below returns the position, or index, where a Student with a given ID occurs in a list of
Students.

def find_student_by_ID(L: 'list of Student', i: str) -> int:
 ''' Return index of specified student in list, or -1 if not found
 '''
 index = -1
 for n in range(len(L)):
 if L[n].ID == i:
 index = n
 break
 return index

Which of following are correct ways of rewriting this function? Circle one or more of A, B, C, or D;
more than one may be correct.

A. THIS ONE

def find_student_by_ID(L: 'list of Student', i: str) -> int:
 ''' Return index of specified student in list, or -1 if not found
 '''
 index = -1
 for n in range(len(L)):
 if L[n].ID == i:
 index = n
 return index

B. THIS ONE

def find_student_by_ID(L: 'list of Student', i: str) -> int:
 ''' Return index of specified student in list, or -1 if not found
 '''
 for n in range(len(L)):
 if L[n].ID == i:
 return n
 return -1

C.

def find_student_by_ID(L: 'list of Student', i: str) -> int:
 ''' Return index of specified student in list, or -1 if not found
 '''
 index = -1
 for n in range(len(L)):
 if L[n].ID == i:
 index = n
 return index # this return is done the first time through the loop, every time
 return index

D.
def find_student_by_ID(L: 'list of Student', i: str) -> int:
 ''' Return index of specified student in list, or -1 if not found
 '''
 index = -1
 for n in range(len(L)):
 if L[n].ID == i:
 index = n
 else:
 return n # Here again, if we don't match L[0] on the first pass through, we lose.
 return index

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 7

Problem 6 (5 points) Topic: String processing

Here is the skeleton of a function to help in printing business letters:

def salutation(c: Course) -> str:
 ''' Return a string in the form "Dear Prof. X", where X is the last name (family
 name) of the course's instructor
 '''
 — Alternative body code goes here —
assert salutation(econ20a) == "Dear Prof. Chalfant"
assert salutation(infx269) == "Dear Prof. Kay"

Each of the following is a candidate for the body of this function. Circle one or more of the alternatives
A, B, C, or D to indicate which candidate bodies are correct.

A. THIS ONE
return "Dear Prof. " + c.instr[:c.instr.find(",")]

B. THIS ONE
name_last_first = c.instr
separator = name_last_first.find(",")
lastname = c.instr[0:separator]
return "Dear Prof. " + lastname

C. THIS ONE
lastname = ''
position = 0
while c.instr[position] != ",":
 lastname += c.instr[position]
 position += 1
return "Dear Prof. " + lastname

D. THIS ONE
location = 0
for letter in c.instr:
 if letter != ",":
 location += 1
 else:
 break
return "Dear Prof. " + c.instr[:location]

Problem 7 (19 points) Topic: Processing lists of namedtuples containing lists

Now the Registrar wants you to implement some functions that manage course enrollments.

(a) (5 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling each blank with exactly one identifier, operator, or constant.

def is_enrolled(c: Course, sid: str) -> bool:
 ''' Does the specified student ID belong to a student enrolled in the course?
 '''
 for s in c.____________: # roster
 if s.____________ == ____________: # ID sid
 return ____________ # True
 return ____________ # False
assert is_enrolled(infx269, '22223333')
assert not is_enrolled(ics31, '33334444')
(b) (8 points) There are blanks in this code for comments. For each blank, choose the letter from the
list below that indicates the most appropriate comment. Use each letter exactly once.

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 8

def drop(c: Course, sid: str) -> Course:
 ''' Return the Course, but with the student with the specified ID having been
 removed from the roster and the first person on the waiting list, if any
 having been added.
 '''
 location = find_student_by_ID(c.roster, sid) # ____Determine (A)
 if location == -1: # ____Check (E)
 return c # ____If (G)
 new_roster = c.roster[:location] + c.roster[location+1:] # ____Remove (F)
 if len(c.waitlist) > 0:
 new_roster += [c.waitlist[0]] # ____Add (C)
 new_waitlist = c.waitlist[1:] # ____Take (H)
 return c._replace(roster = new_roster, waitlist = new_waitlist) # ____Up/Ad/D
 else:
 return c._replace(roster = new_roster) # ____Update/Removed(B)

assert drop(econ20a, '11112222') == Course('Economics', '20A', 'Intro Econ', 4,
 'Chalfant, Jim', 8, [pp2, aa1, aa2], [])
assert drop(infx269, '22223333') == Course('Infx', '269', 'Computer Law', 4,
 'Kay, David', 3, [pp1, aa2, aa1], [])

A. Determine student's position on list
B. Update course's roster with student removed
C. Add the first person on the waiting list to the roster
D. Update course's roster with student added from the waiting list
E. Check whether the specified student is now enrolled
F. Remove the student from the roster of enrolled students
G. If an error occurs, return the course unchanged
H. Take the first student off of the waiting list

(c) (6 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling each blank with exactly one identifier, operator, or constant.
def withdraw(L: 'list of Course', sid: str) -> 'list of Course':
 ''' Remove the specified student from all courses he or she is enrolled in
 '''
 result = []
 for c in ____________: # L
 ____________.append(____________(____________, ____________))
 return result # Above: result drop c sid. 1 point each except 2 for drop.

ICS 31 • FALL 2015 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE 9

When you’re done, please:

• Gather up all your stuff.

• Take your stuff and your exam down to the front of the room.

• Turn in your exam; show your ID if asked.

• Exit by the doors at the front of the room. Don’t go back or disturb students still taking the test.

