
ICS 31 • A • UC IRVINE YOUR NAME ________________________________

WINTER 2016 • DAVID G. KAY YOUR STUDENT ID (8 DIGITS) __________________

******************** YOUR UCINET ID ____________________________
****** K E Y ******

Second Midterm
You have 75 minutes (until the end of the class period) to
complete this exam. There are 55 points possible, so allow
approximately one minute per point and you’ll have plenty
of time left over.

Please read all the problems carefully. If you have a ques-
tion on what a problem means or what it calls for, ask us.
Unless a problem specifically asks about errors, you should
assume that each problem is correct and solvable; ask us if
you believe otherwise.

In answering these questions, you may use any Python 3 fea-
tures we have covered in class, in the text, in the lab assign-
ments, or earlier on the exam, unless a problem says other-
wise. Use more advanced features at your own risk; you
must use them correctly. If a question asks for a single item
(e.g., one word, identifier, or constant), supplying more than
one will probably not receive credit.

Remember, stay cool! If you run into trouble on a problem,
go on to the next one. Later on, you can go back if you have
time. Don’t let yourself get stuck on any one problem.

You may not share any information or materials with class-
mates during the exam and you may not use any electronic
devices.

Please write your answers clearly and neatly—we can’t give
you credit if we can’t decipher what you’ve written.

We’ll give partial credit for partially correct answers, so writ-
ing something is better than writing nothing. But be sure to
answer just what the question asks.

Good luck! 

YOUR LAB SECTION (CIRCLE ONE):

1. 8:00a Shibani Konchady

2. 10:00 Shibani Konchady

3. 4:00 Akshat Amrish Patel

4. 6:00 Akshat Amrish Patel

5. 8:00a Aniket Shivam

6. 10:00 Aniket Shivam

7. 4:00 Roeland Singer-Heinze

8. 6:00 Roeland Singer-Heinze

Problem 1
(5 points)

Problem 2
(21 points)

Problem 3
(9 points)

Problem 4
(15 points)

Problem 5
(5 points)

Total 
(55 points)

ICS 31 • A • WINTER 2016 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  2

Problem 1 (5 points) Topic: Data Types

A library represents each book in its collection as follows:
from collections import namedtuple
Book = namedtuple('Book', 'callnum author title year pages checkedout')
bk6 = Book("y153.w", "Sayers, Dorothy", "Whose Body?", 1923, 156, False)
bk7 = Book("z13.21", "Sayers, Dorothy", "Busman’s Honeymoon", 1937, 381, True)
bk8 = Book("w22.45a", "Doyle, Arthur Conan", "His Last Bow", 1917, 225, False)
bk9 = Book("x12.5a", "Doyle, Arthur Conan", "A Study in Scarlet", 1887, 325, True)
BL = [bk6, bk7, bk8, bk9]

The field callnum is a string with the book's call number (a unique ID for each book). The author and
title are strings; the year of publication and the number of pages are ints; the checkedout field is bool-
ean: True if the book is checked out and False if it's still at the library.

The Orange County Public Library system represents each of its branch libraries as follows:
Library = namedtuple('Library', 'name address phone collection')
ElTo = Library("El Toro", "24672 Raymond Way, El Toro, CA 92630", "949-855-8173",
 [bk6, bk7, bk8])
Brea = Library("Brea", "1 Civic Center Circle, Brea, CA 92821", "714-671-1722",
 [bk7, bk8, bk9])
IrvUP = Library("Irvine University Park", "4152 Sandburg Way, Irvine, CA 92612",
 "949-786-4001", [bk6])
Tust = Library("Tustin", "345 East Main Street, Tustin, CA 92780", "714-544-7725",
 [bk6, bk9])
OCPL = [ElTo, Brea, IrvUP, Tust]

These definitions will be used throughout this test.

For each of these expressions, (i) check the box corresponding to its data type and (ii) if it's a list, give
its length; if it's a namedtuple, give the value of its first field; otherwise, give its value.

