First Midterm

You have 75 minutes (until the end of the class period) to complete this exam. There are 55 points possible, so allow approximately one minute per point and you’ll have plenty of time left over.

Please read all the problems carefully. If you have a question on what a problem means or what it calls for, ask us. Unless a problem specifically asks about errors, you should assume that each problem is correct and solvable; ask us if you believe otherwise.

In answering these questions, you may use any Python 3 features we have covered in class, in the text, in the lab assignments, or earlier on the exam, unless a problem says otherwise. Use more advanced features at your own risk; you must use them correctly. If a question asks for a single item (e.g., one word, identifier, or constant), supplying more than one will probably not receive credit.

Remember, stay cool! If you run into trouble on a problem, go on to the next one. Later on, you can go back if you have time. Don’t let yourself get stuck on any one problem.

You may not share with or receive from anyone besides the instructor or TAs any information or materials during the exam. You may not use any electronic devices.

Please write your answers clearly and neatly—we can’t give you credit if we can’t decipher what you’ve written.

We’ll give partial credit for partially correct answers, so writing something is better than writing nothing. But be sure to answer just what the question asks.

Good luck!
Problem 1 (12 points) Topic: Simple expressions with numbers, lists, strings

Use the following definitions in this problem: # Note to students: The correct answers are as shown ...

event = "Election" # We gave credit in some places for variations in quotes, spacing,
days_left = 21 # or capitalization, but that doesn’t mean they’re strictly right.
parties = ['Democratic', 'Green', 'Libertarian', 'Republican']

SCORING: Credit on answers to this problem if answer is a string, whole answer is correct, but shown in quotes.

(a) (5 points) What does Python print as it executes the following sequence of statements? (Write your answers in the blank space to the right of the code.)

print("Vote Nov. 8!") # Vote Nov. 8! SCORING: 1/2 pt [credit here if enclosed in quotes or all caps]
print("Don't Forget!") # Don’t Forget! SCORING: 1/2pt [Must show apostrophe]
print(5 * 4 == 20) # True (upper or lower case, no quotes) [SCORING: 1/2 pt]
print((days_left * 10) - 1) # 209 (no quotes) [SCORING: 1/2 pt]
print(days_left / 3) # 7.0 or 7 (no quotes) [SCORING: 1/2 pt]
print(days_left * 10 > 300) # False (upper or lower; don’t deduct if quotes on True above) [1/2 pt]
print(event + '...' + "Day") # Election…Day [1pt, don’t worry about spacing around …]
print(len(parties) + len(event)) # 12 [1pt]

(b) (4 points) What does Python print as it executes the following sequence of statements? (Write your answers in the blank space to the right of the code.) Remember zero-based indexing.

print(event[1]) # l (lower-case L), not "E" [quotes OK here, or upper case] 1/2 pt
print(event[-1]) # n [quotes OK here, or upper case] 1/2 pt
print(parties[0]) # Democratic [quotes or upper case OK here] 1/2 pt
print(len(parties[1])) # 5 1/2 pt

print("There are", days_left//7, "weeks until the", event) # There are 3 weeks until the Election
#SCORING:Right content in right order; don’t deduct, this prob, for 3.0, quotes around strs, wrong cap, spacing]2pt

(c) (3 points) Each of the following is a boolean expression (its value is either True or False). For each expression, give its value. SCORING: 0.5/line

len(parties) != 6 # True
'Peace and Freedom' in parties # False

'c' in 'Voting' # False
'c' in event # True
parties[0] > "American Independent" # True

len(3 * 'ok') == 3 * len('ok') # True
Problem 2 (10 points) Topic: Namedtuples

(a) (3 points) The Anteater Fruit Stand represents each kind of fruit it sells in a namedtuple called Fruit that has four fields: the kind of fruit, the name of the grower, the quantity they have in stock, and the price (per pound).

Which of the following defines a namedtuple that satisfies this specification? Circle each correct statement; the correct answer may include one or more of A, B, C, D, or E.

A. Apple = Fruit('apple ZotFarms 225 1.39')
B. Fruit = namedtuple('Fruit', 'name farm instock price') # This one
C. Fruit = namedtuple('Fruit', 'kind of fruit, grower name, amt available, price per lb')
D. Apple = namedtuple('Fruit', 'apple', 'Zot Farms', 225, 1.39)
E. Fruit = namedtuple('Fruit', 'variety grower quantity price') # This one

(b) (3 points) Which of the following creates a Fruit object as a namedtuple following the description above, to represent 125 pounds of apples grown by Zot Farms, on sale for $2.50 per pound? Circle each correct statement; the correct answer may include one or more of A, B, C, D, or E.

A. fruit1 = Fruit('apple Zotfarms 125 2.50')
B. fruit1 = Fruit.apple('Zot Farms', 125, 2.50)
C. fruit1 = orange.quantity * apple.price
D. fruit1 = Fruit('apple', 'Zot Farms', 125, 2.50) # This one
E. fruit1 = Apple('Zot Farms', 125, 2.50)

(c) (3 points) Which of the following statements reflects a price decrease of $0.50 for the Fruit object stored in fruit1? [You may assume any of the correct Fruit definitions above.] Circle each correct statement; the correct answer may include one or more of A, B, C, D, or E.

A. fruit1 = Fruit(fruit1.name, fruit1.farm, fruit1.instock, fruit1.price - 0.50) # This
B. fruit1 = Fruit('apple Zot Farms 125 -0.50')
C. fruit1 = fruit1._replace(price = 2.00) # This one
D. fruit1.price = fruit1.price - 0.50
E. fruit1 = fruit1._replace(price = fruit1.price - 0.50) # This one

(d) (1 point) Of the possible solutions in part (c) above, one is technically correct but of lower quality than the others. Which solution is lower quality and why? Choose the one response from A, B, C, or D that best describes the lower quality solution; don't circle more than one.

