FOURTH QUIZ

You have 15 minutes from the start of class to complete this quiz. Read the problems with care; work with deliberate speed. Don't give us more than we ask for. The usual instructions apply. Good luck!

Problem 1 (8 points)

Complete the definition of collect-expensive-rrants below.

Problem 2 (5 points)

- (a) (1 point) At the right is a picture of a binary search tree. Insert the value "pumpkin" into the tree; draw a new branch and node to indicate where it belongs. Be careful to distinguish a left subtree from a right subtree, if necessary (by the angle of the branch).
- (b) (1 point) Now insert the value "monster" into the tree.
- (c) (2 points) List all nine items in the tree in the order they would be visited in an inorder traversal of the tree. In other words, if you converted this BST to a list using an inorder traversal, what would be the order of items in the list?

- (d) (1/2 point) In a *preorder* traversal of the original tree (without "pumpkin" or "monster"), what is the very *first* node visited?
- (e) (1/2 point) In a *postorder* traversal of the of the original tree (without "pumpkin" or "monster"), what is the very *last* node visited?

Problem 3 (7 points)

Suppose we have a binary search tree of numbers, with nodes defined as follows:

```
(define-struct BSTnode (rootvalue left right))
```

where rootvalue is a number, left and right are either empty or a node, and the binary search tree property applies. Fill in the blanks below to complete the definition below of traverse-in-order; each blank should be filled by exactly one item: symbol, function name, or constant.

; ;	traverse-:	in-order:	BST-of-nu	umbers	-> 1	list-of-numbers				
; ;	Return a 1	list of all	the numb	pers in	the i	input	tree,	in	order	
(de	fine trave	erse-in-ord	er							
(lambda (T))								
	(cond									
	(())
	(else	(append								
		((T))	
		(list	(_))
		((T))))))))