(a) ❏int ❏float ❏bool ❏str ❏list of str ❏Book ❏Library ❏list of Book ❏list of Library

BL[1].year int, 1937

(b) ❏int ❏float ❏bool ❏str ❏list of str ❏Book ❏Library ❏list of Book ❏list of Library

OCPL list of Library, 4

(c) ❏int ❏float ❏bool ❏str ❏list of str ❏Book ❏Library ❏list of Book ❏list of Library

Brea.collection list of Book, 3

(d) ❏int ❏float ❏bool ❏str ❏list of str ❏Book ❏Library ❏list of Book ❏list of Library

ElTo.collection[2].pages int, 225

(e) ❏int ❏float ❏bool ❏str ❏list of str ❏Book ❏Library ❏list of Book ❏list of Library

OCPL[0].collection[1] Book, z13.21

ICS 31 • A • WINTER 2016 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  3

Problem 2 (21 points) Topic: Processing lists of namedtuples.

(Continue using the definitions from Problem 1.)

(a) (4 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def book_from_callnum(booklist: 'list of Book', call_number: str) -> Book:
 """ Return the Book with the specified call number, or None if not found.
 """
 for bk in ____________________: booklist
 if bk.____________________ == ____________________: callnum == call_number
 return ____________________ bk [versions: bk, a_book, this_bk, the_book]
 return None

assert book_from_callnum(BL, "z13.21") == bk7
assert book_from_callnum(BL, "xyz123") == None

(b) (3 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def title_from_callnum(booklist: 'list of Book', call_number: str) -> str:
 """ Given a list of Books and a call number, return the title of the book with
 that call number
 """
 bk = ____________________ (booklist, call_number) book_from_callnum (2 pts)
 return bk.____________________ title

assert title_from_callnum(BL, "z13.21") == "Busman’s Honeymoon"

(c) (4 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def books_checked_out(booklist: 'list of Book') -> 'list of Book':
 """ Return a list of those books in the parameter that are checked out
 """
 result = []
 for bk in booklist:
 if bk.____________________: checkedout
 ____________________.append(____________________) result.append(bk)
 return ____________________ result

assert books_checked_out(BL) == [bk7, bk9]
assert books_checked_out([]) == []

(d) (4 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def percentage_checked_out(booklist: 'list of Book') -> float:
 """ Out of the total number of books on the list, the percentage (0-100)
 that are currently checked out. """
 return len(____________________(____________________)) / \
  
 ____________________ (____________________) * 100

assert percentage_checked_out(BL) == 50 len(books_checked_out(booklist)) / len(booklist) * 100
assert percentage_checked_out([b7, b9]) == 100
assert percentage_checked_out([b6, b8]) == 0

ICS 31 • A • WINTER 2016 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  4

(e) (6 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.

def book_length(bk: ____________________) -> int: Book
 """ Return the number of pages in the book
 """
 return bk.____________________ pages

def longest_book_available(booklist: 'list of Book') -> Book:
 """ Return the longest Book that is currently not checked out.
 """
 result = []
 for bk in booklist:
 if not bk.____________________: checkedout
 result.append(____________________) bk [check versions]
 result.sort(key = ____________________, reverse = True) book_length
 return result[____________________] 0
assert longest_book_available(BL) == bk8

Problem 3 (9 points) Topic: String processing

(Continue using the definitions in Problem 1.) The following excerpt from help(str) may be useful
for this problem.

The address field of a Library contains the whole mailing address in one string. The code below con-
structs a namedtuple with a separate field for each component of the address.
Address = namedtuple('Address', 'street_addr city state zip')

def string_to_Address(entire_addr: str) -> Address:
 """ Create an Address with the contents of the string
 """
 three_parts = entire_addr.split(",")
 street_addr = three_parts[0].strip()
 city = three_parts[1].strip()
 state_zip = three_parts[2].split()
 state = state_zip[0]
 zip = state_zip[1]
 return Address(street_addr, city, state, zip)

assert string_to_Address("5056 Donald Bren Hall, Irvine, CA 92697") == \
 Address("5056 Donald Bren Hall", "Irvine", "CA", "92697")
assert string_to_Address(" 24672 Raymond Way, El Toro,CA 92630 ") == \
 Address("24672 Raymond Way", "El Toro", "CA", "92630")

find(...)
 S.find(sub) -> int
 Return the lowest index in S where
 substring sub is found.
 Return -1 on failure.

