
ICS 31 • UC IRVINE YOUR NAME ________________________________

SPRING 2017 • DAVID G. KAY YOUR STUDENT ID (8 DIGITS) __________________

############## YOUR UCINET ID ____________________@UCI.EDU

K E Y ####

##############

Second Midterm
You have 75 minutes (until the end of the class period) to
complete this exam. There are 61 points possible, so allow
approximately one minute per point and you’ll have plenty
of time left over.

Please read all the problems carefully. If you have a ques-
tion on what a problem means or what it calls for, ask us.
Unless a problem specifically asks about errors, you should
assume that each problem is correct and solvable; ask us if
you believe otherwise.

In answering these questions, you may use any Python 3
features we have covered in class, in the text, in the lab as-
signments, or earlier on the exam, unless a problem says
otherwise. Use more advanced features at your own risk;
you must use them correctly. If a question asks for a single
item (e.g., one word, identifier, or constant), supplying
more than one will probably not receive credit.

Remember, stay cool! If you run into trouble on a prob-
lem, go on to the next one. Later on, you can go back if
you have time. Don’t let yourself get stuck on any one
problem.

You may not share with or receive from anyone besides the
instructor or TAs any information or materials during the
exam. You may not use any electronic devices.

Please write your answers clearly and neatly—we can’t give
you credit if we can’t decipher what you’ve written.

We’ll give partial credit for partially correct answers, so
writing something is better than writing nothing. But be
sure to answer just what the question asks.

Good luck! 

YOUR LAB SECTION (CIRCLE ONE):

1. 8:00 Ashwin Achar

2. 9:30 Ashwin Achar

3. 11:00 Nathaniel Baer

4. 12:30 Nathaniel Baer

5. 2:00 Yadhu Prakash

6. 3:30 Yadhu Prakash

7. 5:00 Shreyaan Kaushal

8. 6:30 Shreyaan Kaushal

Problem 1
(15 points)

Problem 2
(18 points)

Problem 3
(5 points)

Problem 4
(20 points)

Problem 5
(3 points)

Total 
(61 points)

ICS 31 • SPRING 2017 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  2

Problem 1 (15 points) Topic: String processing

U.S. telephone numbers can appear in many forms:

 949-824-5072 (949)824-5072 9498245072 1-949-824-5072 1(949)824-5072 +1(949)824-5072

To process a collection of phone numbers, it's helpful if we store every number in the same form. Be-
low is the outline of a function to perform this task; it shows three steps labeled (i), (ii), and (iii).
def phone_number_to_10_digits(original: str) -> str:
 """ Convert the parameter to a string of exactly 10 digits
 """
 # (i) Change all punctuation to blanks

 # (ii) Remove all blanks

 # (iii) Remove extra 1 at beginning if necessary

 return result

assert phone_number_to_10_digits('+1(999)888-7777') == '9998887777'
assert phone_number_to_10_digits('1-999-888-7777') == '9998887777'
assert phone_number_to_10_digits('1(999)888-7777') == '9998887777'
assert phone_number_to_10_digits('19998887777') == '9998887777'
assert phone_number_to_10_digits('9998887777') == '9998887777'
assert phone_number_to_10_digits('(999)888-7777') == '9998887777'
assert phone_number_to_10_digits('999-888-7777') == '9998887777'

The following excerpt from help(str) may be useful for this problem.