A. fruit1 = fruit1._replace(price = fruit1.price - 0.50) because underscores are hard to type
B. fruit1 = Fruit(fruit1.name, fruit1.farm, fruit1.instock, fruit1.price - 0.50) because it requires more typing than the others
C. fruit1 = fruit1._replace(price = 2.00) because it’s inflexible; it’s only right if the original price is $2.50 # This one
D. fruit1.price = fruit1.price - 0.50 because it’s the shortest
Problem 3 (15 points) **Topic: Functions, sorting a list of namedtuples**

Professor Amanda Anteater represents the students in her class with a namedtuple defined as follows:

```python
Student = namedtuple('Student', 'name ID midterm project final')
```

where the name is a string, the ID is an int, and the remaining fields are floats storing the scores (in the range 0 to 100) on the indicated items in the class.

(a) (2 points) In the function definition below, fill in each blank with one Python variable name, function name, method name, constant, or operator to satisfy the problem specification.

```python
def total_score(s: Student) -> float:
    ''' Return the student's score in the class, with the midterm worth 25%,
    the project 35%, and the final 40% '''
    return s.midterm * _________ + s._________ * 0.35 + s.final * 0.40
```

(b) (4 points) What do the following statements print? [The arithmetic is easy to do in your head.]

```python
s1 = Student('Zot, Zoe', 11223344, 100, 100, 100)
s2 = Student('Irvine, Irving', 55667788, 50, 50, 50)
print(s1.name, total_score(s1))
print(s2.name, total_score(s2))
```

(c) (2 points) In the function definition below, fill in each blank with one Python variable name, function name, method name, constant, or operator to satisfy the problem specification.

```python
def project_score(s: Student) -> float:
    ''' Return the student's score on the project '''
    return ______________ . ______________
```

(d) (2 points) In addition to the function `project_score` defined above, assume you have also defined similar functions called `midterm_score` and `final_score` that return the values of those fields.

If Prof. Anteater has a list of 300 students called `SL`, fill in the blanks below to reorder `SL` by each student’s final exam score, lowest to highest.

```
_____________.sort(key = _______________)  SL  final_score
```

(e) (5 points) In the function definition below, fill in each blank with a single Python constant, operator, or identifier name (variable, function, attribute, method) to satisfy the problem specification.

```python
def final_higher (SL: 'list of Student') -> 'list of Student':
    ''' Return a list of those Students in the parameter SL whose final exam score is
    higher than their midterm score '''
    result = [ ]
    for s in ____________:
        if s._________ s.midterm: final > s.final > s.miderm
            __________.append(__________)  result s
    return result
```

SCORING: 1 point per blank.
Problem 4 (4 points) **Topic: For loops**

Suppose we have a list of Students called SL, as in the previous problem.

Match the four for-loops below (A through D) with the most accurate description below.

A. for s in SL:
 print(s.name)

B. for s in SL:
 print(s.name, total_score(s))

C. for s in SL:
 print(s, total_score(s))

D. for s in SL:
 print(s.name, s.total_score)

___ Print the name of each student with his or her overall score in the class ...(s.name, total_score(s))...

___ Produces an error message about the improper use of total_score ...(s.name, s.total_score)...

___ Produces the largest volume of output ...(s, total_score(s))...

___ Print the names of the students, one per line ...(s.name)...

Problem 5 (4 points) **Topic: Identifying types**

Identify the data type of each of the following expressions, using definitions that appear in this exam where appropriate. Choose from:

- int
- float
- bool
- str
- list
- Fruit
- Student

A. SL
 list (SCORING: 1/2 point each)

B. SL[0]
 Student

C. fruit1.price
 float

D. fruit1
 Fruit

E. fruit1.price > 10.00
 bool

F. SL[1].name
 str

G. [3, 4, 5, 6, 7]
 list

H. len(SL[5].name)
 int

Problem 6 (3 points) **Topic: Control flow in functions**

What does the following code print?

```python
def alpha (n: int, s: str) -> str:
    return beta(s) * n

def beta (x: str) -> str:
    return x + "*"

print("Election Day")
print(alpha(3, 'OK'))
print("Vote!")
```

ANSWER:

- Election Day
- OK*OK*OK*
- Vote!

SCORING:

- 1/2 pt for Election Day at top and Vote! at bottom (both)
- 1 pt for at least one OK*
- 1 pt for three copies
- 1/2 for everything else correct
Problem 7 (7 points) Topic: Control flow with if and for

(a) (3 points) What does the following code print out?

```python
times = 4
for i in range(times):
    print(i, times)
print('Halloween')
```

0 4 SCORING:
1 4 1/2 point for four lines of two numbers each
2 4 1/2 point for first column going 0 to 3
3 4 1/2 point for second column being all 4s
Halloween 1/2 pt for Halloween at end
up to 1 pt for everything else correct

(b) (4 points) What does the following code print out?

```python
print('Here we go: ')
    if len(p) < 6:
        print(p)
print('The end. ')
```

Here we go: SCORING:
Bush 1/2 pt for Here we go: once at top
Bush 2 pts for correct names in correct order [partial OK, e.g. 1 pt for C/R/B/B/O, thinking <=]
Obama 1/2 pt for The end. once at bottom
The end. up to 1 pt for everything else correct

Problem 8 (0 points)

When you’re done with the exam, follow these steps (so you don’t disturb your classmates and so your exam gets turned in properly):

• Gather up all your stuff.
• Take your stuff and your exam down to the front of the room.
• Turn in your exam; show your ID if asked.
• Exit by the doors at the front of the room. Don’t go back to your seat or disturb students who are still working.