join(...)
 S.join(list) -> str
 Return a string which is the
 concatenation of the strings in the
 list. The separator between elements
 is S.

replace(...)
 S.replace(old, new) -> str
 Return a copy of S with all
 occurrences of substring old
 replaced by new.

split(...)
 S.split([str]) -> list of strings
 Return a list of the words in S,
 using str as the delimiter string.
 If str is not specified or is None,
 any whitespace string is a separator
 and empty strings are removed from
 the result.

strip(...)
 S.strip([chars]) -> str
 Return a copy of the string S with
 leading and trailing whitespace
 removed. If chars is given and not
 None, remove characters in chars
 instead.

ICS 31 • A • WINTER 2016 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  5

(a) (2 points) When we call string_to_Address("5056 Donald Bren Hall, Irvine, CA 92697"),
what is the value assigned to three_parts?
A. ["5056", "Donald", "Bren", "Hall", "Irvine", "CA", "92697"]
B. ["5056 Donald Bren Hall, Irvine, CA 92697"]

C. ["5056 Donald Bren Hall", " Irvine", " CA 92697"] # THIS ONE

D. ["5056 Donald Bren Hall", "Irvine", "CA 92697"]
E. ["5056 Donald Bren Hall", "Irvine", "CA", "92697"]

(b) (2 points) When we call string_to_Address("5056 Donald Bren Hall, Irvine, CA 92697"),
what is the value assigned to state_zip?
A. "CA 92697"
B. ["CA 92697"]
C. ["5056 Donald Bren Hall", " Irvine", " CA 92697"]

D. ["CA", "92697"] # THIS ONE
E. [" CA", " 92697"]

(c) (2 points) Below is an alternative way to write this function:
def string_to_Address2(entire_addr: str) -> Address:
 """ Create an Address with the contents of the string
 """
 comma_pos = entire_addr.find(",")
 street_addr = entire_addr[:comma_pos].strip()
 city_state_zip = entire_addr[comma_pos+1:]
 comma_pos = city_state_zip.find(",")
 city = city_state_zip[:comma_pos].strip()
 state_zip = city_state_zip[comma_pos+1:].split()
 state = state_zip[0]
 zip = state_zip[1]
 return Address(street_addr, city, state, zip)

assert string_to_Address2("5056 Donald Bren Hall, Irvine, CA 92697") == \
 Address("5056 Donald Bren Hall", "Irvine", "CA", "92697")
assert string_to_Address2(" 24672 Raymond Way, El Toro,CA 92630 ") == \
 Address("24672 Raymond Way", "El Toro", "CA", "92630")

When we call string_to_Address2("5056 Donald Bren Hall, Irvine, CA 92697"), what is the
value assigned to city_state_zip?
A. ["Irvine", "CA", "92697"]
B. "5056 Donald Bren Hall, Irvine, CA 92697"
C. [" Irvine", " CA 92697"]
D. ", Irvine, CA 92697"

E. " Irvine, CA 92697" # THIS ONE

ICS 31 • A • WINTER 2016 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  6

(d) (3 points) Below is a function:
def you_tell_me(s: str) -> str:
 """ You provide the docstring.
 """
 L = s.split()
 s = " ".join(L)
 return s

Which one of the following is the best (most accurate) docstring comment for this function?

A. Returns the same string it was passed.
B. Returns the parameter with multiple spaces between words reduced to one space. # THIS
C. Returns a list of the words in the parameter string.
D. Separates the parameter string into words and joins it back together again
E. Removes all spaces and punctuation from the parameter string and returns the result.

Problem 4 (15 points) Topic: Lists of namedtuples containing lists

(Continue using the definitions from Problem 1. As always, for full credit you should use functions
previously defined on this exam where appropriate, rather than reinventing the wheel.)

