Informatics 41 • Fall 2005 • David G. Kay • UC Irvine Your name	
EIGHTH QUIZ	Your student ID
You have 15 minutes from the start of class to condeliberate speed. Don't give us more than we ask	nplete this quiz. Read the questions with care; work with for. The usual instructions apply. Good luck!
Problem 1 (5 points)	
For each of the algorithms or operations described below, check the box corresponding most closely to its complexity (i.e., its O-notation).	
(a) (cons 'turkey L) where L is a list of n symbol Constant—O(1) Logarithmic—O(log n	_
(b) (foldr + 0 (map f L)) where f is a function ☐ Constant—O(1) ☐ Logarithmic—O(log n	
(c) .In a binary search tree of n restaurants, ordered Constant—O(1) Logarithmic—O(log n	ed by name, find a restaurant given its name. a) □ Linear—O(n) □ Quadratic—O(n²)
(d) Adding the 45th and the 729th elements of ar Constant—O(1) Logarithmic—O(log n	n n-element vector (where n≥729). n) □ Linear—O(n) □ Quadratic—O(n²)
(e) From a binary search tree of n restaurants, ord ☐ Constant—O(1) ☐ Logarithmic—O(log n	lered by name, print an alphabetical list of all the restaurants. a) \text{Linear-O(n)} \text{Quadratic-O(n^2)}
Problem 2 (2 points)	
List two characteristics of binary circuitry that mak opposed to using a component that directly repres	kes it especially effective for storage in modern computers (as sents more than two different values).
Problem 3 (3 points)	

Choose one or the other:

- List three kinds of computational resources that an operating system helps manage
- List three categories of functionality that a modern operating system performs

Problem 4 (1 point)

How many bits does it take to represent 8 different values?

Problem 5 (11 points)

Suppose you have a vector of rrant structures, which are defined as usual: (define-struct rrant (name cuisine phone dish price))

(b) (3 points) Suppose you have the function vector-map, which takes a vector and a function and returns a new vector whose contents are the results of applying the function to each element of the input vector. Thus, (vector-map (vector 3 4 5) double) would return (vector 6 8 10).

Complete the following definition that changes all the prices in a vector of rrant structures:

(c) (5 points) Complete the definition of vector-map below.