(a) Which of the following code segments correctly implements step (i) above? Circle one or more of A,
B, C, D, or E; more than one may be correct.
A. result = original.replace("()-+", " ")

B. table = str.maketrans("()+-", " ") # THIS (2 lines)  
result = original.translate(table)

C. result = translate("()+-", " ")
D. result = original.find("()+-").replace(" ")

E. result = original.translate(str.maketrans("()+-", " ")) # THIS

SCORING: Start w/ 3; deduct 1pt for each wrongly circled letter and each wrongly un-circled letter. No negative
scores. 

find(...)
 S.find(sub) -> int
 Return the lowest index in S where
 substring sub is found.
 Return -1 on failure.

replace(...)
 S.replace(old, new) -> str
 Return a copy of S with all
 occurrences of substring old replaced
 by new.

maketrans(...)
 str.maketrans(x, y) ->
 dict (static method)
 Return a translation table usable for
 translate(). The arguments must be

 strings of equal length, and in the
 resulting dictionary, each character
 in x will be mapped to the
 character at the same position in y.

translate(...)
 S.translate(table) -> str
 Return a copy of the string S, where
 all characters have been mapped
 through the given translation table.
 Unmapped characters are left
 untouched.

upper(...)
 S.upper() -> str
 Return a copy of S converted to
 uppercase.

ICS 31 • S'17 • D. G. KAY • UC IRVINE • UCINET ID: ______________________@UCI.EDU • SECOND MIDTERM • PAGE 3

(b) Which of the following code segments also correctly implements step (i) above? Circle one or more
of A, B, C, or D; more than one may be correct.

A. result = '' # THIS  
for c in original:  
 if c in "()-+":  
 result += " "  
 else:  
 result += c

B. result = ''  
if c in original:  
 for c in "()-+":  
 result += " "  
else:  
 result += c

C. result = ''  
for c in original:  
 if c not in "()-+":  
 result += c

D. result = original # THIS  
for c in "()-+":  
 result = result.replace(c, " ")

(c) Which of the following code segments correctly implements step (ii) above? Circle one or more of
A, B, C, or D; more than one may be correct.
A. result = result.strip()
B. result.replace(" ", None)
C. result = result.lstrip().rstrip()

D. result = result.replace(" ", "") # THIS

(d) Which of the following code segments correctly implements both steps (i) and (ii) above? Your
choices are the same code segments (A, B, C, and D) as in part (b) above, but the correct answer(s) may
be different. Circle one or more of A, B, C, or D; more than one may be correct.

 A. B. C. D. # The one with IF and no ELSE (C)

(e) Which of the following code segments correctly implements step (iii) above? Circle one or more of
A, B, C, or D; more than one may be correct.

A. if len(result) > 10 and result[0] == '1': # THIS  
 result = result[1:]

B. if len(result) > 10 and result[0] == '1': 
 result = result - 1

C. if len(result) > 10 and result[0] == '1': 
 del result[0]

D. if len(result) > 10 and result[0] == '1': 
 result = result - '1'

ICS 31 • SPRING 2017 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  4

Problem 2 (18 points) Topic: Processing lists of namedtuples

A government agency has asked your help in building a system for analyzing telephone call records.
You represent a single phone call as follows:
Call = namedtuple('Call', 'num_from num_to date time seconds')
where num_from and num_to are strings representing 10-digit US phone numbers (the number of the
caller—the person who dialed the phone—is num_from; the number dialed—the number of the person
who says "Hello?"—is num_to), date is a string representing the date, time represents the time the call
was made, and second represents how long the call lasted, in seconds.
c1 = Call('7142220000', '9494440000', '01/23/2014', '12:32', 240)

c2 = Call('7142220000', '8189990000', '01/23/2014', '12:37', 200)

c3 = Call('3132221111', '2121112222', '01/24/2014', '08:25', 1600)

all_calls = [c1, c2, c3]

(a) (5 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling each blank with exactly one identifier, operator, or constant. (Re-
member that [Call] as a type annotation is the same as 'list of Call'.)
def calls_from(call_list: [Call], phone_number: str) -> [Call]:
 """ Return a list of all calls made from the specified number
 """
 result = []

 for c in ____________: for c in call_list: # SCORING: 1 point per blank

 if c.____________ == ____________: if c.num_from == phone_number:

 ____________.append(____________) result.append(c)
 return result

assert calls_from(all_calls, '7142220000') == [c1, c2]
assert calls_from(all_calls, '3132221111') == [c3]
assert calls_from([], '3132221111') == []
assert calls_from(all_calls, '9999999999') == []