(a) (3 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def Library_percentage_checked_out(Lib: Library) -> float:
 """ Return the percentage (0-100) of this library's books that are currently
 checked out.
 """ # SCORING: percentage_checked_out = 2, collection = 1
 return ____________________(Lib.____________________) percentage_checked_out collection

assert Library_percentage_checked_out(ElTo) == 1/3*100
assert Library_percentage_checked_out(IrvUP) == 0

(b) (6 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def Lib_with_most_checked_out(Libraries: 'list of Library') -> Library:
 """ Return the Library with the greatest percentage of checked-out books.
 """ # SCORING: 2 points each: Libraries Library_percentage_checked_out 0
 return sorted(____________________, key=____________________,

 reverse = True)[____________________]

assert Lib_with_most_checked_out(OCPL) == Brea

(c) (6 points) Complete the definition of the function below, consistent with its header, docstring
comment, and assertions, by filling in each blank with exactly one identifier, operator, or constant.
def oldest_book(Libraries: 'list of Library') -> Book:
 """ From all libraries in the list, return the one Book with the earliest
 publication year. (Okay to assume there's one oldest book, no ties.)
 """
 oldest_book_so_far = None
 oldest_year_so_far = 9999 # This will be replaced by the first real year
 for L in ____________________: Libraries
 for bk in L.____________________: collection
 if bk.year < ____________________: oldest_year_so_far
 oldest_book_so_far = ____________________ bk
 oldest_year_so_far = ____________________ . ____________________ bk.year
 return oldest_book_so_far
assert oldest_book(OCPL) == bk9

ICS 31 • A • WINTER 2016 • DAVID G. KAY • UC IRVINE SECOND MIDTERM • PAGE  7

Problem 5 (5 points) Topic: String formatting

(a) (3 points) Suppose we want to print library information in a table formatted as shown:
Pct. Out Name Phone Address
 33.333% El Toro 949-855-8173 24672 Raymond Way, El Toro, CA 92630
 66.667% Brea 714-671-1722 1 Civic Center Circle, Brea, CA 92821
 0.000% Irvine University Park 949-786-4001 4152 Sandburg Way, Irvine, CA 92612
 50.000% Tustin 714-544-7725 345 East Main Street, Tustin, CA 92780

Given a Library, we can produce a formatted string with the Lib_to_str function below:
def Lib_to_str(Lib: Library) -> str:
 """ Return a formatted string for printing, including percentage checked out
 """
 format_string = —insert value from the choices below—
 return format_string.format(Library_percentage_checked_out(Lib), Lib.name,
 Lib.phone, Lib.address)

assert Lib_to_str(ElTo) == \
" 33.333% El Toro 949-855-8173 24672 Raymond Way, El Toro, CA 92630"

Which of the following could we correctly assign to format_string? Circle one or more of A, B, C, D,
or E; more than one may be correct.

A. "{:7.3f}% {:25s}{:12s} {:1s}" # THIS ONE
B. "{7.3f}% {25s}{12s} {1s}"
C. "{:6.3f}% {:25s}{:12s} {:1s}"
D. "{:0.3f}% {:25s}{:12s} {:1s}"
E. "{1:7.3f}% {2:25s}{3:12s} {4:1s}"

(b) (2 points) Which one of the following is the correct output from this print statement:
print("Buy one new for ${:3.2f}; call now, 1-800-555-5555.”.format(23599.95))

A. Buy one new for $23,599.95; call now, 1-800-555-5555.

B. Buy one new for $9.95; call now, 1-800-555-5555.

C. Buy one new for $.95; call now, 1-800-555-5555.

D. Buy one new for $23599.95; call now, 1-800-555-5555. # THIS ONE
E. Buy one new for $ 23599.95; call now, 1-800-555-5555.

Problem 6 (0 points)

When you're done with the exam, follow these steps (so you don't disturb your classmates and so your
exam gets turned in properly):

• Gather up all your stuff.

• Take your stuff and your exam down to the front of the room.

• Turn in your exam; show your ID if asked.

• Exit by the doors at the front of the room. Don't go back to your seat or disturb students still work-
ing.