(b) (2 points) Next, define a similar function named calls_to() that returns calls made to a specified
number, as described below. The body of calls_to() could be identical to the body of calls_from()
above, except for one identifier in one place. Fill in the changed identifier below and leave the other
places blank.
def calls_to(call_list: [Call], phone_number: str) -> [Call]:
 """ Return a list of all calls made to the specified number
 """
 result = []

 for c in ____________:

 if c.____________ == ____________: # ANSWER: c.num_to instead of c.num_from. 1 point.

 ____________.append(____________) # 1 pt for no new mistakes in the other blanks.
 return result

assert calls_to(all_calls, '7142220000') == []
assert calls_to(all_calls, '2121112222') == [c3]
assert calls_to([], '3132221111') == [] 

ICS 31 • S'17 • D. G. KAY • UC IRVINE • UCINET ID: ______________________@UCI.EDU • SECOND MIDTERM • PAGE 5

(c) (4 points) We plan to use this software to identify people who call the numbers of known terrorists
(or receive calls from terrorists' numbers). Next we'll write a version of calls_from() that selects calls
from any phone number on a list of numbers (rather than from just a single number). Complete the
definition of the function below, consistent with its header, docstring comment, and assertions, by fill-
ing each blank with exactly one identifier, operator, or constant.
def calls_from_any(call_list: [Call], suspected_numbers: [str]) -> [Call]:
 """ Return a list of all calls made from a number on the suspected_numbers list.
 """
 result = [] SCORING: 1/2 for call_list below, 1/2 for num_from in line after that.

 for c in ____________: for c in call_list: SCORING: 1 pt for “in”, 1 pt for “suspected_nums”

 if c.____________ ____________ ____________: if c.num_from in suspected_numbers:

 ____________.append(____________) result.append(c) SCORING 1/2 pt. each
 return result

assert calls_from_any(all_calls, ['7142220000', '3132221111', '7778881111']) == [c1, c2, c3]

(d) (2 points) Next, define a function named calls_to_any() that returns a list of all calls made to a
number on the suspected-number list. The body of calls_to_any() could be identical to the body of
calls_from_any(), except for one identifier in one place. Fill in the changed identifier below and leave
the other places blank.
def calls_to_any(call_list: [Call], suspected_numbers: [str]) -> [Call]:
 """ Return a list of all calls made to a number on the suspected_numbers list.
 """
 result = []

 for c in ____________: # ANSWER (next line): c.num_to instead of c.num_from. 1 point

 if c.____________ ____________ ____________:

 ____________.append(____________) # 1 pt for no new mistakes in the other blanks.
 return result

assert calls_to_any(all_calls, ['7142220000', '8189990000', '2121112222']) == [c2, c3]

(e) (5 points) Complete the definition of the function below, consistent with its
header, docstring comment, and assertions, by filling in each blank with exactly one
identifier, operator, or constant.
def total_call_time(call_list: [Call]) -> int:
 """ Return the total duration of all calls on list (in seconds)
 """
 result = ____________ result = 0 SCORING: 1 point

 for c in ____________: for c in call_list: SCORING: 1/2 point

 ____________ += ____________ . ____________ result += c.seconds SCORING: 1 pt each

 return ____________ return result SCORING: 1/2 point

assert total_call_time(all_calls) == 2040
assert total_call_time([c1]) == 240
assert total_call_time([]) == 0

ICS 31 • SPRING 2017 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  6

Problem 3 (5 points) Topic: String formatting

(a) (3 points) The function below prints all the calls from a given number in a formatted table:
From To Date Time Seconds Minutes

7142220000 9494440000 01/23/2014 12:32 240 4.000
7142220000 8189990000 01/23/2014 12:37 200 3.333

def print_calls_from(whole_call_list: [Call], phone_number: str) -> None:
 """ Print all the calls from the specified number in table form.
 """
 selected_calls = calls_from(whole_call_list, phone_number)
 print('From To Date Time Seconds Minutes')
 print()

 FORMAT_STRING = — Choose the correct value from A–E below —

 for c in selected_calls:
 print(FORMAT_STRING.format(c.num_from, c.num_to, c.date, c.time,
 c.seconds, c.seconds/60))
 
Choose which one of these five values could go in the code above to produce the correct formatting.
Circle one of A, B, C, D, or E; only one is correct.

A. "{:15s} {:15s} {:15s} {:5s} {:7d} {:8.3f}"

B. "{:10s} {:10s} {:15s} {:5s} {:1d} {:2.3f}"

C. "{:10s} {:10s} {:10s} {:5s} {:1d} {:8.3f}"

D. "{:10s} {:10s} {:10s} {:5s} {:7d} {:8.3f}" THIS ONE

E. "{:10s} {:10s} {:10s} {:5s} {:7d} {:2.3f}"

 
(b) (2 points) Which of the following is the correct output from this print statement:

 print("Call time is {:2d} seconds.".format(185))

Circle one of A, B, C, D, or E; only one is correct.

A. Call time is 18 seconds.

B. Call time is 85 seconds.

C. Call time is185 seconds.

D. Call time is 185 seconds. # THIS ONE

E. Call time is 185 seconds.

ICS 31 • S'17 • D. G. KAY • UC IRVINE • UCINET ID: ______________________@UCI.EDU • SECOND MIDTERM • PAGE 7

Problem 4 (20 points) Topic: Processing lists of namedtuples

The previous problems dealt with a list containing every call. It will be convenient to organize those
calls by customer (i.e., by the person who "owns" each phone number), with a record (namedtuple) for
each person. Each record starts out as follows:
Customer = namedtuple('Customer', 'name address phone outgoing incoming')
p1 = Customer('Jones, John', '12 Elm St.', '9494440000', [], [])
p2 = Customer('Smith, Sally', '24 Oak St.', '7142220000', [], [])
p3 = Customer('Roberts, Dan', '36 Ash St.', '2137770000', [], [])
p4 = Customer('Brown, Mary', '48 Fir St.', '8189990000', [], [])

where the name, address, and phone are strings. The last two fields are lists: a list of all the (outgoing)
Calls made from the customer's number and a list of all the (incoming) Calls made to the customer's
number.

(a) (5 points) First we write a function that completes the outgoing and incoming call lists for a single
customer. Complete the definition of the function below, consistent with its header, docstring com-
ment, and assertions, by filling each blank with exactly one identifier, operator, or constant. As always,
for full credit you should use previously defined functions wherever appropriate.
def fill_customer_record(RWC: Customer, all_calls: [Call]) -> Customer:
 """ "RWC" stands for "record without calls": It's quicker to write on the exam.
 Return a customer record with that customer's outgoing and incoming calls
 filled in.
 """ SCORING: 1pt for calls_from, 1pt for calls_to, 1pt for both all_calls, 1pt for name+addr, 1 for RWC.ph
 outgoing_call_list = ____________ (____________, RWC.phone) calls_from all_calls
 incoming_call_list = ____________ (____________, RWC.phone) calls_to all_calls
 return Customer(RWC.____________, RWC.____________, ____________.____________,
 outgoing_call_list, incoming_call_list)
 name address RWC phone
assert fill_customer_record(p2, all_calls) == Customer(p2.name, p2.address, p2.phone, [c1, c2], [])

(b) (6 points) Suppose we have (i) the functions and namedtuples described above in this exam, (ii)
the variable all_calls that contains a list of Calls containing every call made in the last year, and (iii)
the variable terrorist_phones that contains ['7778889999', '6667778888', '5556667777'], repre-
senting three phone numbers of known terrorists.

Which of the following is an accurate statement? Circle one or more of A, B, C, D, E, or F; more than
one may be correct.

A. Each Call in all_calls occurs twice in the list of Customers constructed from all_calls: once on
the caller's outgoing list and once on the recipient's incoming list. YES

B. On a given Customer's outgoing call list, every Call's num_from field is the same. YES

C. On a given Customer's incoming call list, every Call's num_from field is the same. NO

D. We can use calls_to_any(all_calls, terrorist_phones) to get a list of all the calls made to the
terrorists' phone numbers. YES

E. The expression total_call_time(all_calls, '7778889999') gives us the number of seconds the
suspected terrorist has spent on the phone. NO

F. The expression total_call_time(calls_to(all_calls, '8189990000')) gives us the number of
seconds Mary Brown has spent on the phone with people who called her. YES

ICS 31 • SPRING 2017 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  8

(c) (5 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling each blank with exactly one identifier, operator, or constant.
def terrorist_talk_time(c: Customer, bad_phones: [str]) -> int:
 """ Return the number of seconds this customer spent talking to terrorists
 on the specified list of phone numbers.
 """
SCORE lines 1, 2: 1 pt for the two total_call_times;1 pt for to_any and outgoing on same line; 1/from_, incoming
 seconds_outgoing = ____________(____________(c.____________, bad_phones))
 total_call_time calls_to_any outgoing
 seconds_incoming = ____________(____________(c.____________, bad_phones))
 total_call_time calls_from_any incoming
 return ____________ + ____________

 secs_outgoing secs_incoming SCORE 1 pt each, either order
assert terrorist_talk_time(p2, ['8189990000']) == 200

(d) (4 points) Suppose we complete our customer list as shown below. SCORING: 1/2 point each.
p1 = fill_customer_record(p1, all_calls)

p2 = fill_customer_record(p2, all_calls)

p3 = fill_customer_record(p3, all_calls)

p4 = fill_customer_record(p4, all_calls)

customer_list = [p1, p2, p3, p4]

Indicate the data type of each of the following expressions by selecting one item from the provided list.

A. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list # List of Customer. Value not required

B. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list[1] # Customer

C. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list[1].name # str

D. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list[1].outgoing # list of Call

E. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list[1].outgoing[1] # Call

F. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list[1].outgoing[1].num_to # str

G. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
customer_list[1].outgoing[1].seconds # int

H. ❏int ❏float ❏bool ❏str ❏list of str ❏Call ❏Customer ❏list of Call ❏list of Customer 
len(customer_list[1].outgoing) # int

ICS 31 • S'17 • D. G. KAY • UC IRVINE • UCINET ID: ______________________@UCI.EDU • SECOND MIDTERM • PAGE 9

Problem 5 (3 points) Topic: Coding with boolean expressions

Each of the three code segments below could be rewritten to have the same meaning in less code. Re-
write each segment, primarily by removing unnecessary code as discussed on the lab assignments, while
preserving the meaning. Just make your changes on the code below.

(a)
def is_negative(num: int) -> bool:
 """ Return True if the parameter is a negative number and False otherwise
 """
 if num < 0:
 return True
 else:
 return False

 return num < 0 # In this problem, don't deduct for minor transcription errors.

(b)
if is_negative(-23) == True:
 print('Negative')
else:
 print('Positive (or zero)')

if is_negative(-23):
 print('Negative')
else:
 print('Positive (or zero)')

(c)
assert is_negative(-18) == True

assert is_negative(-18)

Problem 6 (0 points)

When you're done with the exam, follow these steps (so you don't disturb your classmates and so your
exam gets turned in properly):

• Write your UCInet ID in the blanks at the top of the odd-numbered pages. Also check for your
name on the front page.

• Gather up all your stuff.
• Take your stuff and your exam down to the front of the room.
• Turn in your exam; show your ID if asked.
• Exit by the doors at the front of the room. Don't go back to your seat or disturb students who are

still working.

